Какая плотность у сплава латуни. Какая у меди плотность
Плотность меди (Cu), значение и примеры
Плотность меди и её другие физические свойства
Плотность твердого вещества – это справочная величина. Плотность меди равна 9,0 г/см3. В элементарном состоянии медь представляет собой металл красного цвета (рис.1). Её важнейшие константы представлены в таблице ниже:
Таблица 1. Физические свойства меди.
Плотность, г/см3 |
9,0 |
Твердость (алмаз = 10) |
3,0 |
Электропроводность (Hg = 1) |
57 |
Теплопроводность (Hg = 1) |
51 |
Температура плавления, oС |
1085 |
Температура кипения, oС |
2880 |
Медь характеризуется значительной плотностью, довольно высокой температурой плавления и малой твердостью. Её тягучесть и ковкость исключительно велика: медь можно вытянуть в проволоку диаметром в 0,001 мм (примерно в 50 раз тоньше человеческого волоса).
Рис. 1. Медь. Внешний вид.
Нахождение меди в природе
По распространенности в природе медь стоит далеко позади соответствующих щелочных металлов. Её содержание в земной коре оценивается величиной порядка 0,003% (масс.). Медь встречается главным образом в виде сернистых соединений и чаще совместно с сернистыми рудами других металлов. Из отдельных минералов меди наиболее важны халькопирит (CuFeS2) и халькозин (Cu2S). Гораздо меньшее промышленное значение имеют кислородсодержащие минералы – куприт (Cu2O) и малахит ((CuOH)2CO3).
Краткое описание химических свойств и плотность меди
Медь образует сплавы со многими металлами. В частности, она сплавляется с золотом, серебром и ртутью.
Химическая активность меди невелика. На воздухе она постоянно покрывается плотной зеленовато-серой пленкой основных углекислых солей. Соединяется с кислородом под обычным давлением и при нагревании:
4Cu + O2 = 2CuO;
2Cu + O2 = 2CuO.
Не реагирует с водородом, азотом и углеродом даже при высоких температурах.
При обычной температуре медь медленно соединяется с галогенами хлором, бромом и йодом:
Cu + Cl2 = CuCl2;
Cu + Br2 = CuBr2.
Медь – слабый восстановитель; не реагирует с водой и разбавленной хлороводородной кислотой. Переводится в раствор кислотами-неокислителями или гидратом аммиака в присутствии кислорода или цианидом калия. Окисляется концентрированными серной и азотной кислотами, «царской водкой», халькогенами и оксидами неметаллов. Реагирует при нагревании с галогеноводородами.
Примеры решения задач
Понравился сайт? Расскажи друзьям! | |||
ru.solverbook.com
Показатель плотности меди и ее сплавов
Медь, благодаря свой плотности, имеет широкую сферу применения.
Свойства металла
Медь представляет собой тяжелый металл с высокой плотностью, красного оттенка с розовым отливом. В природе существует более 170 видов минералов, содержащих медь, но промышленная добыча производится только из 17. Основная масса химического элемента находится в составе рудных минералов:
- халькозина — содержание до 80%;
- бронита — до 65%;
- ковелина — до 64%.
Обогащение меди и выплавка осуществляется из минералов.
Из них осуществляется ее обогащение и выплавка. Отличительной чертой металла является высокая электропроводность, теплопроводность. Плавится металл при температуре 1083 °C, а кипит при 2600 °C.
В зависимости от способа производства различают такие марки металла:
- холоднотянутая;
- прокатная;
- литая.
Для каждого типа рассчитываются параметры, характеризующие:
- степень сопротивления сдвигу;
- деформации под воздействием нагрузок;
- показатель упругости при растяжении материала и сжатия при деформации.
Медь активно окисляется при нагревании, а при температуре 375 °C формируется оксид металла. Его наличие снижает теплопроводность и электропроводность материала. При взаимодействии с солями железа химический элемент переходит в состояние жидкости. Это свойство используется при очистке изделий от медного покрытия.
При реагировании металла с влагой образуется куприт. Устойчивая пленка из соединения выступает в качестве защитного покрытия для изделий. В результате взаимодействия с кислотой медь образует купорос.
Плотность металла
Показатель плотности вещества любого состава определяется отношением массы к общему объему и измеряется в кг/м³. С помощью этого параметра путем арифметических расчетов определяется вес изделий.
Медь, плотность которой в чистом виде составляет 8,94 г/см³, является распространенным цветным металлом, обладающим особыми физическими параметрами и химическими свойствами.
При температуре 1084 °C металл переходит в жидкое состояние, при этом значение коэффициента теплопроводности снижается почти в 2 раза по сравнению с твердым металлом.
В жидком виде при температуре 1300 °C плотность материала составляет 8,0 г/см³. Нагревание металла влияет на показатель роста коэффициента температурного расширения и теплоемкости меди.
При нагревании до высоких температур, медь переходит в жидкое состояние.
В зависимости от наличия в составе сплава лигатурных добавок существуют различные марки меди. Для их характеристики используется параметр удельного веса, который в международной системе СИ выражается в ньютонах на единицу объема.
Показатель удельного веса меди равен плотности, что характерно для этого химического элемента. Плотность металла влияет на то, какой массой будут обладать изделия из чистого материала и его сплавов.
Удельная масса металла принимается во внимание при расчетах в процессе производства различных материалов, содержащих медь, и при переработке лома. Для расчета параметра существует множество методик, что позволяет рационально подбирать материалы для формирования изделий.
Технические параметры сплавов металла
Самыми распространенными материалами, созданными на основе меди, являются бронза и латунь. Их состав формируют:
- олово;
- цинк;
- никель;
- висмут.
Состав материала для производства оружия, используемый до XIX века, формировался из меди, олова и цинка в соответствующих пропорциях. Из латуни в наше время изготовляют гильзы для боеприпасов и ружей.
Бронза и латунь различаются по химическому составу. В состав бронзы входит олово, бериллий, кремний, свинец и другие химические элементы.
Сплавы отличаются между собой структурой. Бронза крупнозернистая, темно-коричневого цвета, а латунь имеет структуру в виде мелких зерен и по цвету напоминает золото.
Только наличие олова позволяет создать бронзовый сплав высокого качества. В дешевый аналог состава — шпиатр — входит никель или цинк. В зависимости от наличия компонента в составе, различают такие виды бронзы:
- оловянная;
- алюминиевая;
- кремниевая;
- бериллиевая.
В качестве основного компонента, формирующего латунь, выступает цинк. В настоящее время этот материал используется для формирования сочетания стали и латуни, обладающего устойчивостью к коррозии, пластичностью.
Разновидность сплава — томпак, используется в промышленном производстве для изготовления различных знаков отличия, художественных композиций, фурнитуры.
Из сплавов, в состав которых входят цинк, олово, кремний, алюминий, изготовляют детали для машин. Материалы, созданные на основе меди, обладают:
- высокой износостойкостью;
- низким коэффициентом трения;
- высокой пластичностью;
- электропроводностью;
- стойкостью к агрессивной среде.
Сплав меди и никеля применяется в качестве материала для изготовления трубок конденсаторов в судостроении, чеканки разменной денежной единицы. Металл является основным компонентом припоев, применяющихся для соединения металлических деталей из разнородных материалов.
В составе дюралюминия находится 4,4% меди. Ее наличие придает материалу устойчивость к механическим повреждениям и повышает температуру плавления.
Сферы применения сплавов меди
От проводов до посуды — широкое применение сплавов меди.
- Благодаря физическим и механическим свойствам химический элемент применяется в разных отраслях производства. Медь является составной частью электропроводов, систем отопления и охлаждения.
- Медные провода используются в бытовых электрических двигателях и трансформаторах. При этом применяют чистый металл, присутствие примесей снижает проводимость.
- Металл является отличным материалом для создания строительных конструкций, труб, кровельных покрытий. Механическая прочность, устойчивость, пригодность к механической обработке позволяют создавать бесшовные трубы, используемые в системах водоснабжения.
- На стенках проката не образуется налет солей, растворенных в воде. Такие трубопроводы используются в энергетике и судостроении для транспортировки пара и жидкости. В тонкодисперсной форме металл используется в лазерах, работающих на парах меди.
- Сплавы, в состав которых входит медь, применяются в ювелирном производстве. Сочетание золота и меди повышает прочность изделия, устойчивость к деформации.
- Оксиды химического элемента являются основой для получения сверхпроводников, а чистый металл применяется для производства батарей и гальванических элементов.
- Медь используют в качестве материала для изготовления композиций, назначенных для декорирования фасадов домов. Очень часто возле входа в кафе можно встретить скульптуры, изготовленные из бронзы. Причина использования материала — высокая пластичность и устойчивость.
- Изделия из бронзы отличаются устойчивостью к воздействию морской воды, поэтому ее используют как материал для изготовления разных приспособлений для навигации и эксплуатации судов.
- Латунь в чистом виде уязвима к воздействию агрессивной среды. Для того чтобы добиться устойчивости к реагентам, сплав подвергают легированию другими металлами: алюминием, оловом или свинцом.
Похожие статьи
ometallah.com
Алюминийплотность алюминия | 2.710 · 103 (Килограмм / Метр3) |
Бериллийплотность бериллия | 1.848 · 103 (Килограмм / Метр3) |
Бетонплотность бетона | 2.200 · 103 (Килограмм / Метр3) |
Борплотность бора | 2.46 · 103 (Килограмм / Метр3) |
Вольфрамплотность вольфрама | 19.100 · 103 (Килограмм / Метр3) |
Гранитплотность гранита | 2.800 · 103 (Килограмм / Метр3) |
Дедеронплотность дедерона | 1.100 · 103 (Килограмм / Метр3) |
Дубплотность дуба | 0.800 · 103 (Килограмм / Метр3) |
Дюралюминийплотность дюралюминия | 2.790 · 103 (Килограмм / Метр3) |
Железоплотность железа | 7.800 · 103 (Килограмм / Метр3) |
Золотоплотность золота | 19.300 · 103 (Килограмм / Метр3) |
Инварплотность инвара | 8.700 · 103 (Килограмм / Метр3) |
Иридийплотность иридия | 22.400 · 103 (Килограмм / Метр3) |
Каменный Угольплотность каменного угля | 1.400 · 103 (Килограмм / Метр3) |
Коксплотность кокса | 0.600 · 103 (Килограмм / Метр3) |
Латуньплотность латуни | 8.600 · 103 (Килограмм / Метр3) |
Лед (вода ниже 0°С)плотность льда | 0.900 · 103 (Килограмм / Метр3) |
Литийплотность лития | 0.535 · 103 (Килограмм / Метр3) |
Магнийплотность магния | 1.738 · 103 (Килограмм / Метр3) |
Медное литьеплотность медного литья | 8.700 · 103 (Килограмм / Метр3) |
Медьплотность меди | 8.900 · 103 (Килограмм / Метр3) |
Натрийплотность натрия | 0.968 · 103 (Килограмм / Метр3) |
Пертинаксплотность пертинакса | 1.350 · 103 (Килограмм / Метр3) |
Песчаникплотность песчанника | 2.400 · 103 (Килограмм / Метр3) |
Платинаплотность платины | 21.500 · 103 (Килограмм / Метр3) |
Плексигласплотность плексигласа | 1.200 · 103 (Килограмм / Метр3) |
Пробковая кораплотность пробковой коры | 0.150 · 103 (Килограмм / Метр3) |
www.fxyz.ru
Плотность металлов и сплавов: таблица плотности при температуре 0
В таблице представлена плотность металлов и сплавов, а также коэффициент К отношения их плотности к плотности стали. Плотность металлов и сплавов в таблице указана в размерности г/см3 для интервала температуры от 0 до 50°С.
Дана плотность металлов, таких как: бериллий Be, ванадий V, висмут Bi, вольфрам W, галлий Ga, гафний Hf, германий Ge, золото Au, индий In, кадмий Cd, кобальт Co, литий Li, марганец Mn, магний Mg, медь Cu, молибден Mo, натрий Na, никель Ni, олово Sn, палладий Pd, платина Pt, рений Re, родий Rh, ртуть Hg, рубидий Rb, рутений Ru, свинец Pb, серебро Ag, стронций Sr, сурьма Sb, таллий Tl, тантал Ta, теллур Te, титан Ti, хром Cr, цинк Zn, цирконий Zr.
Плотность алюминиевых сплавов и металлической стружки: алюминиевые сплавы: АЛ1, АЛ2, АЛ3, АЛ4, АЛ5, АЛ7, АЛ8, АЛ9, АЛ11, АЛ13, АЛ21, АЛ22, АЛ24, АЛ25. Насыпная плотность стружки: стружка алюминиевая мелкая дробленая, стальная мелкая, стальная крупная, чугунная. Примечание: плотность стружки в таблице дана в размерности т/м3.
Плотность сплавов магния и меди: магниевые сплавы деформируемые: МА1, МА2, МА2-1, МА8, МА14; магниевые сплавы литейные: МЛ3, МЛ4, МЛ6, МЛ10, МЛ11, МЛ12; медно-цинковые сплавы (латуни) литейные: ЛЦ16К4, ЛЦ23А6Ж3Мц2, ЛЦ30А3, ЛЦ38Мц2С2, ЛЦ40Сд, ЛЦ40С, ЛЦ40 Мц3Ж, ЛЦ25С2; медно-цинковые сплавы, обрабатываемые давлением: Л96, Л90, Л85, Л80, Л70, Л68, Л63, Л60, ЛА77-2, ЛАЖ60-1-1, ЛАН59-3-2, ЛЖМц59-1-1, ЛН65-5, ЛМ-58-2, ЛМ-А57-3-1.
Плотность бронзы различных марок: бронзы безоловянные, обрабатываемые давлением: БрА5, 7, БрАМц9-2, БрАЖ9-4, БрАЖМц10-3-1,5, БрАЖН10-4-4, БрКМц3,1, БрКН1-3, БрМц5; бронзы бериллиевые: БрБ2, БрБНТ1,9, БрБНТ1,7; бронзы оловянные деформируемые: Бр0Ф8,0-0,3, Бр0Ф7-0,2, Бр0Ф6,5-0,4, Бр0Ф6,5-0,15, Бр0Ф4-0,25, Бр0Ц4-3, Бр0ЦС4-4-2,5, Бр0ЦС4-4-4; бронзы оловянные литейные: Бр03Ц12С5, Бр03Ц7С5Н1, Бр05Ц5С5; бронзы безоловянные литейные: БрА9Мц2Л, БрА9Ж3Л, БрА10Ж4Н4Л, БрС30.
Плотность сплавов никеля и цинка: никелевые и медно-никелевые сплавы, обрабатываемые давлением: НК0,2, НМц2,5, НМц5, НМцАК2-2-1, НХ9,5, МНМц43-0,5, НМЦ-40-1,5, МНЖМц30-1-1, МНЖ5-1, МН19, 16, МНЦ15-20, МНА 13-3, МНА6-1,5, МНМц3-12; цинковые сплавы антифрикционные: ЦАМ9-1,5Л, ЦАМ9-1,5, ЦАМ10-5Л, ЦАМ10-5.
Плотность стали, чугуна и баббитов: сталь конструкционная, стальное литье, сталь быстрорежущая с содержанием вольфрама 5…18%; чугун антифрикционный, ковкий и высокопрочный, чугун серый; баббиты оловянные и свинцовые: Б88, 83, 83С, Б16, БН, БС6.
Приведем показательные примеры плотности различных металлов и сплавов. По данным таблицы видно, что наименьшую плотность имеет металл литий, он считается самым легким металлом, плотность которого даже меньше плотности воды — плотность этого металла равна 0,53 г/см3 или 530 кг/м3. А у какого металла наибольшая плотность? Металл, обладающий наибольшей плотностью — это осмий. Плотность этого редкого металла равна 22,59 г/см3 или 22590 кг/м3.
Следует также отметить достаточно высокую плотность драгоценных металлов. Например, плотность таких тяжелых металлов, как платина и золото, соответственно равна 21,5 и 19,3 г/см3. Дополнительная информация по плотности и температуре плавления металлов представлена в этой таблице.
Сплавы также обладают широким диапазоном значений плотности. К легким сплавам относятся магниевые сплавы и сплавы алюминия. Плотность алюминиевых сплавов выше. К сплавам с высокой плотностью можно отнести медные сплавы такие, как латуни и бронзы, а также баббиты.
Источник:Цветные металлы и сплавы. Справочник. Издательство «Вента-2». НН., 2001 — 279 с.
thermalinfo.ru
физические свойства и применение латуни
Латунь является двойным или многослойным сплавом на основе меди с основным легирующим элементом — цинком. Также часто добавляют олово, железо, никель, свинец и марганец, другие элементы. К бронзам по металлургической классификации не относится.
Плотность материала — это физическая величина, которая определяет отношение массы материала к занимаемому объему. Другими словами, плотностью называют количество массы, находящейся в 1 единице объема. В системе СИ единицей измерения плотности принято считать кг/м3. Какова плотность латуни, можно узнать из физических свойств сплава, величина плотности может меняться в зависимости от среды и условий измерения. Плотность твердых веществ можно узнать из справочной химической таблицы.
Латунь: плотность и свойства
Латунь знакома людям еще с древности, по своему внешнему виду сплав напоминает золото, только стоит намного дешевле. Благодаря своим свойствам она сразу нашла широкое применение, сплав был открыт впервые в Древнем Риме, а затем повторно в 18 веке.
Внешний вид ее напоминает благородный металл, но в ней нет золота, основу составляет сплав цинка и меди и некоторых других элементов, доля которых не более 10%. Поскольку в составе меди много цинка и меди, то ее характеристики очень напоминают эти элементы. По своему цвету, сплав может переходить от светло-желтых к красным оттенкам. Плотность составляет 8300-8700 кг/м3. Температура плавления латуни 880-950оС, это зависит от ее состава, если содержится больше цинка, тогда температура плавления снижается. По своей плотности латунь входит в группу цветных металлов и сплавов.
С помощью контактной сварки латунь легко сваривается и хорошо прокатывается. Если ее поверхность не покрыта лаком, она быстро чернеет на воздухе, но в составе с другими металлами она имеет большее сопротивление воздуху чем, например, медь, очень легко полируется.
Латунный сплав хорошо поддается обработке в холодном и горячем состоянии, имеет хорошие механические характеристики. По своему внешнему виду она очень схожа с медью, но в отличие от меди латунь обладает высокой износоустойчивостью и прочностью. Латунь менее тугоплавкая, но удобней в обработке, поскольку более ковкая и вязкая.
От содержания в составе основного металла будет зависеть тепло и электропроводность латуни, когда доля выше, тогда проявляются сильней эти свойства.
Значение латуни
Сплав меди с бронзой во все времена был очень важным для людей, но латунь также играла свою важную роль в истории человечества. Древние римляне сплавляли цинк с рудой — галмеем, но такой способ вскоре устарел и в Англии сделали другое открытие, которое и завоевало популярность.
Для получения латунного сплава использовались тигли, так температура могла достичь 1000оС. Медь насыщалась парами цинка в итоге получался готовый сплав, если не было других примесей. Недорогой и доступный способ получения латуни приобрел большую популярность.
Температура плавления отдельно взятого цинка и меди слишком разные, поэтому для облегчения получения готового сплава стала добавляться лигатура в незначительном количестве, но в готовом составе. В таком виде сплав облегчает задачу в промышленном производстве. Все латуни делятся на два вида:
- Двухкомпонентные — в составе цинка и меди с незначительным добавлением других примесей.
- Многокомпонентные — кроме обычной меди и цинка присутствуют легирующие компоненты.
Применение латунного сплава
Относительно недорогой и легкий способ получения сплава его уникальные свойства позволили стать ему универсальным, поэтому сфер применения у него множество. Из него вытягивают пруты и проволоку, штампуют в листы, а также делают очень тонкую фольгу. Мелкие и крупные детали, фурнитура, трубы, арматура используются во многих отраслях:
- Автомобильная и химическая промышленность
- Приборостроение
- Ювелирное дело
- В самолетостроении, создании морских и речных судов
Цвет сплава очень похож на золото, поэтому в ювелирном деле из него часто делают украшения, он отлично полируется. Когда за дело берется настоящий мастер, то обычному человеку сложно понять, что это недрагоценный металл. Бижутерия из латуни выглядит красиво и дорого.
В чистом виде медь очень неустойчива к коррозии, а цинк является хрупким металлом, с помощью сплава этих двух видов металла соединились их лучшие свойства и минимизировались недостатки.
- Деформированная разновидность — томпак, он характеризуется высокой прочностью, низкой силой трения и устойчивостью к ржавчине.
- Литейная — из нее выполняют фасонные изделия методом литья, а также полуфабрикаты, Меди в ней содержится 50-81%. Этот вид не ржавеет, обладает высокими механическими свойствами, удобен в обращении, благодаря жидкому состоянию, устойчив к трению с другими материалами.
- Автоматная латунь — благодаря своей мягкости из нее делают пруты, листы, ленты и полосы.
- Ювелирные сплавы.
Заключение
В последние годы спрос на латунный сплав только возрастает в основном она пользуется спросом на азиатском рынке. Его также покупают и развитые экономические страны, например, европейские, США . Уровень производства латуни зависит от ее спроса, а также от мирового рынка меди.
Оцените статью: Поделитесь с друзьями!stanok.guru
Наименование группы | Наименование материала, марка | ρ | К |
ЧИСТЫЕ МЕТАЛЛЫ | |||
Чистые металлы | Алюминий | 2,7 | 0,34 |
Бериллий | 1,84 | 0,23 | |
Ванадий | 6,5-7,1 | 0,83-0,90 | |
Висмут | 9,8 | 1,24 | |
Вольфрам | 19,3 | 2,45 | |
Галлий | 5,91 | 0,75 | |
Гафний | 13,09 | 1,66 | |
Германий | 5,33 | 0,68 | |
Золото | 19,32 | 2,45 | |
Индий | 7,36 | 0,93 | |
Иридий | 22,4 | 2,84 | |
Кадмий | 8,64 | 1,10 | |
Кобальт | 8,9 | 1,13 | |
Кремний | 2,55 | 0,32 | |
Литий | 0,53 | 0,07 | |
Магний | 1,74 | 0,22 | |
Медь | 8,94 | 1,14 | |
Молибден | 10,3 | 1,31 | |
Марганец | 7,2-7,4 | 0,91-0,94 | |
Натрий | 0,97 | 0,12 | |
Никель | 8,9 | 1,13 | |
Олово | 7,3 | 0,93 | |
Палладий | 12,0 | 1,52 | |
Платина | 21,2-21,5 | 2,69-2,73 | |
Рений | 21,0 | 2,67 | |
Родий | 12,48 | 1,58 | |
Ртуть | 13,6 | 1,73 | |
Рубидий | 1,52 | 0,19 | |
Рутений | 12,45 | 1,58 | |
Свинец | 11,37 | 1,44 | |
Серебро | 10,5 | 1,33 | |
Талий | 11,85 | 1,50 | |
Тантал | 16,6 | 2,11 | |
Теллур | 6,25 | 0,79 | |
Титан | 4,5 | 0,57 | |
Хром | 7,14 | 0,91 | |
Цинк | 7,13 | 0,91 | |
Цирконий | 6,53 | 0,82 | |
СПЛАВЫ ИЗ ЦВЕТНЫХ МЕТАЛЛОВ | |||
Алюминиевые сплавы литейные | АЛ1 | 2,75 | 0,35 |
АЛ2 | 2,65 | 0,34 | |
АЛ3 | 2,70 | 0,34 | |
АЛ4 | 2,65 | 0,34 | |
АЛ5 | 2,68 | 0,34 | |
АЛ7 | 2,80 | 0,36 | |
АЛ8 | 2,55 | 0,32 | |
АЛ9 (АК7ч) | 2,66 | 0,34 | |
АЛ11 (АК7Ц9) | 2,94 | 0,37 | |
АЛ13 (АМг5К) | 2,60 | 0,33 | |
АЛ19 (АМ5) | 2,78 | 0,35 | |
АЛ21 | 2,83 | 0,36 | |
АЛ22 (АМг11) | 2,50 | 0,32 | |
АЛ24 (АЦ4Мг) | 2,74 | 0,35 | |
АЛ25 | 2,72 | 0,35 | |
Баббиты оловянные и свинцовые | Б88 | 7,35 | 0,93 |
Б83 | 7,38 | 0,94 | |
Б83С | 7,40 | 0,94 | |
БН | 9,50 | 1,21 | |
Б16 | 9,29 | 1,18 | |
БС6 | 10,05 | 1,29 | |
Бронзы безоловянные, литейные | БрАмц9-2Л | 7,6 | 0,97 |
БрАЖ9-4Л | 7,6 | 0,97 | |
БрАМЖ10-4-4Л | 7,6 | 0,97 | |
БрС30 | 9,4 | 1,19 | |
Бронзы безоловянные, обрабатываемые давлением | БрА5 | 8,2 | 1,04 |
БрА7 | 7,8 | 0,99 | |
БрАмц9-2 | 7,6 | 0,97 | |
БрАЖ9-4 | 7,6 | 0,97 | |
БрАЖМц10-3-1,5 | 7,5 | 0,95 | |
БрАЖН10-4-4 | 7,5 | 0,95 | |
БрБ2 | 8,2 | 1,04 | |
БрБНТ1,7 | 8,2 | 1,04 | |
БрБНТ1,9 | 8,2 | 1,04 | |
БрКМц3-1 | 8,4 | 1,07 | |
БрКН1-3 | 8,6 | 1,09 | |
БрМц5 | 8,6 | 1,09 | |
Бронзы оловянные деформируемые | БрОФ8-0,3 | 8,6 | 1,09 |
БрОФ7-0,2 | 8,6 | 1,09 | |
БрОФ6,5-0,4 | 8,7 | 1,11 | |
БрОФ6,5-0,15 | 8,8 | 1,12 | |
БрОФ4-0,25 | 8,9 | 1,13 | |
БрОЦ4-3 | 8,8 | 1,12 | |
БрОЦС4-4-2,5 | 8,9 | 1,13 | |
БрОЦС4-4-4 | 9,1 | 1,16 | |
Бронзы оловянные литейные | БрО3Ц7С5Н1 | 8,84 | 1,12 |
БрО3Ц12С5 | 8,69 | 1,10 | |
БрО5Ц5С5 | 8,84 | 1,12 | |
БрО4Ц4С17 | 9,0 | 1,14 | |
БрО4Ц7С5 | 8,70 | 1,10 | |
Бронзы бериллиевые | БрБ2 | 8,2 | 1,04 |
БрБНТ1,9 | 8,2 | 1,04 | |
БрБНТ1,7 | 8,2 | 1,04 | |
Медно- цинковые сплавы (латуни) литейные | ЛЦ16К4 | 8,3 | 1,05 |
ЛЦ14К3С3 | 8,6 | 1,09 | |
ЛЦ23А6Ж3Мц2 | 8,5 | 1,08 | |
ЛЦ30А3 | 8,5 | 1,08 | |
ЛЦ38Мц2С2 | 8,5 | 1,08 | |
ЛЦ40С | 8,5 | 1,08 | |
ЛС40д | 8,5 | 1,08 | |
ЛЦ37Мц2С2К | 8,5 | 1,08 | |
ЛЦ40Мц3Ж | 8,5 | 1,08 | |
Медно- цинковые сплавы (латуни), обрабатываемые давлением | Л96 | 8,85 | 1,12 |
Л90 | 8,78 | 1,12 | |
Л85 | 8,75 | 1,11 | |
Л80 | 8,66 | 1,10 | |
Л70 | 8,61 | 1,09 | |
Л68 | 8,60 | 1,09 | |
Л63 | 8,44 | 1,07 | |
Л60 | 8,40 | 1,07 | |
ЛА77-2 | 8,60 | 1,09 | |
ЛАЖ60-1-1 | 8,20 | 1,04 | |
ЛАН59-3-2 | 8,40 | 1,07 | |
ЛЖМц59-1-1 | 8,50 | 1,08 | |
ЛН65-5 | 8,60 | 1,09 | |
ЛМц58-2 | 8,40 | 1,07 | |
ЛМцА57-3-1 | 8,10 | 1,03 | |
Латунные прутки прессованные и тянутые | Л60, Л63 | 8,40 | 1,07 |
ЛС59-1 | 8,45 | 1,07 | |
ЛЖС58-1-1 | 8,45 | 1,07 | |
ЛС63-3, ЛМц58-2 | 8,50 | 1,08 | |
ЛЖМц59-1-1 | 8,50 | 1,08 | |
ЛАЖ60-1-1 | 8,20 | 1,04 | |
Магниевые сплавы литейные | Мл3 | 1,78 | 0,23 |
Мл4 | 1,83 | 0,23 | |
Мл5 | 1,81 | 0,23 | |
Мл6 | 1,76 | 0,22 | |
Мл10 | 1,78 | 0,23 | |
Мл11 | 1,80 | 0,23 | |
Мл12 | 1,81 | 0,23 | |
Магниевые сплавы деформируемые | МА1 | 1,76 | 0,22 |
МА2 | 1,78 | 0,23 | |
МА2-1 | 1,79 | 0,23 | |
МА5 | 1,82 | 0,23 | |
МА8 | 1,78 | 0,23 | |
МА14 | 1,80 | 0,23 | |
Медно-никелевые сплавы, обрабатываемые давлением | Копель МНМц43-0,5 | 8,9 | 1,13 |
Константан МНМц40-1,5 | 8,9 | 1,13 | |
Мельхиор МнЖМц30-1-1 | 8,9 | 1,13 | |
Сплав МНЖ5-1 | 8,7 | 1,11 | |
Мельхиор МН19 | 8,9 | 1,13 | |
Сплав ТБ МН16 | 9,02 | 1,15 | |
Нейзильбер МНЦ15-20 | 8,7 | 1,11 | |
Куниаль А МНА13-3 | 8,5 | 1,08 | |
Куниаль Б МНА6-1,5 | 8,7 | 1,11 | |
Манганин МНМц3-12 | 8,4 | 1,07 | |
Никелевые сплавы | НК 0,2 | 8,9 | 1,13 |
НМц2,5 | 8,9 | 1,13 | |
НМц5 | 8,8 | 1,12 | |
Алюмель НМцАК2-2-1 | 8,5 | 1,08 | |
Хромель Т НХ9,5 | 8,7 | 1,11 | |
Монель НМЖМц28-2,5-1,5 | 8,8 | 1,12 | |
Цинковые сплавы антифрикционные | ЦАМ 9-1,5Л | 6,2 | 0,79 |
ЦАМ 9-1,5 | 6,2 | 0,79 | |
ЦАМ 10-5Л | 6,3 | 0,80 | |
ЦАМ 10-5 | 6,3 | 0,80 | |
СТАЛЬ, СТРУЖКА, ЧУГУН | |||
Нержавеющая сталь | 04Х18Н10 | 7,90 | 1,00 |
08Х13 | 7,70 | 0,98 | |
08Х17Т | 7,70 | 0,98 | |
08Х20Н14С2 | 7,70 | 0,98 | |
08Х18Н10 | 7,90 | 1,00 | |
08Х18Н10Т | 7,90 | 1,00 | |
08Х18Н12Т | 7,95 | 1,01 | |
08Х17Н15М3Т | 8,10 | 1,03 | |
08Х22Н6Т | 7,60 | 0,97 | |
08Х18Н12Б | 7,90 | 1,00 | |
10Х17Н13М2Т | 8,00 | 1,02 | |
10Х23Н18 | 7,95 | 1,01 | |
12Х13 | 7,70 | 0,98 | |
12Х17 | 7,70 | 0,98 | |
12Х18Н10Т | 7,90 | 1,01 | |
12Х18Н12Т | 7,90 | 1,00 | |
12Х18Н9 | 7,90 | 1,00 | |
15Х25Т | 7,60 | 0,97 | |
Сталь конструкционная | Сталь конструкционная | 7,85 | 1,0 |
Стальное литье | Стальное литьё | 7,80 | 0,99 |
Сталь быстрорежущая с содержанием вольфрама, % | 5 | 8,10 | 1,03 |
10 | 8,35 | 1,06 | |
15 | 8,60 | 1,09 | |
18 | 8,90 | 1,13 | |
Стружка (т/м3) | алюминиевая мелкая дроблёная | 0,70 | |
стальная (мелкий вьюн) | 0,55 | ||
стальная (крупный вьюн) | 0,25 | ||
чугунная | 2,00 | ||
Чугун | серый | 7,0-7,2 | 0,89-0,91 |
ковкий и высокопрочный | 7,2-7,4 | 0,91-0,94 | |
антифрикционный | 7,4-7,6 | 0,94-0,97 |
www.metal-komplekt.ru
Вы когда-нибудь задумывались, что же такое медь? А об истории появления и получения меди? Или о свойствах меди? Нет? Тогда предлагаем вам краткое путешествие в самую историю происхождения и свойств меди.
Как известно из истории, наши далекие предки изведали свойства меди раньше любых других металлов, не считая разве что золота. И уже тогда, наши предки из каменного века начали активно ее использовать.
В различных самородках или маленьких частицах металла, которые без примесей и содержится медь. Предполагают, что люди каменного века в самородках и стали находить медь, обратив внимание на заманчивую красоту. А уж когда древние люди сообразили, что меди можно придать любую форму, и она довольно прочна, вот тогда и стали изготавливать различные ножи и оружие (плотность меди - 8,93*103кг/м3).
По прошествии огромного количества времени люди научились плавлению меди и изготовлению из нее различной утвари и приспособлений для дома. В течение многих лет благодаря своим свойствам медь так и оставалась единственным и неповторимым пригодным металлом для обработки и произведения изделий. Еще одним плюсом явилась малая температура плавления меди, по сравнению с другими видами металлов, а незначительная концентрация кислорода снижает температуру плавления меди. Так как поскольку золото гораздо сложнее добывать, а получение меди было гораздо проще, и золото оказалось относительно мягким металлом для производства. Но благодаря сочетаниям мягкости золота и плотности меди, в наше время сплав меди с золотом используют и в ювелирном деле, для увеличения прочности украшений к деформациям и истиранию.
Впоследствии люди выяснили, что свойства меди таковы, что она еще и прекрасный проводник электричества. Благодаря этим свойствам медь используется и в наши дни.
В наши дни получение меди происходит из оксидных и сульфидных руд. Из сульфидных руд выплавляют 80% всей получаемой меди. Для получения меди используется процесс обогащения. Медь получают методом ее выплавки из сульфидных руд. Процесс получения меди состоит из ряда операций: обжига, плавки, конвертирования, огневого и электролитического рафинирования (температура плавления меди составляет 1083?C). В процессе обжига большая часть примесных сульфидов превращается в оксиды.
Обычный человек вряд ли обратит внимание на медь в чистом природном виде, так как медь (иначе купрум) – это блестящее серебристое вещество, а при соприкосновении с воздухом становится красновато-коричневого цвета.
У меди довольно большие достоинства и преимущества перед другими металлами. Например, при всей своей пластичности при производстве, медь имеет большую прочность. Также плотность меди такова, что по ней можно делать резьбу и гравировку. Кроме того, медь вполне дружелюбна для соединения со многими другими металлами и мало окисляема. А еще люди практикуют лечение медью.
Люди используют лечение медью в самых различных ситуациях: при болезнях желудочно-кишечного тракта, болезнях сердечно-сосудистой системы, головных болях, тромбофлебите и других нарушениях сосудов ног, заболеваниях мочевыделительной системы, болезнях органов дыхания, радикулите и многих других видах болезней люди. И судя по отзывам – лечение медью является довольно действенным методом.
|
www.sibirservis.ru