Большая Энциклопедия Нефти и Газа. Труба жаровая


Жаровые трубы - это... Что такое Жаровые трубы?

Жаротрубный пароперегреватель Вид на трубчатую решётку. Расположенные в верхней части жаровые трубы заметно больше в диаметре, чем расположенные под ними дымогарные

Жаровые трубы — элементы конструкции парового котла, основной компонент трубчатых пароперегревателей (такие пароперегреватели ещё называют жаротрубные). Как понятно из названия, служат для пропуска горячих газов, которые образовались в результате сгорания топлива в топке, и передаче их теплоты пару, тем самым повышая его температуру и повышая КПД котла в целом.

Ранее жаровыми называли трубы для нагрева и испарения воды. Однако после перехода на многотрубчатые котлы (1820-е), такие трубы стали называть дымогарными.

В 1890—1900 в котлах стали устанавливать первые пароперегреватели, которые поначалу имели ленточную конструкцию (пар нагревался за счёт поверхностей, закреплённых на дымогарных трубах). Впоследствии конструкция пароперегревателей претерпела серьёзные изменения. Их стали размещать в самом котле (Пилота—Слуцкого) или в дымовой коробке (Кленча, Лопушинского), но такие конструкции не получили распространения. Более удачными оказались конструкции, где нагревательные элементы пароперегреватля (U-образно согнутые трубки) размещались в отдельных трубах. Именно эти трубы и стали называться жаровыми. Собственно говоря, жаровые трубы также участвуют и в парообразовании, так как окружены водой, но всё же из основное назначение — передача тепла пару, что проходит по размещённым в жаровых трубах элементам пароперегревателя.

По конструкции жаровые трубы аналогичны дымогарным, но больше в диаметре. Это связано с тем, что в них должны размещаться сразу несколько труб пароперегревателя, и при этом должно оставаться пространство для свободного пропуска горячих газов. Тем не менее, в ряде стран, с целью унификации, выпускались паровозы, у которых жаровые трубы имели малый диаметр, но экономичность таких котлов была заметно ниже, чем у традиционных (на 25% и более).

Литература

  • Под ред. С. П. Сыромятникова. Курс паровозов. Устройство и работа паровозов и техника их ремонта. — Центральное управление учебными заведениями. — Москва: Государственное транспортное железнодорожное издательство, 1937. — Т. 1. — С. 115—122, 257—260.

dic.academic.ru

Жаровая труба камеры сгорания газотурбинного двигателя

Жаровая труба камеры сгорания газотурбинного двигателя содержит, по меньшей мере, две обечайки, концы которых расположены относительно друг друга коаксиально с образованием сужающегося кольцевого канала. Конец обечайки, ограничивающей канал с наружной стороны, снабжен равномерно расположенными по окружности с образованием окон выштамповками, контактирующими с концом другой обечайки и имеющими каждая наклонную торцевую стенку с отверстием преимущественно овальной формы. Суммарная площадь окон и отверстий не менее чем в 1,2 раза превышает площадь выходного сечения канала. Отношение высоты канала к его длине равно 1/3-1/6. Изобретение интенсифицирует процесс охлаждения обечаек жаровой трубы, исключая их коробление на всех режимах работы камеры сгорания. 3 ил.

 

Предложение относится к машиностроению, в частности к авиационному двигателестроению, и может быть использовано в камерах сгорания газотурбинных двигателей.

Камера сгорания является ответственным элементом газотурбинного двигателя (далее ГТД). Устойчивость ее работы определяет надежность работы двигателя, а эффективность - экономичность ГТД. Конструкция камеры сгорания работает в очень тяжелых условиях высокотемпературной среды химически активных газов. На нее воздействует высокое пульсирующее давление, а материал конструкции подвергается эрозии в результате взаимодействия с газовым потоком.

Работа камеры сгорания обязана удовлетворять ряду требований. Камера сгорания должна устойчиво и эффективно работать в широком диапазоне эксплуатационных режимов ГТД. Она должна быстро, надежно и безопасно выходить на рабочий режим (запускаться) в любых условиях эксплуатации, на земле и в воздухе, в том числе на больших высотах. Поэтому для увеличения срока службы камеры сгорания ряд элементов делают из жаропрочных материалов и принимают меры к охлаждении стенок камеры и ее деталей.

Жаровая труба - это один из основных элементов камеры сгорания газотурбинного авиационного двигателя, в которой происходит горение топлива.

В камерах сгорания стенки жаровых труб, как правило, защищают от нагрева слоем менее нагретого газа или защитной пристеночной пеленой охлаждающего воздуха. Выравнивание температуры стенок жаровой трубы, которые имеют неравномерный нагрев, даже на установившихся режимах работы, не говоря уже о переменных, является актуальной задачей при конструировании камер сгорания, так как неравномерное охлаждение стенки может быть причиной ее коробления, прогара и появления трещин.

Высокие значения температуры воздуха и его скорости на входе в камеру сгорания предъявляют очень жесткие требования к конструкции при разработке новых камер сгорания газотурбинных двигателей и энергетических установок и требуют новых подходов к их проектированию.

Известна жаровая труба кольцевой камеры сгорания газотурбинного двигателя (Скубачевский Г.С. Авиационные газотурбинные двигатели. Конструкция и расчет деталей. М.: Машиностроение, 1981, стр.394, рис.9.13а).

В данном устройстве стенки жаровой трубы охлаждаются с наружной стороны воздухом, движущимся по кольцевому пространству между жаровой трубой и наружным кожухом. Для лучшего охлаждения жаровой трубы снаружи путем увеличения внешней поверхности охлаждения на внешней поверхности жаровой трубы выполнены ребра.

Недостатком известного устройства является то, что внешнего охлаждения бывает недостаточно, вследствие чего могут возникнуть местные перегревы, что вызовет прогары стенок или резкое возрастание температурных напряжений, приводящих к образованию короблений и трещин.

Известна также жаровая труба камеры сгорания газотурбинного двигателя, содержащая соединенные внахлест обечайки (Пчелкин Ю.М. Камеры сгорания газотурбинных двигателей. М.: Машиностроение, 1984, стр.78, рис.306).

В данном устройстве обечайки жаровой трубы охлаждаются омывающим их снаружи воздухом и воздухом, поступающим внутрь жаровой трубы через ряды мелких отверстий и кольцевые щели, расположенные несколькими поясами по длине жаровой трубы.

Сплошные кольцевые щели между обечайками достаточно эффективно защищают заградительной пеленой воздуха их внутреннюю поверхность, однако расход воздуха через них очень большой, что снижает экономичность ГТД.

Известна также жаровая труба камеры сгорания газотурбинного двигателя, содержащая соединенные внахлест обечайки, образующие кольцевой канал с возможностью подачи воздуха через радиальные и осевые отверстия в наружной обечайке (Патент GB №1060097, F23R 3/08, F23R 3/04, 1967).

Недостатком такой конструкции является низкая скорость воздуха в выходном сечении канала, при этом энергии воздуха не достаточно для отбрасывания неиспарившегося топлива от обечаек и оно сгорает непосредственно у стенки, вызывая ее перегрев и коробление. Повышение скорости воздуха в выходном сечении, например за счет увеличения количества отверстий, подводящих воздух, или путем уменьшения высоты выходного сечения, влечет увеличение длины козырька, его коробление и перекрытие канала.

Наиболее близкой по технической сущности и достигаемому результату к заявляемому решению является жаровая труба камеры сгорания газотурбинного двигателя, содержащая, по меньшей мере, две обечайки, концы которых расположены относительно друг друга коаксиально с образованием сужающего кольцевого канала и соединены между собой с помощью гофрированной проставки (Патент GB №1060096, F23R 3/08, F23R 3/04, 1967).

Недостатком известного устройства является наличие гофрированной проставки, что приводит к образованию в канале застойных зон и снижает эффективность охлаждения обечаек.

Технический результат заявляемого решения заключается в интенсификации охлаждения стенок жаровой трубы за счет создания условий для истечения высокоскоростной пелены охлаждающего воздуха, однородной в окружном направлении.

Для достижения указанного технического результата в жаровой трубе камеры сгорания газотурбинного двигателя, включающей, по меньшей мере, две обечайки, концы которых расположены относительно друг друга коаксиально с образованием сужающегося кольцевого канала, согласно предложению конец обечайки, ограничивающей канал с наружной стороны, снабжен равномерно расположенными по окружности с образованием окон выштамповками, контактирующими с концом другой обечайки и имеющими каждая наклонную торцевую стенку с отверстием преимущественно овальной формы.

Также согласно предложению окна и отверстия имеют суммарную площадь, не менее чем в 1,2 раза превышающую площадь выходного сечения канала, а отношение высоты последнего к его длине равно 1/3-1/6.

Наличие отличительных признаков, а именно выполнение конца обечайки, ограничивающей канал с наружной стороны с равномерно расположенными по окружности с образованием окон выштамповками, контактирующими с концом другой обечайки, выполнение каждой выштамповки с наклонной торцевой стенкой с отверстием преимущественно овальной формы, причем суммарная площадь окон и отверстий составляет величину, не менее чем в 1,2 раза превышающую площадь выходного сечения канала, а отношение высоты последнего к его длине равно 1/3-1/6 свидетельствует о соответствии заявляемого технического решения критерию патентоспособности «новизна».

Из патентной и научно-технической литературы известно, что в камерах сгорания для высокотемпературных двигателей, в связи с обогащением топливом топливно-воздушной смеси, ростом температуры воздуха и газа, основной проблемой охлаждения оказалось горение у стенок жаровой трубы.

Из анализа вышеуказанных источников информации видно, что из-за технологических, геометрических, прочностных ограничений не удается достичь максимальную скорость пелены воздуха именно в выходном сечении охлаждающей щели, добиваясь при этом, чтобы выходящая пелена была однородной в окружном направлении. Площадь выходного сечения щели в известных конструкциях в несколько раз больше площади подводящих воздух отверстий, а скорость воздуха в ней в несколько раз меньше максимально возможной, что не позволяет создать высокоскоростную равномерную пелену. Кроме того, выполнение обечаек из тонких листовых материалов, что имеет место в подавляющем большинстве выполняемых конструкций, заставляет увеличить шаг между отверстиями из соображений прочности, что также снижает скорость воздуха в выходном сечении.

Следует отметить, что низкоскоростная, даже равномерная пелена или высокоскоростная, но неравномерная пелена воздуха не может отбросить топливо от щели и исключить его горение у стенок жаровой трубы и за щелью.

Заявляемое предложение позволяет получить эффективную площадь подводящих к щели воздух каналов больше ее выходного сечения, вследствие чего возможно создание в выходном сечении щели равномерной воздушной пелены, имеющей максимальную, для данного перепада давлений на жаровой трубе, скорость.

Также при таком техническом решении достигается минимальные затенение потока и аэродинамическое сопротивление внутри щели, так как при выполнении отверстий в выштамповках их задняя часть может быть почти полностью срезана, без ухудшения прочностных свойств. При этом исключено коробление козырька охлаждающей щели, так как его можно сделать очень коротким без ухудшения равномерности пелены охлаждающего воздуха.

Заявляемое предложение позволяет получить высокую прочность охлаждающей щели, так как силовая связь обечаек проходит через боковые стенки выштамповок в наружной обечайке, которые могут быть сделаны достаточно длинными.

Из вышесказанного следует, что технический результат предложения достигается новой совокупностью существенных признаков, как вновь введенных, так и известных, следовательно, заявляемое техническое решение соответствует критерию патентоспособности «изобретательский уровень».

Сущность предложения поясняется чертежами, где на фиг.1 схематично изображена камера сгорания с жаровой трубой; на фиг.2 представлен узел I соединения концов обечаек; на фиг.3 показан вид по стрелке А на фиг.2.

Следует учесть, что на чертежах для большей ясности представлены только те детали, которые необходимы для понимания существа технического решения, а сопутствующие элементы, хорошо известные специалистам в данной области, на чертежах не представлены.

Заявляемое устройство содержит, по меньшей мере, две обечайки 1 и 2, концы которых расположены коаксиально и образуют сужающийся кольцевой канал 3. Конец обечайки 2, ограничивающей канал 3 снаружи, снабжен равномерно расположенными по окружности с образованием окон 4 выштамповками 5, контактирующими с концом обечайки I и имеющими наклонную торцовую стенку с отверстием 6 овальной формы. На конце обечайки 1 могут быть выполнены прорези 7 для компенсации температурных расширений. Суммарная площадь окон 4 и отверстий 6 не менее чем в 1,2 раза превышает площадь выходного сечения канала 3, а отношение высоты h канала 3 к его длине L равно 1/3-1/6.

Устройство работает следующим образом.

При работе камеры сгорания воздух через окна 4 и отверстия 6 поступает в канал 3, в котором происходит повышение скорости воздуха. Выходя из канала 3, воздух образует сплошную равномерную по скорости пелену, охлаждающую обечайку 2 и конец обечайки 1.

Неиспарившиеся частицы топлива, попадая на внутреннюю поверхность обечайки 1, стекают с нее и отбрасываются пеленой воздуха. Выбранные соотношения проходных площадей окон 4, отверстий 6 и канала 3, а также отношение высоты h выходного сечения канала 3 к его длине L обеспечивают высокую скорость истечения охлаждающего воздуха и эффективное охлаждение элементов конструкции.

Предлагаемое изобретение позволит исключить коробление обечаек жаровой трубы на всех режимах работы камеры сгорания.

Устройство было разработано и изготовлено на заводе имени В.Я.Климова и успешно использовано на предприятии заказчика.

Из вышесказанного следует, что изготовление данного устройства промышленным способом не вызывает затруднений, предполагает использование освоенных материалов и стандартного оборудования, что свидетельствует о соответствии заявляемого технического решения критерию патентоспособности «промышленная применимость».

Жаровая труба камеры сгорания газотурбинного двигателя, включающая, по меньшей мере, две обечайки, концы которых расположены относительно друг друга коаксиально с образованием сужающегося кольцевого канала, отличающаяся тем, что конец обечайки, ограничивающей канал с наружной стороны, снабжен равномерно расположенными по окружности с образованием окон выштамповками, контактирующими с концом другой обечайки и имеющими каждая наклонную торцевую стенку с отверстием преимущественно овальной формы, при этом окна и отверстия имеют суммарную площадь не менее чем 1,2 раза превышающую площадь выходного сечения канала, а отношение высоты последнего к его длине равно 1/3-1/6.

www.findpatent.ru

3.3 Жаровая труба

Жаровая труба состоит из фронтового устройства 6 (рис. 3.1) и двух цилиндрических секций 5 и 2, изготовлен­ных из листовой жаропрочной стали. В зону горения воз­дух подается через завихритель 12 и отверстия в секции 5 Завихритель, состоящий из внутренней 12 и наружной 14 обойм и лопаток 13, образует завихренный поток, входя­щего в зону горения, воздуха. По ходу движения горячих газов в жаровую трубу для перемешивания газов добавляет­ся воздух через отверстия во второй секции. Количество и размеры отверстий в секциях жаровой трубы подобраны таким образом, что они обеспечивают хорошее перемешива­ние газов, высокий коэффициент полноты сгорания и рав­номерность температурного поля потока горячих газов. Эффективное охлаждение боковых стенок секций жаровой трубы осуществляется вторичным воздухом, входящим во внутрь жаровой трубы через два ряда щелей, образованных гофрированными лентами 15.- Этот воздух омывает стенки жаровой трубы изнутри.

На корпусе наружной обоймы завихрителя 14 выполнены пазы для прохода воздуха на охлаждение фронтового устрой­ства 6 и удаления нагара. Во внутреннюю обойму завихри­теля 12 входит и центрируется внешний корпус топливной форсунки II. В этой обойме выполнено несколько продоль­ных пазов и три ряда отверстий для обдува форсунки и устранения нагара.

Жаровая труба крепится к корпусу камеры сгорания с по­мощью центрального фланца 10, который двумя потайными винтами крепится к жаровой трубе; двумя другими винтами

фланец с жаровой трубой крепится к центральному фланцу 9 корпуса камеры сгорания. При установке форсунки II чётыре болта форсунки связывают вместе центральный фланец жаровой трубы, центральный фланец корпуса камеры сгора­ния и фланец форсунки. Передняя часть жаровой трубы опи­рается на корпус соплового аппарата турбины компрессора 17.

Рис.3.1. Камера сгорания

I- корпус камеры сгорания; 2- жаровая труба; 3- пер­форированная решетка; 4- улитка; 5- секция; 6- фрон­товое устройство; 7,9,10,16,19,20,21- фланцы; 8- пусковой воспламенитель; II- форсунка; 12- Завихритель; 13- лопатка; 14- наружная обойма; 15- гофриро­ванная лента; 17- корпус соплового аппарата; 18- втулка 22- лопатки соплового аппарата; 23- защитный обтека­тель; 24- штуцер.

3.2. Гибкое соединение труб

I- шайба регулировочная; 2- стакан; 3- наружный стакан; 4- сильфоя; 5- воздухоподводящая труба.

Глава 4 Топливная форсунка

4.1 Топливная форсунка

Топливная форсунка двигателя (рис. 4.1, 4.2) - односопловая, двухканальная центробежная. Форсунка состоит из корпуса форсунки I входного штуцера 8 с фильтром 7, распределительного клапана с плунжером 4 и пружиной 2, выходного сопла с основным завихрителем 26 и пусковым завихрителем 24. Наличие в форсунке распределительного клапана и двух каналов с двумя завихрителями позволяет подводить топливо к форсунке при помощи одной трубки и работать на двух режимах - на режиме запуска и на рабочем режиме.

Пусковой завяхритель обеспечивает хороший распыл топли­ва на малых расходах и малом давлении топлива при пусковом режиме. Основной завяхритель обеспечивает хороший распыл топлива на всех рабочих режимах двига­теля.

Топливо в форсунку подводится через штуцер 8, внутри которого установлен мелкий сетчатый фильтр 7. Во избежание смятия сетки внутри её установлена прово­лочная спираль. Пройдя фильтр, топливо поступает в по­лость 6 корпуса форсунки, откуда может идти по двум каналам: по пусковому каналу 10, 16 к пусковому завихрителю или по центральному отверстию 5 в плунжере распределительного клапана к основному завихрителю. Подача топлива по пусковому каналу производится как во время запуска двигателя, так и на всех режимах ра­боты двигателя, подача топлива по основное каналу производится только после повышения давления топлива свыше 8 кг/см2.

К пусковому завихрителю 24 топливо поступает по каналу 10 и затем по внутреннему каналу 16 в разделителе 14. Пройдя концентрически расположенные отверстия 23 в завихрителе, топливо поступает к торцевым тангенциально расположенным канавкам, и по ним в камеру завихрителя топлива 15. Завихренное топливо выбрасывается по центральному отверстию сопла основного завихрителя 26 в распылённом виде в жаровую трубу. Основное топливо поступает в центральное отверстие 5 внутри плунжера 4 распределительного клапана. По мере нарастания давле­ния топлива, плунжер начнет перемещаться в гильзе вверх, сжимая пружину 2. Перемещаясь вверх плунжер открывает треугольную профилированную прорезь 9 в гильзе, вслед­ствие чего находящееся внутри плунжера топливо через прорезь 9 переходит в полость 3, откуда по каналам 17 в пусковом завихрителе 24 и отверстиям 21 в разделитель­ной шайбе 25 поступает в тангенциальные канавки основ­ного завихрителя затем в завихрительную камеру 15 л через центральное отверстие сопла основного завихри­теля 26 в жаровую трубу.

Герметичность форсунки в рабочих условиях обеспечива­ется высокой точностью изготовления и чистотой обработ­ки сопрягаемых торцевых поверхностей распыливающих элементов форсунки, стянутых между собой внешним корпу­сом сопла 12 с тарирбванным усилием. В гайке имеются радиальные воздушные отверстия 13, через которые посту­пает воздух из полости корпуса камеры сгорания. Этот воздух омывает сопло форсунки и препятствует обра­зованию нагара на сопле. Контрится корпус специальным контровочным кольцом II.

Начальное давление топлива, открывающее прорезь плун­жера распределительного клапана, регулируется степенью затяжки пружины регулировочным винтом 18. Регулировоч­ный винт ввернут в заглушку- 20 и контрится гайкой 19. Количество подаваемого топлива, по мере повышения давления определяется профилем прорези 9 в плунжере распределительного клапана.

4.1. Топливная форсунка двигателей 1У III и II серий

I- корпус форсунки; 2 - пружина; 3,6,27,28 - полости; 4 - плунжер; 5 - цен­ тральное отверстие; 7 - фильтр; 8 – входной штуцер; 9 - прорезь; 10,16,17 - каналы; II- контровочное кольцо; 12 - внешний кор­пус сопла; 13 - воздушное отверстие;14 - разделитель; 15 - камера завихрителя топлива; 18 - регулировочный винт; 19 - гай­ка; 20 - пробка; 21,22,23 - отверстия; 24 - пусковой завихритель; 25 - разделитель­ная шайба; 26 - основной Завихритель.

studfiles.net

Жаровые трубы — Википедия с видео // WIKI 2

Жаротрубный пароперегреватель

Вид на трубчатую решётку. Расположенные в верхней части жаровые трубы заметно больше в диаметре, чем расположенные под ними дымогарные

Жаровые трубы — элементы конструкции парового котла, основной компонент трубчатых пароперегревателей (такие пароперегреватели ещё называют жаротрубные). Как понятно из названия, служат для пропуска горячих газов, которые образовались в результате сгорания топлива в топке, и передаче их теплоты пару, тем самым повышая его температуру и повышая КПД котла в целом.

Ранее жаровыми называли трубы для нагрева и испарения воды. Однако после перехода на многотрубчатые котлы (1820-е), такие трубы стали называть дымогарными.

В 1890—1900 в котлах стали устанавливать первые пароперегреватели, которые поначалу имели ленточную конструкцию (пар нагревался за счёт поверхностей, закреплённых на дымогарных трубах). Впоследствии конструкция пароперегревателей претерпела серьёзные изменения. Их стали размещать в самом котле (Пилота—Слуцкого) или в дымовой коробке (Кленча, Лопушинского), но такие конструкции не получили распространения. Более удачными оказались конструкции, где нагревательные элементы пароперегреватля (U-образно согнутые трубки) размещались в отдельных трубах. Именно эти трубы и стали называться жаровыми. Собственно говоря, жаровые трубы также участвуют и в парообразовании, так как окружены водой, но всё же их основное назначение — передача тепла пару, что проходит по размещённым в жаровых трубах элементам пароперегревателя.

По конструкции жаровые трубы аналогичны дымогарным, но больше в диаметре. Это связано с тем, что в них должны размещаться сразу несколько труб пароперегревателя, и при этом должно оставаться пространство для свободного пропуска горячих газов. Тем не менее, в ряде стран, с целью унификации, выпускались паровозы, у которых жаровые трубы имели малый диаметр, но экономичность таких котлов была заметно ниже, чем у традиционных (на 25% и более).

Энциклопедичный YouTube

  • 1/1

    Просмотров:

    2 003

  • Жаровая труба

Литература

  • Под ред. С. П. Сыромятникова. Курс паровозов. Устройство и работа паровозов и техника их ремонта. — Центральное управление учебными заведениями. — Москва: Государственное транспортное железнодорожное издательство, 1937. — Т. 1. — С. 115—122, 257—260.
Эта страница в последний раз была отредактирована 28 августа 2017 в 17:35.

wiki2.org

Жаровая труба камеры сгорания

Жаровая труба камеры сгорания газотурбинных двигателей и установок состоит из наклоненных к ее выходу кольцевых секций, разделенных между собой охлаждающими щелями, образованными коленом с отверстием для подачи воздуха, концевым участком и козырьком, являющимся частью секции. На внутренней поверхности секций выполнено покрытие переменной толщины из теплозащитного материала. Толщина покрытия каждой секции выполнена переменной, функционально зависящей от распределения температуры по каждой длине секции и их козырькам, и определяется в каждой точке секции по защищаемой изобретением формуле. Изобретение повышает долговечность трубы. 2 ил.

 

Изобретение относится к устройствам камер сгорания газотурбинных двигателей и установок.

Изобретение может найти применение в авиационной, судовой, автомобильной промышленности и в энергетике, а также в других отраслях промышленности, где используют газотурбинные двигатели и установки.

Известна жаровая труба камеры сгорания газотурбинного двигателя, описанная в сборнике обзоров ЦИАМ «Новости зарубежной науки и техники", 1987 г., №3, стр. 8-11. Описанное устройство содержит жаровую трубу, стенка которой выполнена с отверстиями, на внутренней горячей поверхности которой нанесено керамическое покрытие с постоянной толщиной 1,5 мм.

Так как большая толщина покрытия и неравномерное распределение температуры по длине жаровой трубы существуют в указанной конструкции, то в месте расположения отверстий в жаровой трубе (зоне концентрации напряжений) происходит растрескивание покрытия, что уменьшает долговечность конструкции.

Наиболее близким по технической сущности к заявляемому изобретению является конструкция жаровой трубы с теплозащитным покрытием переменной толщины по длине секции, но в данном техническом решении не учитывается распределение температуры по длине секции (патент ЕР № 0136071, "Жаровая труба камеры сгорания", кл. F 23 R 3/00, опубликованный 03.05.1985). Описанная конструкция жаровой трубы камеры сгорания состоит из последовательно соединенных кольцевых секций, разделенных между собой охлаждающими щелями, образованными коленом с отверстием для подачи воздуха, концевым участком и козырьком, являющимся частью секции, при этом на внутренней поверхности секций выполнено покрытие переменной толщины из теплозащитного материала. При этом у отверстия подачи воздуха в начале секции покрытие имеет нулевую толщину, далее по длине секции толщина покрытия, имеющего пустоты, увеличивается до конца секции (следующего отверстия подачи воздуха) вниз по направлению потока газа, покрытие имеет пустоты до 25% и максимальную толщину 0,51 мм.

Известно, что чем больше толщина покрытия, тем меньше его прочность и долговечность. В указанной конструкции жаровой трубы толщина покрытия достигает максимального значения 0,51 мм, вследствие этого существенно понижена прочность и долговечность данного покрытия.

Наличие пустот в покрытии до 25% вносит неопределенность в размеры покрытия переменной толщины и в оценку его теплозащитного эффекта. Поэтому реальную толщину покрытия и ее увеличение по длине секции оценить и проконтролировать невозможно. Максимальная толщина покрытия, как показано на фиг.2 и фиг.3 указанного прототипа жаровой трубы, связана с наличием пустот в покрытии.

Кроме того, переменная толщина покрытия жаровой трубы прототипа, связана только с началом и концом секции, с наличием пустот и с направлением потока газа, и не связана с распределением температуры по длине каждой секции и ее козырька данной конструкции жаровой трубы. Вследствие этого понижена долговечность данной конструкции жаровой трубы из-за невысокой прочности покрытия переменной толщины, наличия пустот, являющихся концентраторами напряжений в покрытии, и возникших повышенных термонапряжений в покрытии и металле. Снижение прочности вызвано и тем, что переменная толщина покрытия прототипа не является зависящей от неравномерного распределения температуры по длине каждой секции, с предлагаемой повышенной толщиной покрытий, имеющих пустоты, и в условиях возникших значительных растягивающих нагрузок происходит растрескивание и скалывание данного покрытия. Более того, в конструкции покрытия с возрастающей толщиной по длине секции по направлению потока газа не учитывается реальное неравномерное распределение температуры, которое может содержать несколько локальных максимумов температуры в зависимости от конструкции жаровой трубы. В результате конструкция жаровой трубы, патент ЕР 0136071, является неработоспособной и не обеспечивает нанесения покрытия переменной толщины в зависимости от неравномерного распределения температуры по длине каждой ее секции, и вследствие этого не происходит снижения перепада температуры не только по длине секции, но и перепадов температуры по толщине покрытия и металлической стенке жаровой трубы прототипа.

Задачей данного изобретения является повышение долговечности жаровой трубы за счет применения покрытия, нанесенного с переменной толщиной, функционально зависящей от распределения температуры по длине каждой ее секции с козырьком, и снижение термонапряжений в металле жаровой трубы. Прочность повышается за счет уменьшения толщины покрытия и улучшения равномерности распределения температуры в месте соединения покрытия с металлом секции благодаря выполнению нанесения покрытия максимальной толщины в зонах максимальных температур и нанесения минимальной толщины в зонах минимальных температур на поверхности покрытия, и вследствие этого снижаются перепад температуры в указанном месте соединения нанесенного покрытия с поверхностью жаровой трубы по длине каждой ее секции, термонапряжения в металле секции по всей ее длине, перепады температуры и термонапряжения по толщине нанесенного теплозащитного покрытия и стенки жаровой трубы.

Поставленная задача решается тем, что жаровая труба камеры сгорания, состоящая из последовательно соединенных кольцевых секций, разделенных между собой охлаждающими щелями, образованными коленом с отверстием для подачи воздуха, концевым участком и козырьком, являющимся частью секции, при этом на внутренней поверхности секций выполнено покрытие переменной толщины из теплозащитного материала по каждой их длине, причем толщина покрытия каждой секции выполнена переменной, функционально зависящей от распределения температуры по длине каждой секции и ее козырьке, при этом толщину покрытия в каждой точке секции, в которой выполняется соотношение

определяют по формуле:

при этом толщина покрытия не превышает 0,3-0,5 мм, а толщину покрытия в каждой точке козырька каждой секции, в котором выполняется соотношение

определяют по формуле:

и толщина покрытия козырька не превышает 0,25 мм,

где: hi - толщина покрытия в точке i на внутренней поверхности секции;

a1 - первый эмпирический коэффициент а1=0.02÷0.06;

b1 - второй эмпирический коэффициент b1=0.003÷0.007;

Тm - максимальная температура жаровой трубы без покрытия;

Tmax - максимальная температура на внутренней поверхности секции без покрытия;

Тi - температура в точке i на внутренней поверхности секции без покрытия;

a2 - третий эмпирический коэффициент a2=0.04÷0.06;

b2 - четвертый эмпирический коэффициент b2=0.005÷0.007.

На фиг.1 показана конструкция жаровой трубы камеры сгорания с теплозащитным покрытием по длине каждой ее кольцевой секции.

На фиг.2 - с теплозащитным покрытием по длине козырьков кольцевых секций.

Жаровая труба камеры сгорания содержит вход 1 и выход 2, наклонные к ее выходу кольцевые секции 3, секции 3 разделены между собой охлаждающими щелями 4, образованными коленом 5 с отверстием 6 для подачи воздуха, концевым участком 7 и козырьком 8, являющимся частью кольцевой секции 3, при этом на внутренней поверхности кольцевых секций 3 выполнено покрытие 9 из теплозащитного материала с переменной толщиной hi.

Жаровая труба выполнена с покрытием переменной толщины hi, функционально зависящей от распределения температуры по длине каждой ее кольцевой секции и козырька.

Жаровая труба может быть выполнена с покрытием переменной толщины hi на кольцевых секциях, в которых выполняется соотношение (1), определяемой по формуле (2), при этом толщина не должна превышать 0,3-0,5 мм, а толщина покрытия в каждой точке козырька каждой секции, в которой выполняется соотношение (3), определяется по формуле (4), при этом толщина не должна превышать 0,25 мм.

Покрытие может быть выполнено из теплозащитного материала, например из диоксида циркония.

Жаровая труба камеры сгорания работает следующим образом.

Поток горячего газа подается на вход 1 жаровой трубы камеры сгорания, охлаждающий воздух подается к наружной поверхности жаровой трубы. Охлаждающий воздух проходит через отверстия 6 и охлаждающие щели 4, образованные коленами 5, концевыми участками 7 и козырьками 8, являющимися частями кольцевых секций 3. Горячий газ нагревает поверхности покрытий 9, выполненных с переменной толщиной из теплозащитного материала, функционально зависящих от распределения температур по длине каждой кольцевой секции. В месте соединений покрытий с металлом секций повышается равномерность распределения температуры благодаря выполнению покрытий максимальной толщины в зонах максимальных температур и минимальной толщины в зонах минимальных температур на поверхности покрытий 9 и снижению тем самым перепада температуры в указанном месте соединения по длине кольцевых секций 3.

На секциях 3, в которых осуществляется соотношение (1), покрытие 9 выполняется с учетом формулы (2) и максимальная толщина покрытия 9 не превышает 0,3÷0,5 мм.

В зависимости от температурных условий жаровая труба может быть выполнена с покрытиями переменной толщины только на внутренних поверхностях козырьков 8 кольцевых секций 3 (фиг.2). На козырьках 8 секций, в которых осуществляется соотношение (3), покрытие 9 выполняется с учетом формулы (4) и максимальная толщина покрытия 9 не превышает 0,25 мм.

Применение покрытий переменной толщины, функционально зависящей от распределения температуры по длине каждой кольцевой секции с ее козырьком жаровой трубы и ее суммарного уменьшения, по сравнению с прототипом позволяет повысить прочность покрытий, равномерность распределения температуры в месте соединений металла секций с покрытиями по длине кольцевых секций и их козырьков жаровой трубы камеры сгорания, снизить перепады температур и термонапряжения по длине каждой кольцевой секции с козырьком и по толщине теплозащитного покрытия и стенки жаровой трубы и повысить долговечность жаровой трубы и ее покрытия.

Кроме того, после нанесения покрытия переменной толщины на кольцевых секциях и их козырьков жаровой трубы с использованием технологического процесса (например, электронно-лучевой технологии) остаточные напряжения в покрытии уменьшаются.

Жаровая труба камеры сгорания, состоящая из наклоненных к ее выходу кольцевых секций, разделенных между собой охлаждающими щелями, образованными коленом с отверстием для подачи воздуха, концевым участком и козырьком, являющимся частью секции, при этом на внутренней поверхности секций выполнено покрытие переменной толщины из теплозащитного материала, отличающаяся тем, что толщина покрытия каждой секции выполнена переменной, функционально зависящей от распределения температуры по каждой длине секции и их козырькам, при этом толщину покрытия в каждой точке секции, в которых выполняется соотношение определяется по формуле

при этом толщина покрытия не превышает 0,3-0,5 мм, а толщина покрытия в каждой точке козырька каждой секции, в которых выполняется соотношение определяется по формуле

и толщина покрытия козырька не превышает 0,25 мм,

где hi - толщина покрытия в точке i на внутренней поверхности секции;

a1 - первый эмпирический коэффициент a1=0,02-0,06;

b1 - второй эмпирический коэффициент b1=0,003-0,007;

Tmax - максимальная температура на внутренней поверхности секции без покрытия;

Тm - максимальная температура жаровой трубы без покрытия;

Тi - температура в точке i на внутренней поверхности секции без покрытия;

a2 - третий эмпирический коэффициент а2=0,04-0,06;

b2 - четвертый эмпирический коэффициент b2=0,005-0,007.

www.findpatent.ru

Жаровая труба - Большая Энциклопедия Нефти и Газа, статья, страница 1

Жаровая труба

Cтраница 1

Жаровая труба состоит из отдельных секций, выполненных из листового жаропрочного сплава. Секции соединяются между собой роликовой и точечной электросваркой.  [2]

Жаровая труба закреплена ( III) на наружном корпусе с помощью восьми радиалыю расположенных штифтов со сферическими головками, установленных в одной поперечной плоскости.  [4]

Жаровые трубы футеруются с таким расчетом, чтобы огнеупорные поверхности одновременно служили бы вторичными излучателями. Работниками хлебопекарной промышленности УССР при переоборудовании ланкаширского котла предложено в жаровых трубах устанавливать специальные излучатели. Излучатель представляет собой полый кирпичный цилиндр с толщиной стенки 65 мм, в котором имеются отверстия, расположенные в шахматном порядке по всей поверхности цилиндра.  [6]

Жаровые трубы с толщиной стенки более 22 мм не должны применяться.  [8]

Жаровые трубы с стенки более 22 мм не должны применяться.  [10]

Жаровая труба является первым газоходом котла. Дымовые газы, пройдя жаровую трубу, поступают во второй боковой газоход, расположенный с той стороны котла, куда смещена жаровая труба. Не доходя до фронта котла, дымовые газы под ко лом поворачивают в третий газоход, расположенный с противоположной стороны барабана котла.  [11]

Жаровые трубы, переходные детали и другие горячие поверхности эффективно охлаждают воздухом. Воздух, поступающий из осевого компрессора, состоит из: воздуха, отбираемого с десятой ступени; компрессорного воздуха высокого давления для уплотнений; выходного воздуха компрессора. Воздух, отбираемый с десятой ступени, идет на уплотнение от потери смазки в опорных подшипниках. Затем через маслостоки он выходит из подшипников в маслобак. Его же используют на охлаждение, тыловой полости колеса турбины первой ступени, а также передней и тыловой полостей колеса турбины второй ступени.  [12]

Жаровая труба омывается водой. В целях более полного использования тепла нагретых газов путь их движения удлиняют. Продукты горения из жаровой трубы направляются по обеим сторонам корпуса котла и затем выводятся; в атмосферу через дымовую трубу. Эксцентричное расположение жаровой трубы 1 в котле обеспечивает циркуляцию воды. Котлы такого типа изготовлялись с одной или с двумя жаровыми трубами.  [13]

Жаровая труба располагается не центрально в целях большей доступности внутренности котла и лучшей циркуляции воды.  [14]

Жаровые трубы после сварки, клепки и чеканки должны быть испробованы гидравлически на рабочее давление для обнаруживания дефектов в сварке, которые исправляются и только после гидравлической лробы.  [15]

Страницы:      1    2    3    4    5

www.ngpedia.ru

жаровая труба - это... Что такое жаровая труба?

 жаровая труба

3.1.40 жаровая труба: Устройство котла, предназначенное для сжигания органического топлива и частичного охлаждения продуктов сгорания;

Смотри также родственные термины:

127. Жаровая труба камеры сгорания

Жаровая труба

D. Flammrohr der Brennkammer

E. Combustion chamber flame tube

F. Foyer de la chambre de combustion

Внутренняя оболочка камеры сгорания, ограничивающая объем, в котором происходит процесс горения

Словарь-справочник терминов нормативно-технической документации. academic.ru. 2015.

  • жаркие помещения
  • Жаровая труба камеры сгорания

Смотреть что такое "жаровая труба" в других словарях:

  • жаровая труба — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN flame tubefurnace flueFFflue …   Справочник технического переводчика

  • жаровая труба — Внутренняя оболочка камеры сгорания, в которой происходит процесс горения …   Политехнический терминологический толковый словарь

  • жаровая труба камеры сгорания — жаровая труба Внутренняя оболочка камеры сгорания, ограничивающая объем, в котором происходит процесс горения. [ГОСТ 23851 79] Тематики двигатели летательных аппаратов Синонимы жаровая труба EN combustion chamber flarne tube DE Flammrohr der… …   Справочник технического переводчика

  • жаровая труба (газовой турбины) — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN combustion liner …   Справочник технического переводчика

  • жаровая труба (камеры сгорания газовой турбины) — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN flue tube …   Справочник технического переводчика

  • жаровая труба камеры сгорания (газотурбинного двигателя) с отверстиями различной геометрии — (напр. по диаметру и оси наклона) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN transitional multihole combustion liner …   Справочник технического переводчика

  • Жаровая труба камеры сгорания — 127. Жаровая труба камеры сгорания Жаровая труба D. Flammrohr der Brennkammer E. Combustion chamber flame tube F. Foyer de la chambre de combustion Внутренняя оболочка камеры сгорания, ограничивающая объем, в котором происходит процесс горения… …   Словарь-справочник терминов нормативно-технической документации

  • ГОСТ 23851-79: Двигатели газотурбинные авиационные. Термины и определения — Терминология ГОСТ 23851 79: Двигатели газотурбинные авиационные. Термины и определения оригинал документа: 293. Аварийное выключение ГТД Аварийное выключение Ндп. Аварийное отключение ГТД D. Notausschaltung Е. Emergency shutdown F. Arrêt urgent… …   Словарь-справочник терминов нормативно-технической документации

  • Паровые котлы* — I) Общие понятия. II) Типы котлов. III) Арматура паровых котлов. IV) Практические указания расчета котлов. V) Уход за котлом. VI) Взрывы котлов. VII) Литература о паровых котлах. VIII) Надзор за П. котлами. I. Котлы или паровики закрытые приборы …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Паровые котлы — I) Общие понятия. II) Типы котлов. III) Арматура паровых котлов. IV) Практические указания расчета котлов. V) Уход за котлом. VI) Взрывы котлов. VII) Литература о паровых котлах. VIII) Надзор за П. котлами. I. Котлы или паровики закрытые приборы …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

normative_reference_dictionary.academic.ru