Диэлектрик - что такое? Свойства диэлектриков. Диэлектрики материалы


Диэлектрик - что такое? Свойства диэлектриков

Диэлектрик - это материал или вещество, которое практически не пропускает электрический ток. Такая проводимость получается вследствие небольшого количества электронов и ионов. Данные частицы образуются в не проводящем электрический ток материале только при достижении высоких температурных свойств. О том, что такое диэлектрик и пойдёт речь в этой статье.

Описание

Каждый электронный или радиотехнический проводник, полупроводник или заряженный диэлектрик пропускает через себя электрический ток, но особенность диэлектрика в том, что в нем даже при высоком напряжении свыше 550 В будет протекать ток малой величины. Электрический ток в диэлектрике - это движение заряженных частиц в определённом направлении (может быть положительным и отрицательным).

Виды токов

В основе электропроводимости диэлектриков лежат:

  • Токи абсорбционные – ток, который протекает в диэлектрике при постоянном токе до тех пор, пока не достигнет состояния равновесия, изменяя направление при включении и подаче на него напряжения и при отключении. При переменном токе напряжённость в диэлектрике будет присутствовать в нём всё время, пока находится в действии электрического поля.
  • Электронная электропроводность – перемещение электронов под действием поля.
  • Ионная электропроводность – представляет собой движение ионов. Находится в растворах электролитов – соли, кислоты, щёлочь, а так же во многих диэлектриках.
  • Молионная электропроводность – движение заряженных частиц, называемых молионами. Находится в коллоидных системах, эмульсиях и суспензиях. Явление движения молионов в электрическом поле называется электрофорезом.

Электроизоляционные материалы классифицируют по агрегатному состоянию и химической природе. Первые делятся на твёрдые, жидкостные, газообразные и затвердевающие. По химической природе делятся на органику, неорганику и элементоорганические материалы.

Электропроводимость диэлектриков по агрегатному состоянию:

  • Электропроводимость газов. У газообразных веществ достаточно малая проводимость тока. Он может возникать при наличии свободных заряженных частиц, что появляется из-за воздействия внешних и внутренних, электронных и ионных факторов: излучение рентгена и радиоактивного вида, соударение молекул и заряженных частиц, тепловые факторы.
  • Электропроводимость жидкого диэлектрика. Факторы зависимости: структура молекулы, температура, примеси, присутствие крупных зарядов электронов и ионов. Электропроводимость жидких диэлектриков во многом зависит от наличия влаги и примесей. Проводимость электричества полярных веществ создаётся ещё при помощи жидкости с диссоциированными ионами. При сравнении полярных и неполярных жидкостей, явное преимущество в проводимости имеют первые. Если очистить жидкость от примесей, то это поспособствует уменьшению её проводимых свойств. При росте проводимости жидкого вещества и его температуры возникает уменьшение её вязкости, приводящее к увеличению подвижности ионов.
  • Твёрдые диэлектрики. Их электропроводимость обуславливается как перемещение заряженных частиц диэлектрика и примесей. В сильных полях электрического тока выявляется электропроводимость.

Физические свойства диэлектриков

При удельном сопротивлении материала равном меньше 10-5 Ом*м их можно отнести к проводникам. Если больше 108 Ом*м — к диэлектрикам. Возможны случаи, когда удельное сопротивление будет в разы больше сопротивления проводника. В интервале 10-5-108 Ом*м находится полупроводник. Металлический материал — отличный проводник электрического тока.

Из всей таблицы Менделеева только 25 элементов относятся к неметаллам, причём 12 из них, возможно, будут со свойствами полупроводника. Но, разумеется, кроме веществ таблицы, существует ещё множество сплавов, композиций или химических соединений со свойством проводника, полупроводника или диэлектрика. Исходя из этого, трудно провести определённую грань значений различных веществ с их сопротивлениями. Для примера, при пониженном температурном факторе полупроводник станет вести себя подобно диэлектрику.

Применение

Использование не проводящих электрический ток материалов очень обширно, ведь это один из популярно используемых классов электротехнических компонентов. Стало достаточно ясно, что их можно применять благодаря свойствам в активном и пассивном виде.

В пассивном виде свойства диэлектриков используют для применения в электроизоляционном материале.

В активном виде они используются в сегнетоэлектрике, а также в материалах для излучателей лазерной техники.

Основные диэлектрики

К часто встречающимся видам относятся:

  • Стекло.
  • Резина.
  • Нефть.
  • Асфальт.
  • Фарфор.
  • Кварц.
  • Воздух.
  • Алмаз.
  • Чистая вода.
  • Пластмасса.

Что такое диэлектрик жидкий?

Поляризация данного вида происходит в поле электрического тока. Жидкостные токонепроводящие вещества используются в технике для заливки или пропитки материалов. Есть 3 класса жидких диэлектриков:

Нефтяные масла – являются слабовязкими и в основном неполярными. Их часто используют в высоковольтных аппаратурах: масло трансформаторное, высоковольтные воды. Масло трансформаторное - это неполярный диэлектрик. Кабельное масло нашло применение в пропитке изоляционно-бумажных проводов с напряжением на них до 40 кВ, а также покрытий на основе металла с током больше 120 кВ. Масло трансформаторное по сравнению с конденсаторным имеет более чистую структуру. Данный вид диэлектрика получил широкое распространение в производстве, несмотря на большую себестоимость по сравнению с аналоговыми веществами и материалами.

Что такое диэлектрик синтетический? В настоящее время практически везде он запрещён из-за высокой токсичности, так как производится на основе хлорированного углерода. А жидкий диэлектрик, в основе которого кремний органический, является безопасным и экологически чистым. Данный вид не вызывает металлической ржавчины и имеет свойства малой гигроскопичности. Существует разжиженный диэлектрик, содержащий фторорганическое соединение, которое особо популярно из-за своей негорючести, термических свойств и окислительной стабильности.

И последний вид, это растительные масла. Они являются слабо полярными диэлектриками, к ним относятся льняное, касторовое, тунговое, конопляное. Касторовое масло является сильно нагреваемым и применяется в бумажных конденсаторах. Остальные масла - испаряемые. Выпаривание в них обуславливается не естественным испарением, а химической реакцией под названием полимеризация. Активно применяется в эмалях и красках.

Заключение

В статье было подробно рассмотрено, что такое диэлектрик. Были упомянуты различные виды и их свойства. Конечно, чтобы понять всю тонкость их характеристик, придётся более углубленно изучить раздел физики о них.

fb.ru

Диэлектрические материалы.

    1. Классификация и общие свойства диэлектриков. Температурные зависимости.

ДИЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ.

- вещества, способные поляризоваться в электрическом поле. В них существует внутреннее электрическое поле и равномерное распределение потенциалов.

Носители заряда в диэлектриках:

  1. В газах

  1. Положительные и отрицательные ионы. Причина: ионизация молекул газа.

  2. Электроны в сильных полях.

  1. В жидкостях

  1. Ионы. Причина: диссоциация молекул жидкости.

  2. Коллоидные заряженные частицы в эмульсиях и суспензиях.

  1. В твердых

  1. Ионы.

  2. Дефекты кристаллической решетки.

  3. Электроны или дырки проводимости.

Бывают полярные и неполярные.

Рисунок 50.

Основные электрические свойства диэлектриков:

  1. Поляризация

  2. Электропроводность

  3. Диэлектрические потери

  4. Электрическая прочность

При расчетах на постоянном токе учитывают только сквозной ток.

    1. Поляризация диэлектриков. Виды поляризации.

Поляризация – процесс смещения и упорядочения зарядов в диэлектрике под действием внешнего электрического поля. Численной мерой поляризации является поляризованность диэлектрика – количество электрического момента в единице объема диэлектрика:

где dp - электрический момент элемента диэлектрика;

dV – объем элемента диэлектрика

- напряженность внешнего электрического поля, В/м,

- диэлектрическая постоянная,

- относительная диэлектрическая проницаемость.

Поляризация определяет свойство диэлектриков образовывать электрическую емкость. В то же время поляризация диэлектриков, происходящая с затратами энергии и выделением теплоты, вызывает потери электрической энергии в материалах-изоляторах, особенно на высоких частотах, когда процессы поляризации диэлектрика повторяются большее количество циклов в единицу времени. Поэтому поляризацию описывают параметрами диэлектрика и.

Различают несколько видов поляризации.

2.2.1. Упругая поляризация – совершается в диэлектрике без выделения энергии и рассеяния тепла. Различают электронную и ионную упругие поляризации

Электронная поляризация – упругое смещение и деформация электронных оболочек атомов, приводящая к разделению геометрических центров положительного и отрицательного зарядов в атоме. Для установления требуемся минимальное время – 10-15с, т.е. образуется практически мгновенно. Поляризуемость при электронной поляризации не зависит от температуры, а диэлектрическая проницаемость плавно уменьшается с повышением температуры в связи с тепловым расширением диэлектрика и уменьшением количества атомов в единице объема (рис. 2.2). Электронная поляризация наблюдается у всех диэлектриков независимо от их химического состава и внутренней структуры.

Ионная поляризация – упругое смещение ионов – узлов кристаллической решетки, характерна для материалов с ионным строением. С повышением температуры усиливается благодаря ослаблению межионных сил. Время установления поляризации 10-13с – больше, чем у электронной поляризации, так как ионы массивнее.

Так как процессы электронной и ионной поляризации происходят практически мгновенно, величина деэлектрической проницаемости материалов с упругой поляризацией постоянна и от частоты не зависит.

2.2.2. Релаксационная (неупругая) поляризация – медленные виды поляризации. Для их осуществления требуется затратить определенную энергию, которая затем выделяется в виде тепла при возвращении диэлектрика в исходное состояние. Различают дипольно-релаксационную, ионно-релаксационную, электронно-релаксационную, резонансную и миграционную виды поляризации.

Дипольно-релаксационная поляризация характерна для веществ с дипольным строением и вызывается переориентацией молекул-диполей в приложенном к диэлектрику внешнем электрическом поле. В зависимости от массы, плотности упаковки и размеров диполей время установления поляризации сставляет 10-10..10-2 с. После снятия поля, вызвавшего поляризацию, они возвращаются в исходное хаотичное состояние под действием теплового движения частиц, при этом поляризованность материала убывает по закону

(1.2)

где - поляризованность диэлектрика в момент снятия внешнего поля, Кл/м2,

- время релаксации (время, за которое количество упорядоченных диполей убывает в е раз), с.

Зависимость дипольной поляризации от температуры изображена на рис. 2.3. Спад графика в области низких температур обусловлен плотной упаковкой ионов и трудностью их переориентации, а в области высоких температур – малым количеством диполей, приходящимся на единицу объема диэлектрика.

Рис. 2.3. Зависимость дипольно-релаксационной поляризации от температуры

Дипольно-релаксационная поляризация наблюдается у всех полярных веществ. У твердых диэлектриков поляризация вызывается не поворотом самой молекулы, а смещением имеющихся в ней полярных радикалов, например, Na+ и Cl- в молекуле поваренной соли.

С увеличением частоты дипольная поляризация и диэлектрическая проницаемость убывают, поэтому полярные диэлектрики являются частотно-зависимыми и не применяются на высоких частотах.

Ионно-релаксационная поляризация наблюдается в материалах с неплотной упаковкой ионов и вызвана физическим перемещением ионов в вакансии кристаллической решетки под действием внешнего электрического поля. После снятия поля поляризация постепенно ослабевает. Наблюдается только для твердых веществ (рис. 3.х), так как в расплавленном состоянии ионы становятся свободными и материал становится проводником с электролитической проводимостью.

Рис. 3.х. Зависимость ионно-релаксационной поляризации

от температуры

Электронно-релаксационная поляризация вызвана перемещением от одного иона к другому (в направлении поля) избыточных (дефектных) электронов и дырок. Характерна для веществ с электронной электропроводностью, имеет центральный максимум в зависимости и уменьшается с ростом частоты.

Резонансная поляризация. Наблюдается в диэлектриках на световых частотах и обусловлена резонансом собственных колебаний (вращения) электронов или ионов и частоты внешнего электромагнитного поля (света). На практике не применяется и практически не влияет на свойства диэлектрика в области частот, используемой электроникой и микроэлектроникой.

Миграционная поляризация – проявляется в твердых телах неоднородной структуры при макроскопических неоднородностях и наличии примесей. Причинами поляризации являются наличие проводящих и полупроводящих включений в реальных технических диэлектриках(бумага, ткань). При миграционной поляризации электроны и ионы перемещаются в пределах проводящих включений, образуя большие поляризованные области. Данная поляризация связана с большими потерями энергии и наблюдается уже на низких частотах, время релаксации таких диэлектриков – минуты и секунды.

В реальных диэлектриках проявляется несколько видов поляризации одновременно, поэтому частотные и температурные зависимости поляризованности , диэлектрической проницаемостии тангенса угла диэлектрических потерьусложняются. По виду поляризации различают четыре группы диэлектриков:

  1. Диэлектрики в основном с электронной поляризацией. Это неполярные и слабополярные вещества в кристаллическом и аморфном состояниях (парафин, полистирол, полиэтилен). Используют в качестве высокочастотных диэлектриков - изоляторов.

  2. Диэлектрики с электронной и дипольно-релаксационной поляризацией. Это полярные органические, полужидкие и твердые материалы (смолы, целлюлоза). Используют в качестве низкочастотных диэлектриков – изоляторов и в низкочастотных конденсаторах.

  3. Твердые неорганические диэлектрики с электронной, ионной и релаксационной поляризацией (слюда, кварц, стекло, керамика, ситаллы). Используются в качестве диэлектриков в высокочастотных конденсаторах и как изоляторы.

  4. Сегнетодиэлектрики, обладающие всеми видами поляризации. Используются как активные (управляемые) диэлектрики.

Благодаря поляризации изменяется электрическое поле внутри диэлектрика. Диэлектрическая проницаемость характеризует ослабление внешнего поля внутренним:

где - внешнее электрическое поле, В/м,

- внутреннее электрическое поле, В/м,

- электрическое смещение, Кл/м2,

- поверхностная плотность связанных зарядовна пластинах конденсатора при наличии диэлектрика, Кл/м2,

- добавочная поверхностная плотность заряда, возникающая благодаря поляризации диэлектрика, Кл/м2

- поверхностная плотность заряда на пластинах воздушного конденсатора, Кл/м2

Для получения необходимых свойств, например, минимума температурного коэффициента емкости ТКЕ, в электрических конденсаторах может применяться сложный диэлектрик, состоящий из смеси простых материалов с разными величинами диэлектрической проницаемости. В случае использования такого диэлектрика его эффективная диэлектрическая проницаемость рассчитывается по формуле Лихтенеккера: для случая хаотического распределения компонентов:

,

где 1 и 2 – объемные концентрации(доли) компонентов.

ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ.

- процесс смещения и упорядочения носителей заряда под действием электрического поля

- состояние вещества, при котором элементарный его объем приобретает электрический момент

Причины: внешнее электрическое поле, механическое напряжение, освещенность и другие факторы внешней среды, спонтанная поляризация.

Рисунок 51.

Поляризация – причина появления электрической емкости.

Диэлектрики:

1) линейные – изоляция, кондесы постоянной емкости

2)нелинейные – датчики, кондесы управляемого напряжения

Рисунок 52.

Полярные состоят из полярных молекул (вода). Неполярные – из неполярных, у которых электрический момент = 0 (газы, поваренная соль).

Виды поляризации:

  1. Быстрая поляризация (упругая) – происходит без рассеяния энергии.

  1. Электронная поляризация – смещение электронного облака относительно центра ядра атома. Время возникновения и ликвидации – 10^-14…10^-15 с. Поляризуемость не зависит от температуры, но диэлектрическая проницаемость зависит. Рисунок 53.

  2. Резонансная поляризация – возникает при совпадении частот вращения электронов с изменением магнитного поля.

  3. Ионная поляризация – смещение друг относительно друга положительных и отрицательных ионов. Время установления – 10^-11 с. Пример: поваренная соль. С ростом температуры параметры растут.

  1. Релаксационная

На ее создание тратится энергия, выделяемая в виде тепла, диэлектрические потери на переменном токе.

Разновидности:

  1. Дипольная релаксационная поляризация – поворот и ориентация молекул диполей по направлению поля.

Рисунок 54.

Время установления: 10^-2…10^-10 с.

Тау – время релаксации.

  1. Ионно-релаксационная поляризация – перемещение ионов от одного атома к другому в веществах с неполной упаковкой электронов. Пример: стекло.

Рисунок 55.

В жидком – проводники с электролитической проводимостью.

  1. Электронно – релаксационная – переход электрона к другому атому при поляризации.

Время установления: 10^-2…10^-5 с для комнатной температуры.

  1. Миграционная – наблюдается в неоднородных диэлектриках с проводящими включениями. Пример: бумага.

Рисунок 56.

Низкочастотная поляризация. Время релаксации: минуты и часы.

  1. Спонтанная поляризация. Фаза – состояние кристаллической решетки, ее структура.

В различных веществах возможно изменение фазы без изменения агрегатного состояния. Изменение фазы в диэлектриках может приводить к спонтанной поляризации – сегнетоэлектрики. Диэлектрическая проницаемость – до 10^5. Вид диэлектриков – нелинейные. Используются в датчиках.

Диэлектрическая проницаемость смеси.

Рисунок 57.

studfiles.net

ДИЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ

1. ДИЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ. 1.1. Классификация и общие свойства диэлектриков. Температурные зависимости.

ДИЭЛЕКТРИЧЕСКИЕ МАТЕРИАЛЫ. - вещества, способные поляризоваться в электрическом поле. В них существует внутреннее электрическое поле и равномерное распределение потенциалов. Носители заряда в диэлектриках: 1. В газах 1) Положительные и отрицательные ионы. Причина: ионизация молекул газа. 2) Электроны в сильных полях. 2. В жидкостях 1) Ионы. Причина: диссоциация молекул жидкости. 2) Коллоидные заряженные частицы в эмульсиях и суспензиях. 3. В твердых 1) Ионы. 2) Дефекты кристаллической решетки. 3) Электроны или дырки проводимости. Бывают полярные и неполярные. Рисунок 50. Основные электрические свойства диэлектриков: 1. Поляризация 2. Электропроводность 3. Диэлектрические потери 4. Электрическая прочность При расчетах на постоянном токе учитывают только сквозной ток.

1.2. Поляризация диэлектриков. Виды поляризации. Поляризация – процесс смещения и упорядочения зарядов в диэлектрике под действием внешнего электрического поля. Численной мерой поляризации является поляризованность диэлектрика – количество электрического момента в единице объема диэлектрика:

(1.2)

(1.2) где dp - электрический момент элемента диэлектрика; dV – объем элемента диэлектрика - напряженность внешнего электрического поля, В/м, - диэлектрическая постоянная, - относительная диэлектрическая проницаемость. Поляризация определяет свойство диэлектриков образовывать электрическую емкость. В то же время поляризация диэлектриков, происходящая с затратами энергии и выделением теплоты, вызывает потери электрической энергии в материалах-изоляторах, особенно на высоких частотах, когда процессы поляризации диэлектрика повторяются большее количество циклов в единицу времени. Поэтому поляризацию описывают параметрами диэлектрика и . Различают несколько видов поляризации.

2.2.1. Упругая поляризация – совершается в диэлектрике без выделения энергии и рассеяния тепла. Различают электронную и ионную упругие поляризации Электронная поляризация – упругое смещение и деформация электронных оболочек атомов, приводящая к разделению геометрических центров положительного и отрицательного зарядов в атоме. Для установления требуемся минимальное время – 10-15с, т.е. образуется практически мгновенно. Поляризуемость при электронной поляризации не зависит от температуры, а диэлектрическая проницаемость плавно уменьшается с повышением температуры в связи с тепловым расширением диэлектрика и уменьшением количества атомов в единице объема (рис. 2.2). Электронная поляризация наблюдается у всех диэлектриков независимо от их химического состава и внутренней структуры. Ионная поляризация – упругое смещение ионов – узлов кристаллической решетки, характерна для материалов с ионным строением. С повышением температуры усиливается благодаря ослаблению межионных сил. Время установления поляризации 10-13с – больше, чем у электронной поляризации, так как ионы массивнее. Так как процессы электронной и ионной поляризации происходят практически мгновенно, величина деэлектрической проницаемости материалов с упругой поляризацией постоянна и от частоты не зависит.

2.2.2. Релаксационная (неупругая) поляризация – медленные виды поляризации. Для их осуществления требуется затратить определенную энергию, которая затем выделяется в виде тепла при возвращении диэлектрика в исходное состояние. Различают дипольно-релаксационную, ионно-релаксационную, электронно-релаксационную, резонансную и миграционную виды поляризации. Дипольно-релаксационная поляризация характерна для веществ с дипольным строением и вызывается переориентацией молекул-диполей в приложенном к диэлектрику внешнем электрическом поле. В зависимости от массы, плотности упаковки и размеров диполей время установления поляризации сставляет 10-10..10-2 с. После снятия поля, вызвавшего поляризацию, они возвращаются в исходное хаотичное состояние под действием теплового движения частиц, при этом поляризованность материала убывает по закону

(1.2) где - поляризованность диэлектрика в момент снятия внешнего поля, Кл/м2, - время релаксации (время, за которое количество упорядоченных диполей убывает в е раз), с. Зависимость дипольной поляризации от температуры изображена на рис. 2.3. Спад графика в области низких температур обусловлен плотной упаковкой ионов и трудностью их переориентации, а в области высоких температур – малым количеством диполей, приходящимся на единицу объема диэлектрика.

Рис. 2.3. Зависимость дипольно-релаксационной поляризации от температуры

Дипольно-релаксационная поляризация наблюдается у всех полярных веществ. У твердых диэлектриков поляризация вызывается не поворотом самой молекулы, а смещением имеющихся в ней полярных радикалов, например, Na+ и Cl- в молекуле поваренной соли. С увеличением частоты дипольная поляризация и диэлектрическая проницаемость убывают, поэтому полярные диэлектрики являются частотно-зависимыми и не применяются на высоких частотах. Ионно-релаксационная поляризация наблюдается в материалах с неплотной упаковкой ионов и вызвана физическим перемещением ионов в вакансии кристаллической решетки под действием внешнего электрического поля. После снятия поля поляризация постепенно ослабевает. Наблюдается только для твердых веществ (рис. 3.х), так как в расплавленном состоянии ионы становятся свободными и материал становится проводником с электролитической проводимостью.

Рис. 3.х. Зависимость ионно-релаксационной поляризации от температуры

Электронно-релаксационная поляризация вызвана перемещением от одного иона к другому (в направлении поля) избыточных (дефектных) электронов и дырок. Характерна для веществ с электронной электропроводностью, имеет центральный максимум в зависимости и уменьшается с ростом частоты. Резонансная поляризация. Наблюдается в диэлектриках на световых частотах и обусловлена резонансом собственных колебаний (вращения) электронов или ионов и частоты внешнего электромагнитного поля (света). На практике не применяется и практически не влияет на свойства диэлектрика в области частот, используемой электроникой и микроэлектроникой. Миграционная поляризация – проявляется в твердых телах неоднородной структуры при макроскопических неоднородностях и наличии примесей. Причинами поляризации являются наличие проводящих и полупроводящих включений в реальных технических диэлектриках(бумага, ткань). При миграционной поляризации электроны и ионы перемещаются в пределах проводящих включений, образуя большие поляризованные области. Данная поляризация связана с большими потерями энергии и наблюдается уже на низких частотах, время релаксации таких диэлектриков – минуты и секунды. В реальных диэлектриках проявляется несколько видов поляризации одновременно, поэтому частотные и температурные зависимости поляризованности , диэлектрической проницаемости и тангенса угла диэлектрических потерь усложняются. По виду поляризации различают четыре группы диэлектриков: 1. Диэлектрики в основном с электронной поляризацией. Это неполярные и слабополярные вещества в кристаллическом и аморфном состояниях (парафин, полистирол, полиэтилен). Используют в качестве высокочастотных диэлектриков - изоляторов. 2. Диэлектрики с электронной и дипольно-релаксационной поляризацией. Это полярные органические, полужидкие и твердые материалы (смолы, целлюлоза). Используют в качестве низкочастотных диэлектриков – изоляторов и в низкочастотных конденсаторах. 3. Твердые неорганические диэлектрики с электронной, ионной и релаксационной поляризацией (слюда, кварц, стекло, керамика, ситаллы). Используются в качестве диэлектриков в высокочастотных конденсаторах и как изоляторы. 4. Сегнетодиэлектрики, обладающие всеми видами поляризации. Используются как активные (управляемые) диэлектрики.

Благодаря поляризации изменяется электрическое поле внутри диэлектрика. Диэлектрическая проницаемость характеризует ослабление внешнего поля внутренним:

(1.2)

где - внешнее электрическое поле, В/м, - внутреннее электрическое поле, В/м, - электрическое смещение, Кл/м2, - поверхностная плотность связанных зарядовна пластинах конденсатора при наличии диэлектрика, Кл/м2, - добавочная поверхностная плотность заряда, возникающая благодаря поляризации диэлектрика, Кл/м2 - поверхностная плотность заряда на пластинах воздушного конденсатора, Кл/м2 Для получения необходимых свойств, например, минимума температурного коэффициента емкости ТКЕ, в электрических конденсаторах может применяться сложный диэлектрик, состоящий из смеси простых материалов с разными величинами диэлектрической проницаемости. В случае использования такого диэлектрика его эффективная диэлектрическая проницаемость рассчитывается по формуле Лихтенеккера: для случая хаотического распределения компонентов: ,

где 1 и 2 – объемные концентрации(доли) компонентов.

ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ. - процесс смещения и упорядочения носителей заряда под действием электрического поля - состояние вещества, при котором элементарный его объем приобретает электрический момент Причины: внешнее электрическое поле, механическое напряжение, освещенность и другие факторы внешней среды, спонтанная поляризация. Рисунок 51. Поляризация – причина появления электрической емкости. Диэлектрики: 1) линейные – изоляция, кондесы постоянной емкости 2)нелинейные – датчики, кондесы управляемого напряжения Рисунок 52. Полярные состоят из полярных молекул (вода). Неполярные – из неполярных, у которых электрический момент = 0 (газы, поваренная соль). Виды поляризации: 1. Быстрая поляризация (упругая) – происходит без рассеяния энергии. 1) Электронная поляризация – смещение электронного облака относительно центра ядра атома. Время возникновения и ликвидации – 10^-14…10^-15 с. Поляризуемость не зависит от температуры, но диэлектрическая проницаемость зависит. Рисунок 53. 2) Резонансная поляризация – возникает при совпадении частот вращения электронов с изменением магнитного поля. 3) Ионная поляризация – смещение друг относительно друга положительных и отрицательных ионов. Время установления – 10^-11 с. Пример: поваренная соль. С ростом температуры параметры растут. 2. Релаксационная На ее создание тратится энергия, выделяемая в виде тепла, диэлектрические потери на переменном токе. Разновидности: 1) Дипольная релаксационная поляризация – поворот и ориентация молекул диполей по направлению поля. Рисунок 54. Время установления: 10^-2…10^-10 с. Тау – время релаксации. 2) Ионно-релаксационная поляризация – перемещение ионов от одного атома к другому в веществах с неполной упаковкой электронов. Пример: стекло. Рисунок 55. В жидком – проводники с электролитической проводимостью. 3) Электронно – релаксационная – переход электрона к другому атому при поляризации. Время установления: 10^-2…10^-5 с для комнатной температуры. 4) Миграционная – наблюдается в неоднородных диэлектриках с проводящими включениями. Пример: бумага. Рисунок 56. Низкочастотная поляризация. Время релаксации: минуты и часы. 5) Спонтанная поляризация. Фаза – состояние кристаллической решетки, ее структура. В различных веществах возможно изменение фазы без изменения агрегатного состояния. Изменение фазы в диэлектриках может приводить к спонтанной поляризации – сегнетоэлектрики. Диэлектрическая проницаемость – до 10^5. Вид диэлектриков – нелинейные. Используются в датчиках. Диэлектрическая проницаемость смеси. Рисунок 57.

1.3. Потери в диэлектриках. Пробой диэлектриков.

Потери в диэлектриках – часть энергии электрического поля, которая рассеивается в диэлектриках в виде тепла. Потери на постоянном токе вызываются сквозным током, а на переменном токе – в основном, медленными видами поляризации. Сквозным током и быстрыми видами поляризации можно пренебречь.

Рисунок 58. 1. Tg – величина маленькая, поэтому знаменатель можно принимать за 1. Виды диэлектрических потерь: 1. Потери на электропроводность (на пост и переменном токе, от частоты не зависят) 2. Релаксационные (из-за медленных видов поляризации, существуют только на переменном токе, создают токи абсорбции) 3. Потери, вызванные неоднородностью 4. Ионизационные. Характерны для газов и пористых диэлектриков 5. Резонансные потери. Из-за быстрых видов поляризации, в том числе резонансных.

Пробои в твердых диэлектриках. Виды пробоев: 1. Электрический. Причина: ударная ионизация и разрыв связи между молекулами диэлектрика. Длится доли секунды, происходит при максимальной напряженности поля (100 - 1000 МВ/м). 2. Тепловой. Нарушение теплового равновесия диэлектрика из-за диэлектрических потерь. Рисунок 59. 3. Электрохимический пробой. Вызывается химическими процессами, приводящими к изменению диэлектрика под воздействием электрического поля. 4. Ионизационный. Характерен в пористых диэлектриках и газах. 5. Поверхностный. Вызван некачественной обработкой поверхности или загрязнением.

1.4. Электропроводность жидкостей и газов. Жидкие и газообразные диэлектрики. Электропроводность газов. Газы – диэлектрики. Примеры: воздух, элегаз (Епр эл/Епр в=2.3) (гексофторид серы). Восстанавливают свои диэлектрические свойства после пробоя.

Электропроводность жидкости. 1. Ионная. Вызвана диссоциацией молекул. (Пример: серная кислота(проводник)) 2. Молионная. Молион – заряженная частица в коллоидном растворе. Заряд «+», если диэлектрическая проницаемость материала частицы больше проницаемости жидкости. Примеры: 1) Трансформаторное масло – изолятор обмоток трансформатора. Охлаждение. Вязкость. 2) Касторовое масло. Слабополярное, применяется в случаях, где трансформаторное масло не подходит, например, в вакууме. 3) Дистиллированная вода. Сильнополярная. 4) Конденсаторные масла. Хорошо очищенное трансформаторное. 5) Силиконовые масла (относятся к кремниевой органике). 6) Фторорганические масла. Последние 2 лучше по диэлектрическим свойствам, но опасны для окружающей среды при разложении.

1.5. Природные и искусственные полимерные органические диэлектрики Классификация твердых диэлектриков. 1. Электроизоляционные (пассивные). Газы, жидкости, твердые. Твердые: синтетические полимеры; пластмассы и пленки; компаунды и композиты; слоистые и волокнистые; стекло, керамика, слюда, ситал; лаки и эмали. Электрические, механические, управляемые излучением, управляемые теплом. ПОЛИМЕРЫ. Виды: 1. Пространственные 2. Линейные 1. Термопласты. При нагревании размягчаются. При этом химических процессов не происходит, процесс можно повторять многократно. 2. Термореакты. При охлаждении затвердевают, при последующих нагреваниях не размягчаются. 1. Полимеризационные 2. Поликонденсационные 1. Природные (целлюлоза, латекс, белок…) 2. Искусственные 1) полиэтилен. Высокочастотный, неполярный, химически стоек, цвет белый или светло-серый. Недостатки: низкий рабочий диапазон температур, разрешение под действием света 2) полистирол. Слабополярный, но высокочастотный. Применяется как конструкционный материал для изготовления каркасов, электронных агрегатов. Блочный, суспензионный (гранулированный). 3) Поливинилхлорид. Полярный, поэтому изоляционные свойства понижены. Является термопластом, выпускается в виде порошка. Может окрашиваться. Формы выпуска: винипласт (жесткие листы из прессованных пвх пленок), пластикат (60-70% пвх, 40-30% пластификатора, т.е. маслообразные жидкости). Применение: изоляция кабелей. Недостаток: узкий диапазон рабочих температур: -45…+79 град. 4) Политетрафторэтилен (фторопласт 4). Высокочастотный, неполярный, широкий диапазон рабочих температур (-195…+250 град). Не смачивается, не поглощает жидкости, не горит, не растворяется ни в одном растворителе, не подвергается плесени, обрабатывается любым способом. Недостатки: при температуре свыше 400 град разлагается с образованием свободного фтора, разрушается радиацией. Применение: конструкционный материал, изоляция ВЧ кабелей, изоляция МГТФ, уплотнитель. 5) Полипропилен. Применение: как конструкционный материал. Сваривается. PP 6) Кремниеорганика. Твердые силиконы. Применение: кострукционный материал. 7) Полиэтилен – телефтолат, он же лавсан. PET. Применение: пленочная изоляция, основа магнитных дисков и лент. Смолы (аморфные полимеры): 1. Фенолформальдегидная 2. Эпоксидная 3. Полиамидные (капрон, нейлон…) Применение: компаунды, изоляция. 4. Пластмасса – смола с наполнителем, пластификатором и стабилизатором против старения. Наполнитель – любые дешевые материалы (например, опилки, песок, стекловолокно). Компаунды: 1. Пропиточные - герметизация 2. Заливочные – создание конструкционных элементов

Каучуки (эластомеры): 1. Натуральные 2. Синтетические Относятся к низкочастотным элементам. Резина. Получение: с помощью вулканизации. 1. Мягкие 2. Твердые 3. Эбонит Отличаются долей серы. Недостатки: стареют, трескаются, разбухают в растворителях, разрушают медь. Достоинства: выдерживают низкие температуры практически без потери эластичности.

Волокнистые. Это слоистые пластики. Примеры: стеклотекстолит, гетинакс. Конденсаторная и кабельная бумага, ткань, шелк, асбестовое волокно. Достоинство: дешевые, гибкие, хорошо обрабатываются. Недостатки: впитывают влагу, гниют.

Лаки. Коллоидные растворы лаковой основы после растворения растворителя образуют пленку. В них добавляется сиккатив (ускоритель высыхания), пластификатор, отвердители, инициаторы и ускорители полимеризации. Эмаль – лак + пигмент. Лаки и эмали бывают: 1. Пропиточные 2. Покровные 3. Клеящие

1.6. Неорганические диэлектрики. Стекла, керамика, ситаллы. СТЕКЛА. Аморфные термопласты. Химический состав – смесь оксидов. SiO2, ZnO, Na2O, Al2O3… Сырье – песок, глинозем, известняк. Технология производства – нагревание до расплавления с мгновенным охлаждением со скоростью 10^5 град Цельсия в секунду. Разновидность – сталемит – стекло с дополнительной закалкой. Применение: конструкционный материал, изоляция, световоды. Ситаллы. Промежуточное вещество между керамикой и стеклом. Содержание стекла – 5-10%, все остальное – поликристалл. Применение – подложки микросхем. Керамика. Состав как у стекла. Кристалл или поликристалл. Технология получения – как у стекла, но охлаждают медленней. Конденсаторная керамика. Изоляционная керамика.

1.7. Активные диэлектрики. Пьезо- и пироэффект. Электреты. ПЬЕЗОДИЭЛЕКТРИКИ. Пьезоэлектрический эффект – поляризация диэлектрика под действием механического напряжения. Им обладают сегнетоэлектрики – способные самоэлектризоваться под действием электрического поля. Рисунок 60. Структура доменная. Области применения: кондесы для низких частот, если поляризация сохраняется надолго – устройство памяти. Пьезокерамика приобретает соответствующие свойства после длительной выдержки в электрическом поле при высокой температуре. Керамика как поликристалл применяется до частоты 10 МГц, на более высоких частотах применяются монокристаллы кварца (SiO2). Кварцевый резонатор – аналог кондесатора. Размеры кварца на 32 МГц – порядка 10мм. Применение: микрофоны, датчики, пьезотрансформатор.

Пироэлектрики. Пироэффект – поляризация диэлектрика при однородном по объему нагревании или охлаждении. Всегда существует обратный пьезоэффект (электроколорический). Применеие: датчики температур.

Электеты. Твердые диэлектрики, длительно создающие электрическое поле после предварительной поляризации. Делят по способу формирования заряда: 1. Термоэлектреты – электризуются электрическим полем при нагревании. 2. Фотоэлектреты – электризуются освещением. Область использования: барабаны для копировальной техники. 3. Радиоэлектреты – электризуются радиоактивным излучением. 4. Электроэлектреты – электризуются разрядом в смежном газе. 5. Трибоэлектреты – электризуются трением.

1.8. Современное состояние развития диэлектрических материалов. Диэлектрические материалы микроэлектроники и наноэлектроники. Использование диэлектриков в микроэлектронике. Форма: обычно пленочная. Функции: 1. Пассивация поверхности полупроводника. 2. Защита от механических повреждений. 3. Стабилизация параметров. 4. Повышение радиационной стойкости. 5. Изоляция элементов друг от друга. 6. Изоляция затвора в МДП – структурах. 7. Маска при диффузии и эпитаксии. 8. В качестве активной области. Требования: 1. Хорошая адгезия к полупроводнику, металлу и фоторезисту. 2. Механическая прочность. 3. Непроницаемость для нежелательных примесей. 4. Однородность слоя. 5. Химическая стойкость, в том числе к травлению. 6. Высокие диэлектрические свойства. 7. Необходимая диэлектрическая проницаемость. 8. Согласованность с материалом подложки (например, одинаковый ТКЛР) 9. Технологичность получения. 10. Простота обработки. Основной материал: SiO2.

Лабораторные работы Исследование свойств диэлектрических материалов. Конденсаторы Диэлектрические материалы в катушках индуктивности и трансформаторах

www.sesiya.ru

Диэлектрики. Виды. Работа. Свойства. Применение. Особенности

Диэлектрики — это вещество, которое не проводит, или плохо проводит электрический ток. Носители заряда в диэлектрике имеют плотность не больше 108 штук на кубический сантиметр. Одним из основных свойств таких материалов является способность поляризации в электрическом поле.

Параметр, характеризующий диэлектрики, называется диэлектрической проницаемостью, которая может иметь дисперсию. К диэлектрикам можно отнести химически чистую воду, воздух, пластмассы, смолы, стекло, различные газы.

Свойства диэлектриков

Если бы вещества имели свою геральдику, то герб сегнетовой соли непременно украсили бы виноградные лозы, петля гистерезиса, и символика многих отраслей современной науки и техники.

Родословная сегнетовой соли начинается с 1672 года. Когда французский аптекарь Пьер Сегнет впервые получил с виноградных лоз бесцветные кристаллы и использовал их в медицинских целях.

Тогда еще невозможно было предположить, что эти кристаллы обладают удивительными свойствами. Эти свойства дали нам право из огромного числа диэлектриков выделить особые группы:

  1. Пьезоэлектрики.
  2. Пироэлектрики.
  3. Сегнетоэлектрики.

Со времен Фарадея известно, что во внешнем электрическом поле диэлектрические материалы поляризуются. При этом каждая элементарная ячейка обладает электрическим моментом, аналогичным электрическому диполю. А суммарный дипольный момент единицы объема определяет вектор поляризации.

В обычных диэлектриках поляризация однозначно и линейно зависит от величины внешнего электрического поля. Поэтому диэлектрическая восприимчивость почти у всех диэлектриков величина постоянная.

P/E=X=const

Кристаллические решетки большинства диэлектриков построены из положительных и отрицательных ионов. Из кристаллических веществ наиболее высокой симметрией обладают кристаллы с кубической решеткой. Под действием внешнего электрического поля кристалл поляризуется, и симметрия его понижается. Когда внешнее поле исчезает, кристалл восстанавливает свою симметрию.

В некоторых кристаллах электрическая поляризация может возникать и при отсутствии внешнего поля, спонтанно. Так выглядит в поляризованном свете кристалл молибдената гадолиния. Обычно спонтанная поляризация неоднородная. Кристалл разбивается на домены – области с однородной поляризацией. Развитие многодоменной структуры уменьшает суммарную поляризацию.

Пироэлектрики

В пироэлектриках спонтанная поляризация экранирует со свободными зарядами, которые компенсируют связанные заряды. Нагревание пироэлектрика изменяет его поляризацию. При температуре плавления пироэлектрические свойства исчезают вовсе.

Часть пироэлектриков относится к сегнетоэлектрикам. У них направление поляризации может быть изменено внешним электрическим полем.

Существует гистерезисная зависимость между ориентацией поляризации сегнетоэлектрика и величиной внешнего поля.

В достаточно слабых полях поляризация линейно зависит от величины поля. При его дальнейшем увеличении все домены ориентируются по направлению поля, переходя в режим насыщения. При уменьшении поля до нуля кристалл остается поляризованным. Отрезок СО называют остаточной поляризацией.

Поле, при котором происходит изменение направления поляризации, отрезок ДО называют коэрцитивной силой.

Наконец, кристалл полностью меняет направление поляризации. При очередном изменении поля кривая поляризации замыкается.

Однако, сегнетоэлектрическое состояние кристалла существует лишь в определенной области температур. В частности, сегнетова соль имеет две точки Кюри: -18 и +24 градусов, в которых происходят фазовые переходы второго рода.

Группы сегнетоэлектриков

Микроскопическая теория фазовых переходов разделяет сегнетоэлектрики на две группы.

Первая группа

Титанат бария относится к первой группе, и как ее еще называют, группе сегнетоэлектриков типа смещения. В неполярном состоянии титанат бария имеет кубическую симметрию.

При фазовом переходе в полярное состояние ионные подрешетки смещаются, симметрия кристаллической структуры понижается.

Вторая группа

Ко второй группе относят кристаллы типа нитрата натрия, у которых в неполярной фазе имеется разупорядоченная подрешетка структурных элементов. Здесь фазовый переход в полярное состояние связан с упорядочением структуры кристалла.

Причем в различных кристаллах может быть два или несколько вероятных положений равновесия. Существуют кристаллы, в которых цепочки диполя имеют антипараллельные ориентации. Суммарный дипольный момент таких кристаллов равен нулю. Такие кристаллы называют антисегнетоэлектриками.

В них зависимость поляризации линейная, вплоть до критического значения поля.

Дальнейшее увеличение величины поля сопровождается переходом в сегнетоэлектрическую фазу.

Третья группа

Существует еще одна группа кристаллов – сегнетиэлектриков.

Ориентация дипольных моментов у них такова, что по одному направлению они имеют свойства антисегнетоэлектриков, а по-другому сегнетоэлектриков. Фазовые переходы у сегнетоэлектриков бывают двух родов.

При фазовом переходе второго рода в точке Кюри спонтанная поляризация плавно уменьшается до нуля, а диэлектрическая восприимчивость, меняясь резко, достигает огромных величин.

При фазовом переходе первого рода поляризация исчезает скачком. Также скачком изменяется электрическая восприимчивость.

Большая величина диэлектрической проницаемости, электрополяризации сегнетоэлектриков, делает их перспективными материалами современной техники. Например, уже широко используют нелинейные свойства прозрачной сегнетокерамики. Чем ярче свет, тем сильнее он поглощается специальными очками.

Это является эффективной защитой зрения рабочих в некоторых производствах, связанных с внезапными и интенсивными вспышками света. Для передачи информации с помощью лазерного луча применяют сегнетоэлектрические кристаллы с электрооптическим эффектом. В пределах прямой видимости лазерный луч моделируется в кристалле. Затем луч попадает в комплекс приемной аппаратуры, где информация выделяется и воспроизводится.

Пьезоэлектрический эффект

В 1880 году братья Кюри обнаружили, что в процессе деформации сегнетовой соли на ее поверхности возникают поляризационные заряды. Это явление было названо прямым пьезоэлектрическим эффектом.

Если на кристалл воздействовать внешним электрическим полем, он начинает деформироваться, то есть, возникает обратный пьезоэлектрический эффект.

Однако эти изменения не наблюдаются в кристаллах, имеющих центр симметрии, например, в сульфиде свинца.

Если на такой кристалл воздействовать внешним электрическим полем, подрешетки отрицательных и положительных ионов сместятся в противоположные стороны. Это приводит к поляризации кристаллов.

В данном случае мы наблюдаем электрострикцию, при которой деформация пропорциональна квадрату электрического поля. Поэтому электрострикцию относят к классу четных эффектов.

ΔX1=ΔX2

Если такой кристалл растягивать или сжимать, то электрические моменты положительных диполей будут равны по величине электрическим моментам отрицательных диполей. То есть, изменение поляризации диэлектрика не происходит, и пьезоэффект не возникает.

В кристаллах с низкой симметрией при деформации появляются дополнительные силы обратного пьезоэффекта, противодействующие внешним воздействиям.

Таким образом, в кристалле, у которого нет центра симметрии в распределении зарядов, величина и направление вектора смещения зависит от величины и направления внешнего поля.

Благодаря этому можно осуществлять различные типы деформации пьезокристаллов. Склеивая пьезоэлектрические пластинки, можно получить элемент, работающий на сжатие.

В этой конструкции пьезопластинка работает на изгиб.

Пьезокерамика

Если к такому пьезоэлементу приложить переменное поле, в нем возбудятся упругие колебания и возникнут акустические волны. Для изготовления пьезоэлектрических изделий применяют пьезокерамику. Она представляет собой поликристаллы сегнетоэлектрических соединений или твердые растворы на их основе. Изменяя состав компонентов и геометрические формы керамики, можно управлять ее пьезоэлектрическими параметрами.

Прямые и обратные пьезоэлектрические эффекты находят применение в разнообразной электронной аппаратуре. Многие узлы электроакустической, радиоэлектронной и измерительной аппаратуры: волноводы, резонаторы, умножители частоты, микросхемы, фильтры работают, используя свойства пьезокерамики.

Пьезоэлектрические двигатели

Активным элементом пьезоэлектрического двигателя служит пьезоэлемент.

В течение одного периода колебаний источника переменного электрического поля он растягивается и взаимодействует с ротором, а в другом возвращается в исходное положение.

Великолепные электрические и механические характеристики позволяют пьезодвигателю успешно конкурировать с обычными электрическими микромашинами.

Пьезоэлектрические трансформаторы

Принцип их действия также основан на использовании свойств пьезокерамики. Под действием входного напряжения в возбудителе возникает обратный пьезоэффект.

Волна деформации передается в генераторную секцию, где за счет прямого пьезоэффекта изменяется поляризация диэлектрика, что приводит к изменению выходного напряжения.

Так как в пьезотрансформаторе вход и выход гальванически развязаны, то функциональные возможности преобразования входного сигнала по напряжению и току, согласование его с нагрузкой по входу и выходу, лучше, чем у обычных трансформаторов.

Исследования разнообразных явлений сегнетоэлектричества и пьезоэлектричества продолжаются. Нет сомнений, что в будущем появятся приборы, основанные на новых и удивительных физических эффектах в твердом теле.

Классификация диэлектриков

В зависимости от различных факторов они по-разному проявляют свои свойства изоляции, которые определяют их сферу использования. На приведенной схеме показана структура классификации диэлектриков.

В народном хозяйстве стали популярными диэлектрики, состоящие из неорганических и органических элементов.

Неорганические материалы – это соединения углерода с различными элементами. Углерод обладает высокой способностью к химическим соединениям.

Минеральные диэлектрики

Такой вид диэлектриков появился с развитием электротехнической промышленности. Технология производства минеральных диэлектриков и их видов значительно усовершенствована. Поэтому такие материалы уже вытесняют химические и натуральные диэлектрики.

К минеральным диэлектрическим материалам относятся:

•Стекло (конденсаторы, лампы) – аморфный материал, состоит из системы сложных окислов: кремния, кальция, алюминия. Они улучшают диэлектрические качества материала.• Стеклоэмаль – наносится на металлическую поверхность.• Стекловолокно – нити из стекла, из которых получают стеклоткани.• Световоды – светопроводящее стекловолокно, жгут из волокон.• Ситаллы – кристаллические силикаты.• Керамика – фарфор, стеатит.• Слюда – микалекс, слюдопласт, миканит.• Асбест – минералы с волокнистым строением.

Разнообразные диэлектрики не всегда заменяют друг друга. Их сфера применения зависит от стоимости, удобства применения, свойств. Кроме изоляционных свойств, к диэлектрикам предъявляются тепловые, механические требования.

Жидкие диэлектрики
Нефтяные масла

Трансформаторное масло заливается в силовые виды трансформаторов. Оно наиболее популярно в электротехнике.

Кабельные масла применяются при изготовлении электрических кабелей. Ими пропитывают бумажную изоляцию кабелей. Это повышает электрическую прочность и отводит тепло.

Синтетические жидкие

Для пропитки конденсаторов необходим жидкий диэлектрик для увеличения емкости. Такими веществами являются жидкие диэлектрики на синтетической основе, которые превосходят нефтяные масла.

Хлорированные углеводороды образуются из углеводородов заменой в них молекул атомов водорода атомами хлора. Большую популярность имеют полярные продукты дифенила, в состав которых входит С12 Н10-nC Ln.

Их преимуществом является стойкость к горению. Из недостатков можно отметить их токсичность. Вязкость хлорированных дифенилов имеет высокий показатель, поэтому их приходится разбавлять мене вязкими углеводородами.

Кремнийорганические жидкости обладают низкой гигроскопичностью и высокой температурной стойкостью. Их вязкость очень мало зависит от температуры. Такие жидкости имеют высокую стоимость.

Фторорганические жидкости имеют аналогичные свойства. Некоторые образцы жидкости могут долго работать при 2000 градусов. Такие жидкости в виде октола состоят из смеси полимеров изобутилена, получаемых из продуктов газа крекинга нефти, имеют невысокую стоимость.

Природные смолы

Канифоль – это смола, имеющая повышенную хрупкость, и получаемая из живицы (смола сосны). Канифоль состоит из органических кислот, легко растворяется в нефтяных маслах при нагревании, а также в других углеводородах, спирте и скипидаре.

Температура размягчения канифоли равна 50-700 градусов. На открытом воздухе канифоль окисляется, быстрее размягчается, и хуже растворяется. Растворенная канифоль в нефтяном масле используется для пропитки кабелей.

Растительные масла

Эти масла представляют собой вязкие жидкости, которые получены из различных семян растений. Наиболее важное значение имеют высыхающие масла, которые могут при нагревании отвердевать. Тонкий слой масла на поверхности материала при высыхании образует твердую прочную электроизоляционную пленку.

Скорость высыхания масла повышается при возрастании температуры, освещении, при использовании катализаторов – сиккативов (соединения кобальта, кальция, свинца).

Льняное масло имеет золотисто-желтый цвет. Его получают из семян льна. Температура застывания льняного масла составляет -200 градусов.

Тунговое масло изготавливают из семян тунгового дерева. Такое дерево растет на Дальнем Востоке, а также на Кавказе. Это масло не токсично, но не является пищевым. Тунговое масло застывает при температуре 0-50 градусов. Такие масла используются в электротехнике для производства лаков, лакотканей, пропитки дерева, а также в качестве жидких диэлектриков.

Касторовое масло используется для пропитки конденсаторов с бумажным диэлектриком. Получают такое масло из семян клещевины. Застывает оно при температуре -10 -180 градусов. Касторовое масло легко растворяется в этиловом спирте, но нерастворимо в бензине.

Похожие темы:

 

electrosam.ru

Диэлектрический материал - Большая Энциклопедия Нефти и Газа, статья, страница 1

Диэлектрический материал

Cтраница 1

Диэлектрические материалы применяют в микроэлектронике в качестве изоляционных покрытий и масок при диффузии и ионной имплантации, герметизирующих покрытий легированных пленок, предотвращающих выход легирующих элементов, герметизирующих слоев, защищающих поверхности приборов от внешних воздействий, для диффузии примесей из слоев легированных оксидов, а также для геттерирования примесей и дефектов. Наиболее перспективны для этих целей оксид и нитрид кремния, а также имеющие более узкое применение оксинитрид кремния и некоторые стекла.  [1]

Диэлектрические материалы должны обладать хорошей адгезией к материалам подложки, обкладок конденсаторов и коммутационных слоев, обеспечивать надежную электрическую изоляцию при минимальной толщине пленки, обладать малыми электрическими потерями, малым термическим коэффициентом емкости. В тонкопленочных конденсаторах необходимо использовать диэлектрики с высокой диэлектрической проницаемостью е о целью уменьшения площади конденсатора, при изоляции мест пересечения коммутационных слоев е должно быть минимальным для уменьшения паразитных связей в микросхеме. Наиболее сложной технической задачей является обеспечение надежной изоляции.  [2]

Диэлектрические материалы выполняют в толстопленочных схемах две основные функции - изоляции в пересечениях и диэлектрика в конденсаторах. Кроме того, они используются при защите конструкций микросхем.  [3]

Диэлектрические материалы предназначены для изоляции токоведущих частей электрооборудования, изоляции их от земли и заземлителеи.  [4]

Диэлектрические материалы ( диэлектрики) - вещества, практически не проводящие электрический ток.  [5]

Диэлектрические материалы используются в виде монокристаллов, поликристаллов, пленок, жидких кристаллов. Актуальной является задача получения тонкопленочных диэлектрических устройств.  [6]

Диэлектрические материалы служат в качестве изоляции токоведущих частей коммутационных аппаратов. Они включают в себя такие разнообразные типы электрической изоляции, как вакуум, элегаз, воздух, нефтяные и искусственные масла, твердые диэлектрики. При этом физические условия, в которых должна находиться и функционировать изоляция, накладывают определенные требования на физико-химические параметры материала, ограничивая возможные вид и тип используемых электротехнических материалов.  [7]

Диэлектрические материалы поляризуются также и в результате радиоактивного облучения. Для горных пород это имеет важное практическое значение, поскольку в геохимии известны сотн радиоактивных изотопов с периодами полураспада, изменяющимися в очень широких пределах. В горных породах электрические объемные заряды могут накапливаться вблизи границы раздела радиоактивной и нерадиоактивной пород с высоким удельным электрическим сопротивлением.  [8]

Диэлектрические материалы имеют чрезвычайно важное значение для электротехники. К ним принадлежат электроизоляционные материалы; они используются для создания электрической изоляции, которая окружает токоведущие части электрических устройств и отделяет друг от друга части. Назначение электрической изоляции - не допускать прохождения электрического тпкя по каким-либо нежелательным путям, помимо тех, которые предусмотрены электрической схемой устройства. Очевидно, что никакое, даже самое простое, электрическое устройство не может быть выполнено без использования электроизоляционных материалов.  [9]

Диэлектрические материалы имеют удельное сопротивление в 1010 - 1018 раз больше, чем проводники. Их электропроводность ничтожно мала. Поэтому применяются они для изоляции токоведу-щих частей машин, аппаратов и приборов.  [10]

Диэлектрические материалы, смешанные с соответствующими добавками, помещают в полость подходящих электродов или превращают в брикеты или электроды, в которых в качестве связующего вещества использован пластик ( разд. В таком виде эти материалы подвергают возбуждению. В методиках с распылением порошков используют либо порошок пробы в чистом виде, либо порошок пробы, смешанный с добавками. Часто целесообразно порошковую пробу сплавить ( разд.  [11]

Диэлектрические материалы широко применяются для облицовки стен, столов и для покрытия полов в производственных и бытовых помещениях.  [12]

Диэлектрические материалы, используемые в качестве основы для нанесения печатной схемы, должны обладать достаточной механической прочностью, малыми диэлектрическими потерями, высокой теплостойкостью, негигроскопичностью и обеспечивать хорошую сцепляемость ( адгезию) материала платы с токопрово-дящими проводниками.  [13]

Диэлектрические материалы являются хорошими электрическими изоляторами. Выбор материалов по их электрической прочности должен производиться в соответствии с условиями окружающей среды и поставленной задачей: чем более агрессивные условия, чем больше разность потенциалов и чем более жесткие рабочие условия, тем выше должно быть требуемое омическое сопротивление.  [14]

Диэлектрические материалы должны быть приемлемыми с точки зрения пожарной безопасности: они не обязательно должны быть огнестойкими, если только не употребляются в непосредственной близости от источника воспламенения. Требуемая характеристика замедленности возгорания зависит от массы материала разделителя, локализации и времени выдержки в условиях нагрева.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Диэлектрики. Классификация

 

Диэлектриками называются материалы, в которых длительно могут существовать электростатические поля и основным свойством которых является способность к поляризации.

При нормальных условиях ( температура близкая к комнатной, давление порядка атмосферного, уровень радиационного воздействия близок по интенсивности к солнечному ) диэлектрики обладают высокими значениями удельного электрического сопротивления (ρ>108Ом·м) и шириной запрещенной зоны порядка 3-8 эВ. При этом электрические заряды прочно связаны с атомами, молекулами или ионами и в электрическом поле они могут лишь смещаться, что приводит к разделению центров положительного и отрицательного зарядов.

Диэлектрики содержат и свободные заряды, которые перемещаясь в электрическом поле, обусловливают электропроводность. Однако количество таких свободных зарядов в диэлектрике невелико, поэтому ток мал.

Диэлектрики классифицируют по разным признакам.

1 По функциям, которые диэлектрические материалы выполняют в приборах и устройствах, а также по воздействию, оказываемому на них внешними факторами, они подразделяются на электроизоляционные и конденсаторные материалы (линейные или пассивные) и активные диэлектрики (нелинейные или управляемые).

2 По агрегатному состоянию - на газообразные, жидкие и твердые.

В газообразных - молекулы или атомы находятся на значительном расстоянии друг от друга и слабо взаимодействуют между собой, плотность газов низка, они не имеют собственного объема и подразделяются на:

- неполярные (воздух и входящие в его состав газы: водород, кислород, азот; благородные газы: гелий, аргон и др.), у которых в отсутствии внешнего электрического поля центры положительного и отрицательного зарядов совпадают;

- полярные (СО, Н2О, HCl, HF, h3S и др.), у которых центры разноименных зарядов не совпадают, т.е. существуют постоянные диполи.

В жидких - молекулы и атомы расположены ближе чем в газах, и они имеют собственный объем, а их свойства слабо зависят от внешнего давления. К электроизоляционным и конденсаторным материалам относятся нефтяные масла (трансформаторное, кабельное и конденсаторное ) и синтетические фтор-, хлор- и кремнийорганические жидкости.

3 По химическому составу на: органические, неорганические и элементоорганические.

Органические - представляют собой соединения углерода с водородом, азотом, кислородом и другими элементами; элементоорганические - те, в молекулы которых входят атомы кремния, магния, алюминия, титана и других элементов; неорганические, не содержат в своем составе углерода и представляют собой, в основном, неорганические химические соединения и твердые растворы на их основе.

Также возможна классификация по наличию или отсутствию дальнего порядка (аморфные и кристаллические), по количеству фаз (однофазные и многофазные), по области применения (низкочастотные и высокочастотные) и др.

Из многообразия электрических свойств диэлектриков, определяющих их техническое применение, основными являются: электропроводность, поляризация, диэлектрические потери, электрическая прочность и электрическое старение.

При воздействии электрического поля в диэлектрике возникает ряд процессов: смещение связанных зарядов (поляризация), направленное движение зарядов (электропроводность), рассеивание энергии поля, вызывающее нагрев диэлектрика (диэлектрические потери) и, наконец, при достаточно высоких напряженностях поля диэлектрик теряет свои диэлектрические свойства (пробой).

 

1.2 Основные электрические свойства и характеристики диэлектриков

 

1.2.1 Поляризация и электрическое поле в диэлектрике

В диэлектрике положительно и отрицательно заряженные частицы прочно связаны друг с другом. Поэтому, при внесении диэлектрика в электрическое поле наблюдается лишь смещение связанных зарядов относительно друг друга на небольшие расстояния в направлении действующих на них сил. Это явление называется поляризацией.

Электрическая поляризация – это состояние вещества, при котором электрический момент некоторого объема этого вещества отличен от нуля.

Свойства диэлектриков, в которых поляризация возникает лишь пол влиянием электрического поля и исчезает после его снятия, не зависит от напряженности приложенного поля. Поэтому такие диэлектрики и называются линейными (пассивными).

Поляризация в диэлектриках может возникать не только под влиянием электрического поля, но и под воздействием различных внешних факторов (механических усилий, света, температуры и др.), а в некоторых диэлектриках-сегнетоэлектриках возникает в определенном интервале температур самопроизвольно. Свойствами таких диэлектриков можно управлять с помощью внешнихвоздействий: напряженностью электрического поля Е (в сегнетоэлектриках), механическим усилием (в пьезоэлектриках) и т.д., причем зависимость эта не линейна. Так, у сегнетоэлектриков диэлектрическая проницаемость

ε = f (Е) , у материалов для варисторов электрическая проводимость γ = f (E). Эти аномальные по своему поведению в электромагнитном поле материалы называют нелинейными (активными).

Таким образом, приложение к диэлектрику внешнего электрического поля напряженностью Е может привести:

- к смещению внутри диэлектрика электрических зарядов (положительные смещаются к “-“, а отрицательные – к”+”), в результате чего образуются диполи;

- к ориентации уже имеющихся в материале постоянных диполей.

Два электрических заряда противоположного знака (±q), находящиеся на расстоянии l друг от друга образуют диполь с моментом m (рисунок 1.1)

 

 

 

Рисунок 1.1 – Диполь в электрическом поле

 

При этом дипольный момент каждого элементарного объема диэлектрика будет пропорционален напряженности электрического поля Е

 

где α- поляризуемость, характеризующая способность частицы диэлектрика (атома, иона, молекулы или другой структурной единицы) к поляризации.

 

1.2.2 Вектор поляризации, поляризованность

Основными количественными характеристиками степени поляризации диэлектриков являются поляризованность (или вектор поляризации) Ри диэлектрическая проницаемость ε. В отсутствие внешнего электрического поля дипольные моменты диэлектрика или равны нулю (неполярные молекулы) или распределены хаотических образом (полярные молекулы). В обоих случаях суммарный электрический момент диэлектрика равен нулю.

Под действием внешнего поля диэлектрик поляризуется, т.е. результирующий дипольный момент любого его объема становится отличным от нуля. Тогда вектор поляризации можно определить по формуле

 

,

 

где – χ = кэ·ε0 – абсолютная диэлектрическая восприимчивость; кэ- диэлектрическая восприимчивость, а ε0= 8,85·10-12 Ф/м- электрическая постоянная.

Таким образом,

 

 

 

Пропорциональность между Р и Е в слабых полях наблюдается у линейных диэлектриков. Вектор поляризации может быть представлен в виде

 

,

 

где N- число элементарных дипольных моментов. Скалярная величина Р называется поляризованностью.

 

1.2.3 Диэлектрическая проницаемость

На рисунке 1.2 схематически изображены два плоских конденсатора, площадь электродов которых S, а расстояние между ними h. В конденсаторе (рисунок 1.2 а) между электродами вакуум, в конденсаторе (рисунок 1.2 б)- диэлектрик.

 

Рисунок 1.2

 

Если электрическое напряжение на электродах U= U0· exp (jωt) с угловой частотой ω = 2πf, то напряженность электрического поля Е = U/h. Электрический заряд, накопленный в конденсаторе с вакуумом, называется свободным зарядом Q0 (на рисунке 1.2 а - квадраты) и определяется из выражения

 

,

 

где С0- емкость конденсатора с вакуумом.

В электрическом поле в частицах, из которых построен диэлектрик, связанные положительные и отрицательные заряды смещаются. В результате, как уже сказано выше , образуются электрические диполи с моментом m= q·l, где q- суммарный положительный (и численно равный ему отрицательный) заряд частицы, Кл; l- расстояние между центрами зарядов, плечо диполя, м.

Для компенсации поляризационных зарядов источником электрического напряжения создается дополнительный связанный заряд Qд и общий заряд конденсатора возрастает.

При этом полный заряд конденсатора с диэлектриком

 

,

 

где εr- относительная диэлектрическая проницаемость.

Электрическая емкость конденсатора с вакуумом между электродами

 

.

 

Емкость этого конденсатора с диэлектриком между электродами

 

.

 

Из этих формул следует, что

 

,

 

где εr и есть относительная диэлектрическая проницаемость.

Емкость плоского конденсатора

 

,

 

где ε0= 8,85·10-12 Ф/м- электрическая постоянная, а произведение ε0·εr= ε- абсолютная диэлектрическая проницаемость.

 

1.2.4 Электропроводность диэлектриков

Свойство вещества проводить под действием неизменяющегося во времени электрического поля неизменяющийся во времени электрический ток называется электропроводностью.

Используемые диэлектрики содержат в своем объеме небольшое количество свободных зарядов, которые перемещаются в электрическом поле. Этот ток называется сквозным током утечки. В диэлектриках свободными зарядами, которые перемещаются в электрическом поле, могут быть ионы (положительные и отрицательные), электроны и электронные вакансии (дырки), поляроны. Ширина запрещенной зоны в диэлектриках 3…7 эВ, энергию, достаточную для перехода в зону проводимости электроны могут приобрести в результате нагревания диэлектрика или при ионизирующем облучении. В сильных полях возможна инжекция зарядов (электронов, дырок) в диэлектрик из металлических электродов; возможно образование свободных зарядов (ионов и электронов) в результате ударной ионизации, когда энергия свободных зарядов достаточна для ионизации атомов при соударении.

Для твердых диэлектриков характерной является ионная электропроводность. При нагревании или освещении, действии радиации, сильного электрического поля сначала ионизируются содержащиеся в таких диэлектриках дефекты и примеси. Образовавшиеся таким образом ионы определяют низкотемпературную примесную область электропроводности диэлектрика.

При более интенсивном воздействии на диэлектрик ионизируются основные частицы материала. Удельная проводимость в этом случае изменяется с ростом температуры с большей скоростью, так как число ионов, образовавшихся при ионизации основных частиц, больше, чем при ионизации дефектов и примесей. Энергия активации основных частиц больше, эта область электропроводности называется высокотемпературной собственной.

Поверхностная электропроводность диэлектриков определяется способностью поверхности материала адсорбировать загрязняющие компоненты, в частности, влагу, содержащуюся в окружающей атмосфере. Хорошо увлажняются полярные диэлектрики, их называют гидрофильными, в отличие от гидрофобных, которые не смачиваются водой. Гидрофобными являются неполярные диэлектрики. Тонкий слой влаги на поверхности снижает поверхностное сопротивление.

Таким образом, в диэлектрике, находящемся в постоянном электрическом поле, протекает электрический ток, состоящий из тока поляризации или смещения, и тока сквозной электропроводности или тока утечки.

Токи поляризации обусловлены смещением связанных зарядов при установлении поляризации. При постоянном напряжении они возникают лишь в момент включения и выключения напряжения и затем затухает. Токи смещения при электронной и ионной поляризации весьма кратковременны (10-13-10-15с) и называются мгновенными токами смещения. У большинства диэлектриков время существования поляризационных токов составляет доли секунды, но у некоторых может достигать несколько дестков секунд, что происходит при замедленных видах поляризации. Токи, возникающие при установлении замедленных видов поляризации, называются токами абсорбции (Iабс). Их надо учитывать при измерении сопротивления диэлектриков. Считается, что процесс установления всех видов поляризации заканчивается через 1 мин. После подачи постоянного напряжения. При постоянном напряжении Iабс протекает лишь в моменты включения и выключения напряжения, при переменном – в течение всего времени. При переменном напряжении активная проводимость определяется не только током утечки (как при постоянном напряжении), но и активными составляющими поляризационных токов.

Ток утечки может быть измерен через 1 мин. После включения напряжения, когда процесс поляризации закончится и токи смещения исчезнут. Именно ток утечки, или сквозной ток Iск, и определяет электропроводность диэлектрика (рисунок 1.3).

Количественной мерой электропроводности служит удельная проводимость γ, являющаяся коэффициентом пропорциональности между плотностью тока j и напряженностью E (закон Ома)

 

 

Плотность тока численно равна заряду, проходящему через единицу сечения в единицу времени

,

 

где n0- концентрация свободных носителей заряда, q - величина заряда, V - скорость дрейфа, т.е. направленного движения заряда в поле Е.

В случае ионной электропроводности

 

,

 

где N0- полная концентрация ионов в веществе; w- энергия активации, определяющая вероятность перехода иона ьв свободное состояние при температуреТ; к= 1,38·10-23 Дж/К – постоянная Больцмана.

Из этого следует, что

 

,

 

где b - подвижность носителей заряда, т.е. средняя дрейфовая скорость при единичной напряженности поля. В системе СИ подвижность b имеет размерность м2/В·с.

При обычных условиях главным видом носителей зарядов в диэлектриках являются ионы, что объясняется их более низкой энергией активации в сравнении с другими носителями заряда. Так, например, сравним велечины энергий активации (ω) заряженных частиц каменной соли (NaCl) – ионов Na+, Сl- и электронов: ωNa = 0,85 эВ; ωСl = 3 эВ; ωэл= 6 эВ.

 

 

Рисунок 1.3 – Изменение тока текущего через диэлектрик, во времени после включения его под постоянное напряжение

 

Носителями тока в каменной соли служат ионы натрия, так как для их перевода в свободное состояние затрачивается наименьшая энергия (для перевода электронов в свободное состояние требуется энергия в 7 раз больше). Помимо собственных ионов, электропроводность диэлектрика обуславливают и слабо связанные ионы примесей. В неполярных диэлектриках с ковалентной связью при низких температурах это единственные носители тока. Судить о виде носителей (собственные или примесные ионы) можно на основании рис. 1.3. Снижение Icк (кривая 1) свидетельствует о том, что электропроводность диэлектрика была обусловлена ионами примесей, количество которых из-за электрической очистки уменьшилось. Рост Iск (кривая 2) указывает, что носителями тока являются собственные ионы самого диэлектрика, количество которых возрастает из-за необратимого процесса старения. Таким образом, ионная (или электролитическая) проводимость есть результат образования ионов либо за счет диссоциации молекул самого диэлектрика, либо за счет диссоциации молекул примесей под действием теплового движения, электрического поля и др. Этот вид проводимости наиболее часто проявляется в диэлектриках. В этом случае прохождение тока через диэлектрик сопровождается явлением электролиза.

В диэлектриках возможны также электронная и молионная виды проводимости. При электронной основными носителями являются свободные электроны. Этот вид проводимости наблюдается в газообразных диэлектриках, в твердых диэлектриках при высоких температурах и значительных напряженностях поля, а также в тонких слоях.

Молионная или электрофоретическая проводимость появляется в диэлектриках, в которых носителями зарядов служат заряженные группы молекул – молионы. Такой вид проводимости часто имеет место в жидких диэлектриках. При этом наблюдается явление электрофореза – переноса массы вещества к электроду.

 

1.2.5 Поляризация диэлектриков

Состояние электрической поляризации в диэлектриках возникает за счет различных процессов или механизмов, определяемых структурой вещества.

Принято различать упругую (быструю, нерелаксационную) и неупругую (медленную, релаксационную) поляризации. Упругая поляризация завершается мгновенно за время t, намного меньшее полупериода приложенного напряжения. Поэтому процесс быстрой поляризации создает в диэлектрике только реактивный ток, при этом процесс поляризации обратим и протекает без рассеивания энергии, т.е. без нагрева диэлектрика. К таким быстрым поляризациям относятся электронная, завершающаяся за время 10-16…10-13с, и ионная упругая, завершающаяся за время 10-14…10-13с, поляризации.

1.2.5.1 Упругие поляризации

Электронная поляризация. Электронная поляризация представляет собой упругое смещение и деформацию электронных оболочек атомов или ионов, в результате чего центры тяжести зарядов электронного облака и ядра атома (иона) не совпадают в пространстве (рисунок 1.4) и возникает дипольный момент. Смещение электронов происходит на малые расстояния (10-13 м) в пределах своих атомов и молекул. Электронная поляризация наблюдается у всех диэлектриков, в любом агрегатном состоянии, в переменном поле она происходит во всем диапазоне частот вплоть до 1015 Гц, а при более высоких частотах исчезает.

 

 

Рисунок 1.4 Рисунок 1.5 Рисунок 1.6

 

Диэлектрики, у которых имеет место только электронная поляризация, называются неполярными диэлектриками. В молекулах неполярных диэлектриков центры положительного и отрицательного зарядов совпадают, поэтому такие молекулы неполярны. Неполярными диэлектриками являются газы (гелий, водород, азот, метан), жидкости (бензол, четыреххлористый углерод) и твердые материалы (алмаз, полиэтилен, фторопласт-4, парафин ).

Диэлектрическая проницаемость уменьшается с ростом температуры из-за теплового расширения диэлектрика и уменьшения числа частиц в единице объема (рисунок 1.7, кривая 1). Кривая зависимости диэлектрической проницаемости от температуры подобна кривой изменения плотности.

Значение диэлектрической проницаемости газообразных диэлектриков мало отличается от 1, а для неполярных жидких и твердых диэлектриков не превышает 2,5. Диэлектрическая проницаемость неполярных диэлектриков не изменяется с ростом частоты приложенного напряжения до 1012 ... 1013 Гц.

Изменение ε при изменении температуры характеризуется температурным коэффициентом диэлектрической проницаемости

 

.

 

Ионная упругая поляризация. Ионная поляризация происходит в кристаллических диэлектриках, построенных из положительных и отрицательных ионов: в галоидо-щелочных кристаллах, слюде, керамике и др. В электрическом поле в таких диэлектриках происходит смещение электронных оболочек в каждом ионе – электронная поляризация. Смещаются друг относительно друга подрешетки из положительных и отрицательных ионов, т.е. происходит упругая ионная поляризация (рисунок 1.5). Это смещение приводит к появлению дополнительного электрического момента, увеличивающего поляризованность, а, следовательно, и диэлектрическую проницаемость.

Ионная поляризация не зависит от частоты приложенного напряжения до 1012 – 1013 Гц, так как время установления поляризации ничтожно мало по сравнению с периодом изменения этого поля. Диэлектрическая проницаемость ионных кристаллов с ростом температуры увеличивается, так как тепловое расширение приводит к ослаблению сил связи между ионами, и поэтому к увеличению их смещения в электрическом поле (рисунок 1.7, кривая 2).

 

Рисунок 1.7

 

1.2.5.2 Неупругие поляризации (релаксационные)

Дипольно-релаксационная поляризация. Дипольная поляризация наблюдается в полярных газообразных и жидких диэлектриках. Полярные диэлектрики построены из полярных молекул, в которых центры положительного и отрицательного зарядов не совпадают. Полярная молекула имеет собственный электрический момент (дипольный момент). Из полярных молекул состоят газообразные аммиак Nh4, пары воды и спиртов. Полярными жидкостями являются вода, хлорбензол C6H5Cl, нитробензол C6H5NO2. В электрическом поле в таких молекулах смещаются электронные оболочки атомов – происходит электронная поляризация, также происходит и дипольная поляризация (дипольные моменты молекул ориентируются по полю). В твердых полярных диэлектриках процесс дипольной поляризации состоит в деформации участков – звеньев, сегментов молекул или ориентация отдельных полярных групп молекул (рисунок 1.6).

Дипольно-релаксационная поляризация сводится к повороту (ориентации) в направлении электрического поля частиц полярного диэлектрика, имеющих постоянный дипольный момент. Такими частицами являются полярные молекулы (в полярных газах и жидкостях) и полярные радикалы (группы атомов и ионов в твёрдых полярных диэлектриках). Схематически этот процесс поляризации изображён на рисунке 1.8, на примере полярной молекулы.

 

 

Рисунок 8

 

В электрическом поле на заряды диполя будут действовать силы, равные по величине, но противоположно направленные (рисунок 1.8, а). Разложим каждую силу на 2 составляющие: вдоль и перпендикулярно оси диполя. Силы, действующие в направлении оси диполя, компенсируют друг друга, а силы, действующие перпендикулярно оси, вызывают вращающий момент М, который разворачивает полярную молекулу в электрическом поле

 

 

Так как мы рассматриваем изолированную полярную молекулу, то никаких препятствий для разворота её вдоль поля нет, и направление электрического момента её совпадает с направлением поля (рисунок 1.8, б). В реальном же диэлектрике полярные молекулы связаны друг с другом внутренними силами и в то же время находятся в непрерывном хаотическом движении, которое препятствует ориентации их вдоль поля. Поэтому полярные молекулы разворачиваются в диэлектрике на углы 0 < Θ < π. Поворот полярных частиц в направлении поля происходит замедленно 10-12-10-2, связан с затратами энергии и сопровождается её рассеиванием.

Если на полярный диэлектрик поле не воздействует, то в любой момент времени проекция электрического момента всех молекул на любое направление равна нулю. При воздействии электрического поля проекция электрического момента всех молекул на направление поля становится отличной от нуля, и диэлектрик приобретает поляризованность. После снятия электрического поля ориентация частиц постепенно ослабевает, система из неравновесного состояния, вызванного воздействием поля, переходит к более равновесному состоянию (рисунок 1.9). При этом поляризованность во времени изменяется в соответствии с формулой

 

,

где Р0 - начальная поляризованность ориентированных частиц; τ- время, прошедшее после снятия поля; τ0- постоянная времени (время релаксации).

 

 

Рисунок 1.9 – Изменение поляризованности во времени

 

Время релаксации – это промежуток времени, в течение которого поляризованность (упорядоченность) ориентированных полем диполей, после снятия поля, из-за теплового хаотического движения уменьшается в 2,7 раза от первоначального значения. При этом 37% диполей ещё сохраняет поляризованность. Время релаксации поляризации экспоненциально убывает с температурой

 

,

 

где τ0*- время релаксации при абсолютной температуре Т→∞.

При повышении температуры поляризованность частиц при дипольно-релаксационной поляризации, а следовательно, и диэлектрическая проницаемость, обусловленная ею, вследствие ослабления молекулярных сил (вязкость диэлектрика экспоненциально уменьшается), вначале растёт, достигает максимума, а затем, при достаточно высоких температурах, падает в связи с возрастающим дезориентирующим влиянием теплового движения (рисунок 1.10).

При воздействии на полярный диэлектрик переменного поля до тех пор, пока полярные частицы успевают следовать за изменением поля, частота не влияет на величину диэлектрической проницаемости. Начиная с некоторой критической частоты fр (частоты релаксации), полярные частицы, являющиеся инерционными, не успевают следовать за изменением поля, дипольно-релаксационная поляризация прекращается, и диэлектрическая проницаемость резко падает до величины, обусловленной электронной поляризацией (рисунок 1.11). Частота релаксации зависит от природы и структуры диэлектрика. При повышении температуры частота релаксации растёт из-за уменьшения молекулярных сил и вязкости.

 

 

Рисунок 1.10 Рисунок 1.11

 

Ионно-релаксационная поляризация. Этот вид поляризации наблюдается в ионных диэлектриках неорганического происхождения с неплотной упаковкой ,например, в неорганических стёклах с рыхлой структурой и низким показателем преломления, и состоит в дополнительных (наряду с хаотическим тепловым движением) перебросах слабо связанных ионов под воздействием внешнего электрического поля на расстояния, превышающие постоянную решётки. Эти перебросы ионов, совершаемые из одного равновесного состояния в другое, необратимы и сопровождаются заметным рассеиванием энергии.

Время установления ионно-релаксационной поляризации велико, колеблется в широких пределах у разных диэлектриков – от 10-6 с до 1 минуты.

В таких диэлектриках возможно несколько релаксаторов-ионов с различной массой, имеющих из-за этого разные периоды релаксации. Поэтому с ростом частоты электрического поля диэлектрическая проницаемость, обусловленная ионно-релаксационной поляризацией, постепенно уменьшается. При повышении температуры диэлектрическая проницаемость растёт из-за увеличения числа ионов, участвующих в этом виде поляризации.

Электронно-релаксационная поляризация. Этот вид поляризации возникает в некоторых диэлектриках с плотной структурой и высоким показателем преломления (например, в двуокиси титана, загрязнённой примесями). Возникает она из-за наличия в них слабо связанных электронов. В отсутствие электрического поля под влиянием теплового движения эти электроны совершают равновероятные перемещения вблизи дефекта, с которым они связаны, и не создают электрического момента. При наложении же электрического поля большинство таких электронов перемещается против поля на расстояние порядка одного или нескольких междуатомных расстояний. Это приводит к возникновению электрического момента в объёме диэлектрика и его поляризации. Так как эта поляризация устанавливается в течение некоторого времени, она называется электронно-релаксационной.

Спонтанная поляризация. Сегнетоэлектрики. Эта поляризация, возникающая самопроизвольно в определённом интервале температур, лежащих ниже температуры Θк , называемой точкой Кюри. Выше точки Кюри наблюдается лишь электронная, ионная и ионно-релаксационная поляризация. Характерные для сегнетоэлектриков свойства впервые были обнаружены у сегнетовой соли, поэтому сегнетоэлектриками стали называть вещества, свойства которых подобны свойствам сегнетовой соли.

В сегнетоэлектриках даже в отсутствии электрического поля наблюдается самопроизвольное смещение частиц – ионов в ионных кристаллах или полярных радикалов молекул, которое приводит к несовпадению положительного и отрицательного зарядов в объеме диэлектрика, то есть поляризации. Такая поляризация называется спонтанной (самопроизвольной). В диэлектрике образуются области - домены. В каждом домене частицы, обусловливающие самопроизвольную поляризацию, смещены в одном направлении. В этом же направлении ориентирован и вектор спонтанной поляризованности (Ps) домена. В соседних доменах направление Ps может быть противоположным или перпендикулярным (рисунок 1.12, а), (механизм поляризации на примере титаната бария будет рассмотрен ниже в разделе 2 свойства активных диэлектриков).

В электрическом поле в сегнетоэлектриках происходят упругие электронная поляризация и ионная поляризация, а также неупругая доменная. В процессе доменной поляризации векторы Рs доменов ориентируются по направлению электрического поля (рисунок 1.12, б). Переориентацией направлений Рs доменов объясняются характерные для сегнетоэлектриков нелинейные свойства: диэлектрический гистерезис и зависимость их диэлектрической проницаемости от напряженности электрического поля (рисунок 1.12, в,г). Поляризованность кристалла с ростом напряженности электрического поля увеличивается благодаря ориентации Рs доменов и достигает поляризованности насыщения. С уменьшением напряженности при Е = 0 наблюдается остаточная поляризованность, так как сохраняется ориентация доменов. Уменьшить поляризованность до нуля можно приложив к образцу электрическое поле напряженностью Ес, которое называется коэрцитивной силой.

Для сегнетоэлектриков характерны: большая диэлектрическая проницаемость (до нескольких тысяч) и ее сильная зависимость от температуры (рисунок 1.12, д). Увеличение температуры приводит к ослаблению сил, препятствующих ориентации доменов. Поляризованность диэлектрика, вызванная доменной поляризацией, увеличивается, а диэлектрическая проницаемость достигает максимального значения при температуре точки Кюри. Спонтанная поляризованность при температуре Кюри исчезает, сегнетоэлектрик теряет свои сегнетоэлектрические свойства и переходит в параэлектрическое состояние, при котором сохраняется нелинейная зависимость диэлектрической проницаемости от напряженности электрического поля.

 

 

Рисунок 1.12

 

Миграционная поляризация. При миграционной поляризации происходит смещение свободных зарядов (положительных и отрицательных ионов и электронов) и их закрепление на дефектах и поверхностях раздела различных диэлектриков в диэлектрическом материале. Величина миграционной поляризации Рм

 

,

 

где N – количество положительных зарядов q, сместившихся на расстояние l относительно отрицательных зарядов в единице объема диэлектрика.

Миграционная поляризация чаще всего наблюдается в неоднородных диэлектриках, состоящих из частиц с различными диэлектрическими проницаемостями и проводимостями. В таких неоднородных диэлектриках свободные заряды могут собираться на поверхности раздела различных диэлектриков, приводя к частному виду миграционной поляризации, называемой межслойной.

Миграционная поляризация может возникать и в однородных диэлектриках, в которых свободные электрические заряды могут захватываться чужеродными ионами примесей, дислокациями и трещинами в различных частях объема диэлектрика.

Миграционная поляризация связана с появлением объемных зарядов в приэлектродных слоях или в самом диэлектрике при воздействии постоянного поля и с электропроводимостью диэлектрика. На образование этой поляризации затрачивается значительное время, измеряемое иногда десятками минут. Такая поляризация, как и другие замедленные виды поляризации, сопровождается потерями в диэлектрике.

 

1.2.6 Диэлектрические потери

При помещении любого вещества в электрическое поле с напряженностью Е в этом веществе наблюдается поглощение части энергии электрического поля. Поглощенная часть энергии превращается в тепловую, которая и является диэлектрическими потерями. Диэлектрические потери обычно пропорциональны Е2.

Диэлектрическими потерями называется мощность, поглощаемая диэлектриком при воздействии на него электрического поля и вызывающая нагревание диэлектрика.

Потери мощности вызываются электропроводностью и медленными поляризациями. Диэлектрические потери могут привести к увеличению удельной электропроводности вследствие миграции примесных и собственных ионов,а в полях высокой напряженности – к пробою. Возможны также потери, связанные с ионизацией газовых включений, которые могут вызвать ионизационный пробой.

Для характеристики способности диэлектрика рассеивать энергию в электрическом поле используют угол диэлектрических потерь δ, тангегс угла диэлектрических потерь tg δ

и мощность потерь или активную мощность Ра.

Диэлектрические потери наблюдаются как в постоянном, так и в переменном поле.

В постоянном поле диэлектрические потери невелики. Они оцениваются сопротивлением изоляции ,то есть током сквозной проводимости Iск, возникающим вследствие миграции свободных носителей заряда, и определяются выражением

 

,

 

где U – напряжение, а Iск - ток сквозной проводимости.

В общем случае, при включении на постоянное напряжение возникает ток, спадающий во времени

 

 

Ток смещения (емкостной ток) Iс вызван смещением электронных оболочек в атомах, ионах и молекулах, т.е. процессом установления быстрых, упругих поляризаций, и спадает в течение 10-15-10-16с, поэтому не вызывает рассеяния энергии в диэлектрике.

Спадающий со временем ток абсорбции Iабс обусловлен смещением связанных зарядов в ходе медленных поляризаций и вызывает рассеяние энергии в диэлектрике и диэлектрические потери (рисунок 1.13, а).

 

 

Рисунок 1.13

Сквозной ток утечки Iск, вызванный перемещением свободных зарядов в диэлектрике в процессе электропроводности, не изменяется со временем (если не происходит электроочистка диэлектрика или его старение, деградация) и вызывает потери аналогичные джоулевым потерям в проводниках. Следовательно, при постоянном напряжении потери, вызванные током абсорбции, имеют место только в период, когда происходит процесс медленных поляризаций, т.е. в период включения.

Диэлектрические потери в переменном поле значительно выше, чем в постоянном поле.

Рассмотрим потери в переменном поле с частотой f = 2π·ω, напряжение которого изменяется синусоидально U(t) = Umax·Sinωt.

Общий ток, протекающий через диэлектрик, является суммой токов различной природы

poznayka.org

Диэлектрик

Диэлектрик

Диэлектрик (изолятор) — материал, плохо проводящий или совсем не проводящий электрический ток. Концентрация свободных носителей заряда в диэлектрике не превышает 108 см−3. Основное свойство диэлектрика состоит в способности поляризоваться во внешнем электрическом поле. С точки зрения зонной теории твёрдого тела диэлектрик — вещество с шириной запрещённой зоны больше 3 эВ.

Физические свойства

Условно к проводникам относят материалы с удельным электрическим сопротивлением ρ < 10−5 Ом·м, а к диэлектрикам — материалы, у которых ρ > 108 Ом·м. При этом надо заметить, что удельное сопротивление хороших проводников может составлять всего 10−8 Ом·м, а у лучших диэлектриков превосходить 1016 Ом·м. Удельное сопротивление полупроводников в зависимости от строения и состава материалов, а также от условий их эксплуатации может изменяться в пределах 10−5—108 Ом·м. Хорошими проводниками электрического тока являются металлы. Из 105 химических элементов лишь двадцать пять являются неметаллами, причём двенадцать элементов могут проявлять полупроводниковые свойства. Но кроме элементарных веществ существуют тысячи химических соединений, сплавов или композиций со свойствами проводников, полупроводников или диэлектриков. Чёткую границу между значениями удельного сопротивления различных классов материалов провести достаточно сложно. Например, многие полупроводники при низких температурах ведут себя подобно диэлектрикам. В то же время диэлектрики при сильном нагревании могут проявлять свойства полупроводников. Качественное различие состоит в том, что для металлов проводящее состояние является основным, а для полупроводников и диэлектриков — возбуждённым.

Развитие радиотехники потребовало создания материалов, в которых специфические высокочастотные свойства сочетаются с необходимыми физико-механическими параметрами. Такие материалы называют высокочастотными. Для понимания электрических, магнитных и механических свойств материалов, а также причин старения нужны знания их химического и фазового состава, атомной структуры и структурных дефектов.

Параметры

Физическим параметром, который характеризует диэлектрик, является диэлектрическая проницаемость. Диэлектрическая проницаемость может иметь дисперсию.

К диэлектрикам относятся воздух и другие газы, стекло, различные смолы, пластмассы непременно сухие. Химически чистая вода также является диэлектриком.

Ряд диэлектриков проявляют интересные физические свойства.

К ним относятся электреты, пьезоэлектрики, пироэлектрики, сегнетоэластики, сегнетоэлектрики, релаксоры и сегнетомагнетики.

Использование

При применении диэлектриков — одного из наиболее обширных классов электротехнических материалов — довольно четко определилась необходимость использования как пассивных, так и активных свойств этих материалов.

Диэлектрики используются не только как изоляционные материалы.

Пассивные свойства диэлектриков

Пассивные свойства диэлектрических материалов используются, когда их применяют в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, которые не допускают утечки электрических зарядов, то есть с их помощью отделяют электрические цепи друг от друга или токоведущие части устройств, приборов и аппаратов от проводящих, но не токоведущих частей (от корпуса, от земли). В этих случаях диэлектрическая проницаемость материала не играет особой роли или она должна быть возможно меньшей, чтобы не вносить в схемы паразитных ёмкостей. Если материал используется в качестве диэлектрика конденсатора определённой ёмкости и наименьших размеров, то при прочих равных условиях желательно, чтобы этот материал имел большую диэлектрическую проницаемость.

Активные свойства диэлектриков

Активными (управляемыми) диэлектриками являются сегнетоэлектрики, пьезоэлектрики, пироэлектрики, электролюминофоры, материалы для излучателей и затворов в лазерной технике, электреты и др.

studfiles.net