Как называется сплав алюминия с медью? Производство сплавов металлов на основе меди и алюминия. Сплав алюминия и меди называется


Как называется сплав алюминия с медью? Производство сплавов металлов на основе меди и алюминия

Одним из самых распространенных металлов на Земле считается алюминий. Его еще называют «летающим металлом». Несмотря на то, что в природе он не встречается в чистом виде, его можно найти во многих минералах. А самый распространенный сплав, который используется для производства множества деталей и конструкций, – это дюралюминий (дюраль).

Его изобрел немецкий ученый Альфред Вильм, который работал на заводе Dürener Metallwerke AG (город Дюрен). Он определил, что сплав алюминия с медью обладает намного более лучшими характеристиками, чем сам металл в чистом виде.

Группа высокопрочных сплавов

На самом деле дюралюминий – это целая группа сплавов, в которых основным компонентом является алюминий, а его легирующими элементами – медь, цинк, марганец, магний. Но в целом их характеристика определяется не только составом, но и способом термообработки. В 1903 году впервые было обнаружено, что в процессе старения сплав алюминия с медью становится еще более прочным и твердым.

Как выяснилось позже, это объясняется тем, что когда после закалки металл находится несколько дней при комнатной температуре, его перенасыщенный твердый раствор распадается, а это, в свою очередь, сопровождается упрочнением материала.

Процесс старения и возврат к предыдущему состоянию

Как уже было сказано ранее, старение металла – важный процесс, который обуславливается структурными превращениями, вызывающими изменения физических и механических свойств. Оно может быть естественным и искусственным. В первом случае сплав выдерживают несколько суток при комнатной температуре.

При искусственном старении время обработки сокращается, но при этом увеличивается температура. Для того чтобы вернуть сплав к предыдущему состоянию, его необходимо на несколько секунд нагреть до 270 градусов и затем быстро остудить.

Производство алюминия

Для того чтобы изготовить сплав алюминия с медью, необходимо высокотехнологичное оборудование и, конечно же, сам металл. Его добывают из бокситов. Это горная порода, которую необходимо измельчить, добавить в неё воду и обработать паром под большим давлением. Таким образом из глинозема отделяют кремний. Затем густую массу помещают в специальную ванну с расправленным криолитом. Содержимое нагревают до 950 °С и через него пропускают электрический ток в 400 кА.

Это позволяет разорвать связь между атомами кислорода и алюминия. В результате последний оседает на дно в качестве жидкого металла. Так из жидкого алюминия делают отливки. Теперь металл полностью готов к механической обработке. Однако для того чтобы повысить его прочность, необходимо в него добавить легирующие элементы и таким образом получить высококачественный сплав алюминия с медью.

Производство дюрали

В общей сложности все алюминиевые сплавы делятся на две группы: литейные и деформированные. Процесс их производства зависит именно от того, какой вид должен получиться в конечном итоге. Кроме того, способ изготовления также зависит и от требуемых характеристик.

Для производства дюраля алюминиевые слитки расплавляют в электрической печи. Интересно, что это один из немногих металлов, который можно переводить из твердого состояния в жидкое и наоборот множество раз. Это не повлияет на его характеристики. В расплавленный алюминий по очереди добавляют медь и другие легирующие элементы, такие как марганец, железо, магний. Очень важно соблюдать процентное соотношение: 93% алюминия, 5% меди, остальные 2% приходятся на другие легирующие элементы.

Закалка и отжиг дюраля

Обязательным для такого сплава является процесс закалки. Время выдержки для небольших деталей составляет всего несколько минут, а температура - около 500 °С. Сразу после процедуры дюраль получается мягким и вязким. Он легко поддается деформации и обработке. Спустя некоторое время сплав твердеет и его механические свойства повышаются. Если превысить порог температуры, происходит окисление и материал теряет свои характеристики. После закалки его необходимо медленно остудить в прохладной воде.

Итак, вы уже знаете, как называется сплав алюминия с медью. Он нередко поддается деформации: холодному прокату, вытяжке, ковке. При этом возникает так называемая нагартовка. Это процесс, в ходе которого в структуре металла происходит передвижение и размножение дислокаций. В итоге сам сплав меняет свою структуру, становится более твердым и прочным. При этом снижается его пластичность и ударная вязкость. Для того чтобы деформации проходили более легко и нагартовка не разрушала металл, используют отжиг. Для этого сплав нагревают до 350 °С и затем остужают на воздухе.

Диаграмма состояния сплава (алюминий и медь)

Для того чтобы наиболее четко описать взаимодействие компонентов дюраля в твердом и жидком состоянии, а также объяснить характер изменения свойств сплава, используют диаграмму состояний.

Из неё видно, что наибольшая растворимость Cu в сплаве с алюминием наблюдается при температуре 548 °С и при этом она составляет 5,7 %. При повышении температуры она будет увеличиваться, а при понижении – уменьшаться. Минимальная растворимость (0,5 %) будет наблюдаться при комнатной температуре. Если же дюраль закалить выше 400 °С, он станет твердым однородным раствором – α.

Во время данного процесса будет происходить распад твердого раствора. Очень необычно ведёт себя сплав алюминия и меди, формула которого - CuAl2. Процесс сопровождается выделением избыточной фазы А1. Такой распад протекает в течение длительного времени. Это и есть то естественное старение, о котором мы уже ранее упоминали.

Свойства сплава

Легирование металла теми или иными элементами позволяет повысить его характеристики. Вы запомнили, как называется сплав алюминия с медью? Какими же свойствами он обладает?

Сам по себе алюминий очень легкий, мягкий и совершенно непрочный. Он растворим в слабо концентрированных щелочах и кислотах. Добавив к алюминию медь и магний, можно получить уже достаточно прочный сплав. Его эксплуатационные параметры достаточно легко улучшить – просто нужно оставить его полежать при комнатной температуре. Так, эффект старения увеличивает прочность дюраля, о чём мы говорили выше.

Сам по себе алюминий достаточно легкий. Незначительный процент меди не утяжеляет сплав. Еще одна положительная характеристика – это возможность многократно переплавлять сплав. При этом он не будет терять своих свойств. Единственное, что необходимо, так это после отливки дать ему «отдохнуть» пару суток.

Недостатком дюралюминия является его низкая коррозионная стойкость. Поэтому чаще всего такой материал покрывают чистым слоем алюминия или же красят лаками и красками.

Алюминиевые сплавы и их применение

Впервые дюраль был использован для изготовления дирижаблей. Легкость и прочность этого материала позволила создать отличный летательный аппарат. Для этого применялась марка Д16т. В настоящее время сплавы с алюминием, цинком, медью и другими легирующими элементами широко используются в космонавтике, авиации и иных областях машиностроения.

Так, например, использование дюралюминия при изготовлении авто может значительно снизить его вес и стоимость, но при этом оно будет достаточно прочным.

В общем, можно отметить, что ассортимент данного сплава достаточно широк: трубы, проволоки, листы, ленты, прутки и литые детали разных форм. Одной из самых востребованных и распространенных марок по-прежнему считается Д16т. Маленькая буква «т» в конце маркировки означает, что сплав закаленный и естественно состарился. Он используется:

  • В конструкциях космических аппаратов, морских судов и самолетов.
  • Для изготовления различных деталей для станков и машин.
  • Для изготовления уличных табличек, дорожных знаков.

Название сплава алюминия и меди должен знать каждый. Дюраль используется и в нефтяной промышленности. Так, специальные трубы, изготовленные из него, могут обеспечить эксплуатацию скважины в течение 6-7 лет.

Как называется сплав алюминия и меди, запомнить легко. Итак, мы рассказали, каким свойствами он обладает и где применяется. Он с легкостью может заменить стальной прокат, в особенности если необходимо сделать конструкцию маловесной.

fb.ru

2.2. Сплавы на основе меди и алюминия. Классификация, обозначение,

достоинства и недостатки. Применение сплавов как конструкционных материалов в механических устройствах (упругие элементы, опоры).

Цветные металлы (медь, алюминий, титан, магний) и их сплавы широко применяются в виде прутков, листов и лент для изготовления деталей механизмов. Но их применение должно быть обосновано, так как стоимость деталей из цветных металлов и сплавов значительно выше, чем из стали и пластмасс.

Медь в чистом виде характеризуется высокой электро- и теплопроводностью, хорошей обрабатываемостью давлением, небольшой прочностью и применяется для изготовления токопроводящих деталей. Более широкое применение получили медные сплавы: латунь и бронза. В латунях основным легирующим элементом является цинк, в бронзах – иные элементы.

Легирующие элементы в марках медных сплавов обозначают

следующими буквами: А – алюминий, Н – никель, О – олово, Ц – цинк, С – свинец, Ж – железо, Мц – марганец, К – кремний, Ф – фосфор, Т – титан.

Латуни делят на

  • двойные содержание цинка может доходить до 50%. Марки таких латуней обозначают буквой Л и цифрой, показывающей содержание меди в процентах, например Л59. Для улучшения механических, технологических и коррозийных свойств в латуни вводят кроме цинка в небольших количествах различные легирующие элементы (алюминий, кремний, марганец, олово, железо, свинец).

  • В марках многокомпонентных латуней первые цифры указывают среднее содержание меди, а последующие – легирующих элементов. Например, латунь ЛКС80-3-3 содержит 80% меди, по 3% кремния и свинца, а остальное – цинк.

Марки бронз и медно-никелевых сплавов начинаются соответственно с букв Бр и М, а следующие буквы и цифры указывают на наличие легирующих элементов и соответственно их содержание в процентах. Например, бронза БрОЦС 5-5-5 содержит олова, цинка и свинца по 5% или медно-никелевый сплав мельхиор МН19 содержит 19% никеля. Бронзы называют по основным легирующим элементам: оловянистые, алюминиевые, бериллиевые, кремнистые и т.д. Широко используются оловянистые бронзы, они характеризуются высокой стойкостью против истирания, низким коэффициентом трения скольжения. Все медные сплавы отличаются хорошей стойкостью против атмосферной коррозии.

Латуни и бронзы используют в качестве конструкционных материалов. В частности, латунь Л63, отличающуюся высокой пластичностью, используют для изготовления токопроводящих и конструктивных деталей типа наконечники, втулки, шайбы, а латунь ЛК80-3Л – для изготовления литых деталей. Безоловянистые бронзы БрАЖ9-4, БрАМц9-2 обладают высокими механическими и антифрикционными свойствами, хорошо обрабатываются, поэтому используются при изготовлении небольших зубчатых и червячных колес, втулок подшипников скольжения, ходовых гаек в винтовых механизмах. Наилучшие антифрикционные свойства имеют оловянистые бронзы.

Особое место занимает при изготовлении упругих элементов из-за высокой прочности и упругости бериллиевая бронза марки БрБ2. Она немагнитна, стойка к морозу, действию пресной и соленой воды, хорошо сваривается и обрабатывается резанием. Применяют ее для изготовления ответственных деталей типа токоведущих пружинящих контактов, пружин, мембран.

Прочность медных сплавов, особенно латуней, ниже, чем сталей, а коррозионная стойкость много больше. Все латуни и большинство бронз, за исключением алюминиевых, хорошо паяются.

Чистый алюминий применяется редко, так как имеет низкую прочность. Чаще при изготовлении деталей применяют сплавы на основе алюминия. Они обладают малой плотностью, высокой электро- и теплопроводностью, коррозийной стойкостью и удельной прочностью. Алюминиевые сплавы в зависимости от технологических свойств делят на:

  • Деформируемые – Наибольшее распространение из деформируемых сплавов получили термически упрочняемые с помощью закалки и старения алюминиево-медно-магниевые и алюминиево-магниевые сплавы. Первые называют дуралюминами (марки Д1, Д16), из вторых наиболее часто применяется сплав марки АМг6. Они обладают высокими механическими свойствами, выпускаются в виде прутков, листов, труб, фасонных профилей. Их применяют для средненагруженных деталей типа стоек, крышек, втулок и т.д. К деформируемым относится высокопрочный алюминиево-магниево-цинковый сплав В95, который применяют для деталей с повышенными статическими нагрузками (валы, зубчатые колеса). Деформируемыми являются так называемые спеченные алюминиевые сплавы, отличающиеся очень высокими прочностными свойствами (модуль упругости, пределы прочности σut и текучести σу). Они бывают двух видов: САП (спеченная алюминиевая пудра) и САС (спеченный алюминиевый сплав). САП упрочняется дисперсными частицами окиси алюминия Al2O3, образуемой в процессе помола алюминиевой пудры в атмосфере азота с регулируемой подачей кислорода. Пудру брикетируют, спекают и подвергают деформации – прессованию, прокатке, ковке. В зависимости от одержания Al2O3 (прочность сплава возрастает при увеличении окиси алюминия до 20 – 22%) различают 4 марки САП (САП-1, САП-2, САП-3 и САП-4). Сплавы САС содержат до 25% кремния и 5% железа. Их получают распылением жидкого сплава, брикетированием полученных гранул и последующей деформацией. Спеченные алюминиевые сплавы применяют для изготовления высоконагруженных деталей и различных профилей.

  • Из литейных алюминиевых сплавов наибольше распространение получили сплавы алюминия с кремнием – силумины. Они обладают хорошими литейными и средними механическими свойствами. Силумины марок АЛ-2, АЛ-4, АЛ-9 применяют для изготовления литьем корпусов, крышек, кронштейнов и других сложных средненагруженных деталей. Алюминий и его сплавы трудно паяются.

2.3. Неметаллические материалы. Виды, свойства, применение термопластов и термореактивных пластмасс. Достоинства и недостатки пластмасс. Применение резины, бумаги, композиционных (зубчатые ремни) материалов.

Из неметаллических материалов широко используют пластмассы.

Пластмассами называют материалы, получаемые на основе природных или синтетических смол (полимеров), которые при определенных температуре и давлении приобретают пластичность, а затем затвердевают, сохраняя форму при эксплуатации. Кроме связующего вещества (полимера) в состав пластмасс входят наполнители, пластификаторы, отвердители, красители.

Полимером служат различные смолы, которые в период формирования

деталей находятся в вязкотекучем (жидком) или высокоэластичном

состоянии, а при эксплуатации – в стеклообразном или кристаллическом

состоянии.

Наполнители вводят в смолы для повышения механической прочности,

теплостойкости, уменьшения усадки и снижения стоимости пластмассы.

Наполнители могут быть в газовой (пенопласты) и твердой фазе, иметь

органическое (древесная мука, хлопковые очесы, целлюлоза, бумага, хлопчатобумажная ткань) и неорганическое (графитная, асбестовая и

кварцевая мука; углеродное и стекловолокно; стеклоткань) происхождение.

Механическая прочность пластмасс существенно зависит от наполнителя.

Пластмассы с порошкообразными, коротковолокнистыми, длиной 2 … 4 мм,

наполнителями по прочности приближаются к дуралюмину и некоторым

сортам стали. Для деталей, работающих в узлах трения, широко применяют теплопроводящие наполнители, например графит. Пластификаторы увеличивают текучесть, эластичность и уменьшают

хрупкость пластмасс. Отвердители ускоряют процесс затвердевания

пластмасс, красители придают пластмассам нужный цвет.

По поведению при нагреве полимеров пластмассы делят на:

  • Термопласты (полиэтилен, фторопласт, полистирол, полиамиды и др.) имеют свойства обратимости: при повторных нагреваниях они переходят в пластическое или вязкотекучее состояние и им можно придать необходимую форму, а затем они вновь затвердевают при охлаждении. Переход термопластов из одного физического состояния в другое может осуществляться неоднократно без изменения химического состава. Термопласты легко формуются и надежно свариваются в изделия сложных форм, устойчивы к ударным и вибрационным нагрузкам, обладают хорошими антифрикционными свойствами. Свойства термопластов сильно зависят от температуры.

  • Термореактивные пластмассы не переходят в пластическое состояние при повторном нагревании. Они имеют более высокие, чем термопласты, показатели по твердости, модулю упругости, теплостойкости, опротивлению усталостной прочности. Их свойства не так резко зависят от температуры. В зависимости от наполнителя различают монолитные (карболит), слоистые текстолит, гетинакс) и композиционные пластмассы, где наполнителем используются волокна. В термореактивных пластмассах связующими являются эпоксидные, кремнийорганические и другие смолы.

Пластмассы являются хорошими электроизоляционными материалами. Для них характерна высокая химическая и коррозионная стойкость, малая плотность и теплостойкость. Они отличаются достаточной прочностью и упругостью. Детали, изготовленные из пластмасс, имеют блестящую гладкую поверхность разных цветов. Пластмассы значительно хуже, чем металлы, сопротивляются переменным нагрузкам; они подвержены тепловому, световому и атмосферному старению – процессу самопроизвольного необратимого изменения свойств; многие из пластмасс гигроскопичны. Большим достоинством пластмасс является их высокая технологичность, обеспечивающая значительное сокращение производственного цикла. Изготовление металлических деталей осуществляется за десятки операций механической обработки, а пластмассовых – часто за одну технологическую операцию по формообразованию (прессование, выдавливание, литье под давлением и др.). Поэтому трудоемкость изготовления пластмассовых деталей уменьшается в 5 … 6 раз и более, а себестоимость продукции снижается в 2 … 3 раза, при этом получают очень высокий коэффициент использования материала, равный 0,9 … 0,95. Это приводит к значительному снижению материалоемкости и из-за малой плотности пластмасс (1,2 … 1,9 Мг/м3), к уменьшению массы конструкции в 4 ... 5 раз.

Из пластмасс изготавливают зубчатые и червячные колеса, шкивы, подшипники, ролики, корпуса, зубчатые ремни, ручки управления и другие детали. Производство пластмасс развивается интенсивнее, чем таких традиционных материалов, как металлы. Это объясняется удешевлением изготовления, улучшением ряда основных параметров механизмов: уменьшением веса и инерционности звеньев, потерь на трение, повышением быстродействия.

studfiles.net

Как называется сплав алюминия с медью? Производство сплавов металлов на основе меди и алюминия

Одним из самых распространенных металлов на Земле считается алюминий. Его еще называют «летающим металлом». Несмотря на то, что в природе он не встречается в чистом виде, его можно найти во многих минералах. А самый распространенный сплав, который используется для производства множества деталей и конструкций, – это дюралюминий (дюраль).

Его изобрел немецкий ученый Альфред Вильм, который работал на заводе Dürener Metallwerke AG (город Дюрен). Он определил, что сплав алюминия с медью обладает намного более лучшими характеристиками, чем сам металл в чистом виде.

Группа высокопрочных сплавов

На самом деле дюралюминий – это целая группа сплавов, в которых основным компонентом является алюминий, а его легирующими элементами – медь, цинк, марганец, магний. Но в целом их характеристика определяется не только составом, но и способом термообработки. В 1903 году впервые было обнаружено, что в процессе старения сплав алюминия с медью становится еще более прочным и твердым.

Как выяснилось позже, это объясняется тем, что когда после закалки металл находится несколько дней при комнатной температуре, его перенасыщенный твердый раствор распадается, а это, в свою очередь, сопровождается упрочнением материала.

Процесс старения и возврат к предыдущему состоянию

Как уже было сказано ранее, старение металла – важный процесс, который обуславливается структурными превращениями, вызывающими изменения физических и механических свойств. Оно может быть естественным и искусственным. В первом случае сплав выдерживают несколько суток при комнатной температуре.

При искусственном старении время обработки сокращается, но при этом увеличивается температура. Для того чтобы вернуть сплав к предыдущему состоянию, его необходимо на несколько секунд нагреть до 270 градусов и затем быстро остудить.

Производство алюминия

Для того чтобы изготовить сплав алюминия с медью, необходимо высокотехнологичное оборудование и, конечно же, сам металл. Его добывают из бокситов. Это горная порода, которую необходимо измельчить, добавить в неё воду и обработать паром под большим давлением. Таким образом из глинозема отделяют кремний. Затем густую массу помещают в специальную ванну с расправленным криолитом. Содержимое нагревают до 950 °С и через него пропускают электрический ток в 400 кА.

Это позволяет разорвать связь между атомами кислорода и алюминия. В результате последний оседает на дно в качестве жидкого металла. Так из жидкого алюминия делают отливки. Теперь металл полностью готов к механической обработке. Однако для того чтобы повысить его прочность, необходимо в него добавить легирующие элементы и таким образом получить высококачественный сплав алюминия с медью.

Производство дюрали

В общей сложности все алюминиевые сплавы делятся на две группы: литейные и деформированные. Процесс их производства зависит именно от того, какой вид должен получиться в конечном итоге. Кроме того, способ изготовления также зависит и от требуемых характеристик.

Для производства дюраля алюминиевые слитки расплавляют в электрической печи. Интересно, что это один из немногих металлов, который можно переводить из твердого состояния в жидкое и наоборот множество раз. Это не повлияет на его характеристики. В расплавленный алюминий по очереди добавляют медь и другие легирующие элементы, такие как марганец, железо, магний. Очень важно соблюдать процентное соотношение: 93% алюминия, 5% меди, остальные 2% приходятся на другие легирующие элементы.

Закалка и отжиг дюраля

Обязательным для такого сплава является процесс закалки. Время выдержки для небольших деталей составляет всего несколько минут, а температура - около 500 °С. Сразу после процедуры дюраль получается мягким и вязким. Он легко поддается деформации и обработке. Спустя некоторое время сплав твердеет и его механические свойства повышаются. Если превысить порог температуры, происходит окисление и материал теряет свои характеристики. После закалки его необходимо медленно остудить в прохладной воде.

Итак, вы уже знаете, как называется сплав алюминия с медью. Он нередко поддается деформации: холодному прокату, вытяжке, ковке. При этом возникает так называемая нагартовка. Это процесс, в ходе которого в структуре металла происходит передвижение и размножение дислокаций. В итоге сам сплав меняет свою структуру, становится более твердым и прочным. При этом снижается его пластичность и ударная вязкость. Для того чтобы деформации проходили более легко и нагартовка не разрушала металл, используют отжиг. Для этого сплав нагревают до 350 °С и затем остужают на воздухе.

Диаграмма состояния сплава (алюминий и медь)

Для того чтобы наиболее четко описать взаимодействие компонентов дюраля в твердом и жидком состоянии, а также объяснить характер изменения свойств сплава, используют диаграмму состояний.

Из неё видно, что наибольшая растворимость Cu в сплаве с алюминием наблюдается при температуре 548 °С и при этом она составляет 5,7 %. При повышении температуры она будет увеличиваться, а при понижении – уменьшаться. Минимальная растворимость (0,5 %) будет наблюдаться при комнатной температуре. Если же дюраль закалить выше 400 °С, он станет твердым однородным раствором – α.

Во время данного процесса будет происходить распад твердого раствора. Очень необычно ведёт себя сплав алюминия и меди, формула которого - CuAl2. Процесс сопровождается выделением избыточной фазы А1. Такой распад протекает в течение длительного времени. Это и есть то естественное старение, о котором мы уже ранее упоминали.

Свойства сплава

Легирование металла теми или иными элементами позволяет повысить его характеристики. Вы запомнили, как называется сплав алюминия с медью? Какими же свойствами он обладает?

Сам по себе алюминий очень легкий, мягкий и совершенно непрочный. Он растворим в слабо концентрированных щелочах и кислотах. Добавив к алюминию медь и магний, можно получить уже достаточно прочный сплав. Его эксплуатационные параметры достаточно легко улучшить – просто нужно оставить его полежать при комнатной температуре. Так, эффект старения увеличивает прочность дюраля, о чём мы говорили выше.

Сам по себе алюминий достаточно легкий. Незначительный процент меди не утяжеляет сплав. Еще одна положительная характеристика – это возможность многократно переплавлять сплав. При этом он не будет терять своих свойств. Единственное, что необходимо, так это после отливки дать ему «отдохнуть» пару суток.

Недостатком дюралюминия является его низкая коррозионная стойкость. Поэтому чаще всего такой материал покрывают чистым слоем алюминия или же красят лаками и красками.

Алюминиевые сплавы и их применение

Впервые дюраль был использован для изготовления дирижаблей. Легкость и прочность этого материала позволила создать отличный летательный аппарат. Для этого применялась марка Д16т. В настоящее время сплавы с алюминием, цинком, медью и другими легирующими элементами широко используются в космонавтике, авиации и иных областях машиностроения.

Так, например, использование дюралюминия при изготовлении авто может значительно снизить его вес и стоимость, но при этом оно будет достаточно прочным.

В общем, можно отметить, что ассортимент данного сплава достаточно широк: трубы, проволоки, листы, ленты, прутки и литые детали разных форм. Одной из самых востребованных и распространенных марок по-прежнему считается Д16т. Маленькая буква «т» в конце маркировки означает, что сплав закаленный и естественно состарился. Он используется:

  • В конструкциях космических аппаратов, морских судов и самолетов.
  • Для изготовления различных деталей для станков и машин.
  • Для изготовления уличных табличек, дорожных знаков.

Название сплава алюминия и меди должен знать каждый. Дюраль используется и в нефтяной промышленности. Так, специальные трубы, изготовленные из него, могут обеспечить эксплуатацию скважины в течение 6-7 лет.

Как называется сплав алюминия и меди, запомнить легко. Итак, мы рассказали, каким свойствами он обладает и где применяется. Он с легкостью может заменить стальной прокат, в особенности если необходимо сделать конструкцию маловесной.

загрузка...

worldfb.ru

Сплавы цветных металлов — меди, алюминия, цинка, магния

Цветная металлургия занимается добычей руд цветных металлов, а также обогащением и выплавкой чистых металлов и их сплавов. Цветные металлы имеют множество ценных свойств: малую плотность (магний, алюминий), высокую теплопроводность (медь), устойчивость к коррозии (титан) и др. Условно они делятся на тяжелые, легкие, благородные и редкие.

Группы металлов

К тяжелым металлам относятся вещества, которые отличаются высокой плотностью. Это кобальт, хром, медь, свинец и др. Некоторые из них (свинец, цинк, медь) применяют в чистом меде, но обычно используют в качестве легирующих элементов.

Плотность легких металлов — менее 5 г/см3. В этой группе относятся алюминий, натрий, калий, литий и др. Их используют как раскислители при изготовлении чистых металлов и сплавов, а также применяют в пиротехнике, медицине, фототехнике и других областях.

Благородные металлы отличаются высокой устойчивостью к коррозии. В данную группу входят платина, золото, серебро, осмий, палладий, родий, иридий и рутений. Они применяются в медицине, электротехнике, приборостроении, ювелирном деле.

Редкие металлы объединены в отдельную группу, так как имеют особые свойства, не характерные для других металлов. Это уран, вольфрам, селен, молибден и др.

Также выделяется группа широко применяемых металлов. В нее входят титан, алюминий, медь, олово, магний и свинец.

Сплавы на основе цветных металлов бывают литейные и деформируемые. Они различаются технологией создания заготовок: из литейных производят детали с помощью литья в металлические или песчаные формы, а из деформируемых делают листы, фасонные профили, проволоку и другие элементы. В этом случае используются методы прессования, ковки и штамповки. Литейные сплавы относятся к металлургии тяжелых металлов, деформируемые — к металлургии легких металлов.

Алюминий и его сплавы

Алюминий — цветной металл, который имеет серебристо-белый оттенок и плавится при температуре 650°С. В периодической системе ему соответствует символ Al. Этот элемент занимает третье место по распространенности среди всех пород в земной коре (на первом месте — кислород, на втором — кремний). В атмосферных условиях на поверхности алюминия образуется оксидная пленка, препятствующая появлению коррозии.

Важные свойства алюминия:

  • Низкая плотность — всего 2,7г/см3 (например, у меди — 8,94г/см3).
  • Высокая электрическая проводимость (37*106 См/м) и теплопроводность (203,5 Вт/(м·К)).
  • Низкая прочность в чистом виде — 50 МПа.
  • Структура кристаллической решетки — кубическая гранецентрированая.

Металл легко обрабатывается давлением. Находит широкое применение в электропромышленности: из алюминия изготавливают проводники электрического тока. При производстве стали его используют для раскисления. Из алюминия также делают посуду, однако она не подходит для приготовления солений и хранения кисломолочных продуктов — элемент неустойчив в щелочной и кислой среде. Некоторые стальные детали покрывают алюминием (процесс алитирования), чтобы повысить их жаростойкость. Из-за невысокой прочности алюминий практически не применяется в чистом виде.

При маркировке алюминия используется буква А в сочетании с числом, которое указывает на содержание металла. Например, марка A99 содержит 99,95% алюминия, а марка А99 — 99,99%. Существует также марка особой чистоты — А999, в которой 99,999% алюминия.

Деформируемые сплавы алюминия

Деформируемые алюминиевые сплавы делятся на упрочняемые и неупрочняемые.

Упрочняемые деформируемые сплавы алюминия — это дуралюмины (система А-Сu-Mg) и высокопрочные сплавы (Аl-Сu-Mg-Zn). Высокие механические свойства и небольшой удельный вес позволяют широко применять эти сплавы в области машиностроения, особенно — в изготовлении деталей для самолетов.

Основными легирующими элементами для дуралюминов служат магний и медь. Эти сплавы маркируются буквой Д с числом. Из Д1 делают лопасти винтов, Д16 используется для лонжеронов, шпангоутов, обшивки самолетов, а Д 17 — для крепежных заклепок.

Высокопрочные сплавы, помимо алюминия, меди и магния, содержат цинк. Обозначаются буквой В и числом, применяются для изготовления деталей сложной конфигурации, лопастей вертолетов, высоконагруженных конструкций.

Неупрочняемые деформируемые алюминиевые сплавы — это сплавы алюминия с марганцем (маркировка — АМц1) и с магнием (AМг2 и АМг3). Они хорошо обрабатываются сваркой, вытяжкой, прокаткой, горячей и холодной штамповкой. Отличаются высокой пластичностью, но при этом не очень прочные. Они выпускаются преимущественно в виде листов, которые применяются для изготовления изделий сложной формы (заклепки, рамы и др.).

Литейные сплавы на основе алюминия

Наиболее широкое применение получили литейные сплавы алюминия и кремния, которые называются силуминами. Они содержат более 4,5% кремния и обозначаются буквами АК с номером марки. Силумины сочетают малый удельный вес с высокими механическими и литейными свойствами. Они применяются для сложного литья авто-, мото- и авиадеталей, а также для производства некоторых видов бытовой техники — мясорубок, теплообменников, санитарно-технических арматур и др.

Сплавы на основе меди

Медь — цветной металл, который на поверхности имеет красный оттенок, а в изломе — розовый. В периодической системе Д.И. Менделеева обозначается символом Cu. В чистом виде металл имеет высокую степень пластичности, электро- и теплопроводности, а также характеризуется устойчивостью к коррозии. Это позволяет использовать медь и ее сплавы для кровель ответственных зданий.

Важные свойства металла:

  • Температура плавления — 1083°С.
  • Структура кристаллической решетки — кубическая гранецентрированая.
  • Плотность — 8,94 г/см3.

Благодаря пластичности медь легко поддается обработке давлением, но плохо режется. Из-за большой усадки металл обладает низкими литейными свойствами. Любые примеси, за исключением серебра, оказывают большое влияние на вещество и снижают его электрическую проводимость.

При маркировке меди используется буква М с числом, которое обозначает марку. Чем меньше номер марки, тем больше в ней чистого вещества. Например, М00 содержит 99,99 % меди, а М4 — 99 %.

Наиболее широкое применение в технике находят две группы медных сплавов — бронзы и латуни.

Бронзы

Бронзы — сплавы на основе меди, в которых легирующим элементом является любой металл, кроме цинка. Наиболее часто применяются сплавы меди со свинцом, оловом, алюминием, кремнием и сурьмой.

Все бронзы по химическому составу делятся на оловянные и специальные, или безоловянные, то есть не содержащие в своем составе олова.

Оловянные бронзы отличаются наиболее высокими литейными, механическими и антифрикционными свойствами, а также имеют повышенную устойчивость к коррозии. Из-за высокой стоимости олова эти сплавы применяют ограниченно.

Специальные бронзы часто используют в качестве заменителей оловянных, и некоторые имеют лучшие технологические свойства. Выделяются следующие виды специальных бронз:

  • Алюминиевые. Они содержат от 5% до 11% алюминия, а также марганец, никель, железо и другие металлы. Эти сплавы обладают более высокими механическими свойствами, чем оловянные бронзы, однако их литейные свойства ниже. Алюминиевые бронзы служат для изготовления мелких ответственных деталей.
  • Свинцовистые. В их состав входит около 30% свинца. Эти сплавы имеют высокие антифрикционные свойства, поэтому широко применяются в производстве подшипников.
  • Кремнистые. Эти бронзы содержат примерно 4% кремния, легируются никелем и марганцем. По своим механическим свойствам почти соответствуют сталям. Применяются, в основном, для изготовления пружинистых элементов в судостроении и авиации.
  • Бериллиевые. Содержат до 2,3% бериллия, характеризуются высокой упругостью, твердостью и износостойкостью. Эти бронзы используются для пружин, которые работают в условиях агрессивной среды.

Все бронзы имеют хорошие антифрикционные показатели, коррозионную стойкость, высокие литейные свойства, которые позволяют использовать сплавы для изготовления памятников, отливки колоколов и др.

При маркировке бронз используются начальные буквы Бр, после которых идут первые буквы названий основных металлов с указанием их содержания в процентах. Например, сплав БрОФ8-0,3 включает 8% олова и 0,3% фосфора.

Латуни

Латунями называют сплавы меди и цинка с добавлением других металлов — алюминия, свинца, никеля, марганца, кремния и др. В простых латунях содержится только медь и цинк, а многокомпонентные сплавы включают от 1% до 8% различных легирующих элементов, которые добавляют для улучшения различных свойств.

  • Марганец, никель и алюминий повышают устойчивость сплава к коррозии и его механические свойства.
  • Благодаря добавкам кремния сплав становится более текучим в жидком состоянии и легче поддается сварке.
  • Свинец упрощает обработку резанием.

Процентное содержание цинка в любой латуни не превышает 50 %. Эти сплавы стоят дешевле, чем чистая медь, а благодаря добавлению цинка и легирующих элементов, они обладает большей устойчивостью к коррозии, прочностью и вязкостью, а также характеризуются высокими литейными свойствами. Латуни используют для изготовления деталей методами прокатки, вытяжки, штамповки и др.

При маркировке простой латуни используется буква Л и число, обозначающее содержание меди. Например, марка Л96 содержит 96% меди. Для многокомпонентных латуней используется сложная формула: буква Л, затем первые буквы основных металлов, цифра, обозначающая содержание меди, а затем состав других элементов по порядку. Например, латунь ЛАМш77-2–0,05 содержит 77% меди, 2% алюминия, 0,05% мышьяка, остальное — цинк.

Магний и его сплавы

Магний — цветной металл, который имеет серебристый оттенок и обозначается символом Mg в периодической системе.

Важные свойства магния:

  • Температура плавления — 650°С.
  • Плотность — 1,74 г/см3.
  • Твердость — 30-40 НВ.
  • Относительное удлинение — 6-17%.
  • Временное сопротивление — 100-190 МПа.

Металл обладает высокой химической активностью, в атмосферных условиях неустойчив к образованию коррозии. Он хорошо режется, воспринимает ударные нагрузки и гасит вибрации. Так как магний имеет низкие механические свойства, он практически не применяется в конструкционных целях, зато используется в пиротехнике, химической промышленности и металлургии. Он часто выступает в качестве восстановителя, легирующего элемента и раскислителя при изготовлении сплавов.

При маркировке используются буквы Мг с цифрами, которые обозначают процентное содержание магния. Например, в марке Мг96 содержится 99,96% магния, а в Мг90 — 99,9 %.

Сплавы на основе магния характеризуются высокой удельной прочность (предел прочности — до 400 МПа). Они хорошо режутся, шлифуются, полируются, куются, прессуются, прокатываются. Из недостатков магниевых сплавов — низкая устойчивость к коррозии, плохие литейные свойства, склонность воспламеняться при изготовлении.

Деформируемые сплавы магния

Наиболее распространены три группы сплавов на основе магния.

Сплавы магния, легированные марганцем

Содержат до 2,5% марганца, не упрочняются термической обработкой. У них хорошая коррозионная стойкость. Так как эти сплавы легко свариваются, они применяются для сварных деталей несложной конфигурации, а также для деталей арматуры, масляных и бензиновых систем, которые не испытывают больших нагрузок. Среди данной группы — сплавы МА1 и МА8.

Сплавы системы Mg-Al-Zn-Mn

В состав этих сплавов, помимо магния и марганца, входят алюминий и цинк. Они заметно повышают прочность и пластичность, благодаря чему сплавы подходят для изготовления штампованных и кованых деталей сложных форм. К этой группе относятся марки МА2-1 и МА5.

Сплавы системы Mg-Zn

Сплавы на основе магния и цинка дополнительно легируются кадмием, цирконием и редкоземельными металлами. Это высокопрочные магниевые сплавы, которые применяются для деталей, испытывающих высокие нагрузки (в самолетах, автомобилях, станках и др.). К данной группе относятся сплавы марок МА14, МА15, МА19.

Литейные сплавы магния

Самая распространенная группа литейных магниевых сплавов относится к системе Mg-Al-Zn. Эти сплавы практически не поглощают тепловые нейтроны, поэтому широко применяются в атомной технике. Из них также делают детали самолетов, ракет, автомобилей (двери кабин, корпуса приборов, топливные баки и др.). Сплавы магния, цинка и алюминия используют в приборостроении и в изготовлении кожухов для электронной аппаратуры. К данной группе относятся марки МЛ5 и МЛ6.

Высокопрочные литейные магниевые сплавы отличаются лучшими механическими и технологическими свойствами. Они применяются в авиации для изготовления нагруженных деталей. К данной группе относятся сплавы МЛ12 (магний, цинк и цирконий), МЛ8 (магний, цинк, цирконий и кадмий), МЛ9 (магний, цирконий, неодим), МЛ10 (магний, цинк, цирконий, неодим).

Цинк и его сплавы

Цинк — цветной металл серо-голубоватого оттенка. В системе Д. И. Менделеева обозначается символом Zn. Он обладает высокой вязкостью, пластичностью и коррозионной стойкостью. Важные свойства металла:

  • Небольшая температура плавления — 419 °С.
  • Высокая плотность — 7,1 г/см3.
  • Низкая прочность — 150 МПа.

В чистом виде цинк используется для оцинкования стали с целью защиты от коррозии. Применяется в полиграфии, типографии и гальванике. Его часто добавляют в сплавы, преимущественно в медные.

Существуют следующие марки цинка: ЦВ00, ЦВ0, ЦВ, Ц0А, Ц0, Ц1, Ц2 и Ц3. ЦВ00 — самая чистая марка с содержанием цинка в 99,997%. Самый низкий процент чистого вещества в марке Ц3 — 97,5%.

Деформируемые цинковые сплавы

Деформируемые сплавы цинка используются для производства деталей методами вытяжки, прессования и прокатки. Они обрабатываются в горячем состоянии при температуре от 200 до 300 ?С. В качестве легирующих элементов выступают медь (до 5%), алюминий (до 15%) и магний (до 0,05%).

Деформируемые цинковые сплавы характеризуются высокими механическими свойствами, благодаря которым часто используются в качестве заменителей латуней. Они обладают высокой прочностью при хорошей пластичности. Сплавы цинка, алюминия и меди наиболее распространены, так как они имеют самые высокие механические свойства.

Литейные цинковые сплавы

В литейных цинковых сплавах легирующими элементами также выступают медь, алюминий и магний. Сплавы делятся на 4 группы:

  • Для литья под давлением.
  • Антифрикционные.
  • Для центробежного литья.
  • Для литья в кокиль.

Слитки легко полируются и принимают гальванические покрытия. Литейные цинковые сплавы имеют высокую текучесть в жидком состоянии и образуют плотные отливки в застывшем виде.

Литейные сплавы получили широкое применение в автомобильной промышленности: из них делают корпуса насосов, карбюраторов, спидометров, радиаторных решеток. Сплавы также используются для производства некоторых видов бытовой техники, арматуры, деталей приборов.

В России цветная металлургия — одна из самых конкурентоспособных отраслей промышленности. Многие отечественные компании являются мировыми лидерами в никелевой, титановой, алюминиевой подотраслях. Эти достижения стали возможными благодаря крупным инвестициям в цветную металлургию и применению инновационных технологий.

ferrolabs.ru

Как называется сплав алюминия с медью? Производство сплавов металлов на основе меди и алюминия

Одним из самых распространенных металлов на Земле считается алюминий. Его еще называют «летающим металлом». Несмотря на то, что в природе он не встречается в чистом виде, его можно найти во многих минералах. А самый распространенный сплав, который используется для производства множества деталей и конструкций, – это дюралюминий (дюраль).

Его изобрел немецкий ученый Альфред Вильм, который работал на заводе Dürener Metallwerke AG (город Дюрен). Он определил, что сплав алюминия с медью обладает намного более лучшими характеристиками, чем сам металл в чистом виде.

Группа высокопрочных сплавов

На самом деле дюралюминий – это целая группа сплавов, в которых основным компонентом является алюминий, а его легирующими элементами – медь, цинк, марганец, магний. Но в целом их характеристика определяется не только составом, но и способом термообработки. В 1903 году впервые было обнаружено, что в процессе старения сплав алюминия с медью становится еще более прочным и твердым.

Производство алюминия

Для того чтобы изготовить сплав алюминия с медью, необходимо высокотехнологичное оборудование и, конечно же, сам металл. Его добывают из бокситов. Это горная порода, которую необходимо измельчить, добавить в неё воду и обработать паром под большим давлением. Таким образом из глинозема отделяют кремний. Затем густую массу помещают в специальную ванну с расправленным криолитом. Содержимое нагревают до 950 °С и через него пропускают электрический ток в 400 кА.

Это позволяет разорвать связь между атомами кислорода и алюминия. В результате последний оседает на дно в качестве жидкого металла. Так из жидкого алюминия делают отливки. Теперь металл полностью готов к механической обработке. Однако для того чтобы повысить его прочность, необходимо в него добавить легирующие элементы и таким образом получить высококачественный сплав алюминия с медью.

Производство дюрали

В общей сложности все алюминиевые сплавы делятся на две группы: литейные и деформированные. Процесс их производства зависит именно от того, какой вид должен получиться в конечном итоге. Кроме того, способ изготовления также зависит и от требуемых характеристик.

Для производства дюраля алюминиевые слитки расплавляют в электрической печи. Интересно, что это один из немногих металлов, который можно переводить из твердого состояния в жидкое и наоборот множество раз. Это не повлияет на его характеристики. В расплавленный алюминий по очереди добавляют медь и другие легирующие элементы, такие как марганец, железо, магний. Очень важно соблюдать процентное соотношение: 93% алюминия, 5% меди, остальные 2% приходятся на другие легирующие элементы.

Закалка и отжиг дюраля

Обязательным для такого сплава является процесс закалки. Время выдержки для небольших деталей составляет всего несколько минут, а температура около 500 °С. Сразу после процедуры дюраль получается мягким и вязким. Он легко поддается деформации и обработке. Спустя некоторое время сплав твердеет и его механические свойства повышаются. Если превысить порог температуры, происходит окисление и материал теряет свои характеристики. После закалки его необходимо медленно остудить в прохладной воде.

Итак, вы уже знаете, как называется сплав алюминия с медью. Он нередко поддается деформации: холодному прокату, вытяжке, ковке. При этом возникает так называемая нагартовка. Это процесс, в ходе которого в структуре металла происходит передвижение и размножение дислокаций. В итоге сам сплав меняет свою структуру, становится более твердым и прочным. При этом снижается его пластичность и ударная вязкость. Для того чтобы деформации проходили более легко и нагартовка не разрушала металл, используют отжиг. Для этого сплав нагревают до 350 °С и затем остужают на воздухе.

Диаграмма состояния сплава (алюминий и медь)

Для того чтобы наиболее четко описать взаимодействие компонентов дюраля в твердом и жидком состоянии, а также объяснить характер изменения свойств сплава, используют диаграмму состояний.

Из неё видно, что наибольшая растворимость Cu в сплаве с алюминием наблюдается при температуре 548 °С и при этом она составляет 5,7 %. При повышении температуры она будет увеличиваться, а при понижении – уменьшаться. Минимальная растворимость (0,5 %) будет наблюдаться при комнатной температуре. Если же дюраль закалить выше 400 °С, он станет твердым однородным раствором – α.

Во время данного процесса будет происходить распад твердого раствора. Очень необычно ведёт себя сплав алюминия и меди, формула которого CuAl2. Процесс сопровождается выделением избыточной фазы А1. Такой распад протекает в течение длительного времени. Это и есть то естественное старение, о котором мы уже ранее упоминали.

Свойства сплава

Легирование металла теми или иными элементами позволяет повысить его характеристики. Вы запомнили, как называется сплав алюминия с медью? Какими же свойствами он обладает?

Сам по себе алюминий очень легкий, мягкий и совершенно непрочный. Он растворим в слабо концентрированных щелочах и кислотах. Добавив к алюминию медь и магний, можно получить уже достаточно прочный сплав. Его эксплуатационные параметры достаточно легко улучшить – просто нужно оставить его полежать при комнатной температуре. Так, эффект старения увеличивает прочность дюраля, о чём мы говорили выше.

Сам по себе алюминий достаточно легкий. Незначительный процент меди не утяжеляет сплав. Еще одна положительная характеристика – это возможность многократно переплавлять сплав. При этом он не будет терять своих свойств. Единственное, что необходимо, так это после отливки дать ему «отдохнуть» пару суток.

Недостатком дюралюминия является его низкая коррозионная стойкость. Поэтому чаще всего такой материал покрывают чистым слоем алюминия или же красят лаками и красками.

Алюминиевые сплавы и их применение

Впервые дюраль был использован для изготовления дирижаблей. Легкость и прочность этого материала позволила создать отличный летательный аппарат. Для этого применялась марка Д16т. В настоящее время сплавы с алюминием, цинком, медью и другими легирующими элементами широко используются в космонавтике, авиации и иных областях машиностроения.

Так, например, использование дюралюминия при изготовлении авто может значительно снизить его вес и стоимость, но при этом оно будет достаточно прочным.

В общем, можно отметить, что ассортимент данного сплава достаточно широк: трубы, проволоки, листы, ленты, прутки и литые детали разных форм. Одной из самых востребованных и распространенных марок по прежнему считается Д16т. Маленькая буква «т» в конце маркировки означает, что сплав закаленный и естественно состарился. Он используется:

  • В конструкциях космических аппаратов, морских судов и самолетов.
  • Для изготовления различных деталей для станков и машин.
  • Для изготовления уличных табличек, дорожных знаков.

Название сплава алюминия и меди должен знать каждый. Дюраль используется и в нефтяной промышленности. Так, специальные трубы, изготовленные из него, могут обеспечить эксплуатацию скважины в течение 6 7 лет.

Как называется сплав алюминия и меди, запомнить легко. Итак, мы рассказали, каким свойствами он обладает и где применяется. Он с легкостью может заменить стальной прокат, в особенности если необходимо сделать конструкцию маловесной.

autogear.ru

Литейные алюминиевые сплавы: алюминий-медь

Алюминиевые литейные сплавы, основным легирующим элементом является медь, имеют ее содержание от 4 до 5 %. Кроме того в них присутствуют обычные примеси железо и кремний, а иногда также небольшие количества марганца.

Фазовая диаграмма алюминий-медь

Эти сплавы являются термически упрочняемыми и могут достигать довольно высокой прочности и пластичности, особенно если они получены из слитков с содержанием железа не более 0,15 %.

Фазовая диаграмма алюминий-медь

Однофазные алюминиевые сплавы

Алюминиево-медные сплавы являются однофазными. В отличие от сплавов алюминия с кремнием здесь нет вторичной фазы с высокой жидкотекучестью, которая бывает так полезна на последних стадиях затвердевания отливок. Когда такая фаза присутствует, она помогает заполнять металлом пустоты, которые возникают при усадке, а также компенсирует напряжения, которые возникают в отливке при ее затвердевании.

Трудные алюминиевые сплавы

Эти сплавы более сложны для литья, чем, скажем, сплавы алюминия с кремнием. При работе с ними необходимо предпринимать специальные меры, чтобы обеспечивать затвердевание металла от отдаленных участках отливки к более горячими и более жидким участкам, к прибылям и затем к питателям. Когда такие должные меры приняты, эти алюминиево-медные сплавы могут успешно применяться для производства отливок с высокой прочностью и пластичностью. Заметим, что более сложная технология литья характерна и для других однофазных алюминиевых литейных сплавов.

Алюминиево-медные сплавы проявляют весьма низкие литейные свойства и требуют более тщательного проектирования литейных форм, чтобы получить хорошую отливку. Эти сплавы применяют главным образом для литья в песчаные формы. Если есть необходимость их литья в металлические формы, то в них добавляют кремний для увеличения текучести и снижения горячего растрескивания. Однако добавки кремния существенно снижают пластичность материала отливки.

Сплавы с содержанием  7-8 % меди

Сплавы алюминий-медь с более высоким содержанием меди (7-8 %) когда-то были самыми популярными. В настоящее время их почти полностью заменили сплавы алюминия-медь-кремний. Единственным преимуществом сплавов алюминий-медь с высоким содержанием меди является их нечувствительность к примесям. Однако они имеют очень низкую прочность и весьма посредственные литейные свойства.

Сплавы с содержанием 9-11 % меди

Очень ограниченное применение имеют алюминиево-медные сплавы, которые содержат 9-11 % меди. Они сохраняют высокую прочность при повышенных температурах и имеют высокую износостойкость, что очень привлекательно для применения в авиационных головках цилиндров и автомобильных блоках цилиндров.

Очень хорошая прочность при высоких температурах является характерным свойством алюминиевых сплавов, которые содержат медь, никель и магний, а иногда также железо.

Источник: Aluminum and Aluminum Alloys, ASM International, 1996

aluminium-guide.ru

Как называется сплав алюминия с медью? Производство сплавов металлов на основе меди и алюминия

Одним из самых распространенных металлов на Земле считается алюминий. Его еще называют «летающим металлом». Несмотря на то, что в природе он не встречается в чистом виде, его можно найти во многих минералах. А самый распространенный сплав, который используется для производства множества деталей и конструкций, – это дюралюминий (дюраль).

Его изобрел немецкий ученый Альфред Вильм, который работал на заводе Dürener Metallwerke AG (город Дюрен). Он определил, что сплав алюминия с медью обладает намного более лучшими характеристиками, чем сам металл в чистом виде.

Группа высокопрочных сплавов

На самом деле дюралюминий – это целая группа сплавов, в которых основным компонентом является алюминий, а его легирующими элементами – медь, цинк, марганец, магний. Но в целом их характеристика определяется не только составом, но и способом термообработки. В 1903 году впервые было обнаружено, что в процессе старения сплав алюминия с медью становится еще более прочным и твердым.

Как выяснилось позже, это объясняется тем, что когда после закалки металл находится несколько дней при комнатной температуре, его перенасыщенный твердый раствор распадается, а это, в свою очередь, сопровождается упрочнением материала.

Процесс старения и возврат к предыдущему состоянию

Как уже было сказано ранее, старение металла – важный процесс, который обуславливается структурными превращениями, вызывающими изменения физических и механических свойств. Оно может быть естественным и искусственным. В первом случае сплав выдерживают несколько суток при комнатной температуре.

При искусственном старении время обработки сокращается, но при этом увеличивается температура. Для того чтобы вернуть сплав к предыдущему состоянию, его необходимо на несколько секунд нагреть до 270 градусов и затем быстро остудить.

Производство алюминия

Для того чтобы изготовить сплав алюминия с медью, необходимо высокотехнологичное оборудование и, конечно же, сам металл. Его добывают из бокситов. Это горная порода, которую необходимо измельчить, добавить в неё воду и обработать паром под большим давлением. Таким образом из глинозема отделяют кремний. Затем густую массу помещают в специальную ванну с расправленным криолитом. Содержимое нагревают до 950 °С и через него пропускают электрический ток в 400 кА.

Это позволяет разорвать связь между атомами кислорода и алюминия. В результате последний оседает на дно в качестве жидкого металла. Так из жидкого алюминия делают отливки. Теперь металл полностью готов к механической обработке. Однако для того чтобы повысить его прочность, необходимо в него добавить легирующие элементы и таким образом получить высококачественный сплав алюминия с медью.

Производство дюрали

В общей сложности все алюминиевые сплавы делятся на две группы: литейные и деформированные. Процесс их производства зависит именно от того, какой вид должен получиться в конечном итоге. Кроме того, способ изготовления также зависит и от требуемых характеристик.

Для производства дюраля алюминиевые слитки расплавляют в электрической печи. Интересно, что это один из немногих металлов, который можно переводить из твердого состояния в жидкое и наоборот множество раз. Это не повлияет на его характеристики. В расплавленный алюминий по очереди добавляют медь и другие легирующие элементы, такие как марганец, железо, магний. Очень важно соблюдать процентное соотношение: 93% алюминия, 5% меди, остальные 2% приходятся на другие легирующие элементы.

Закалка и отжиг дюраля

Обязательным для такого сплава является процесс закалки. Время выдержки для небольших деталей составляет всего несколько минут, а температура - около 500 °С. Сразу после процедуры дюраль получается мягким и вязким. Он легко поддается деформации и обработке. Спустя некоторое время сплав твердеет и его механические свойства повышаются. Если превысить порог температуры, происходит окисление и материал теряет свои характеристики. После закалки его необходимо медленно остудить в прохладной воде.

Итак, вы уже знаете, как называется сплав алюминия с медью. Он нередко поддается деформации: холодному прокату, вытяжке, ковке. При этом возникает так называемая нагартовка. Это процесс, в ходе которого в структуре металла происходит передвижение и размножение дислокаций. В итоге сам сплав меняет свою структуру, становится более твердым и прочным. При этом снижается его пластичность и ударная вязкость. Для того чтобы деформации проходили более легко и нагартовка не разрушала металл, используют отжиг. Для этого сплав нагревают до 350 °С и затем остужают на воздухе.

Диаграмма состояния сплава (алюминий и медь)

Для того чтобы наиболее четко описать взаимодействие компонентов дюраля в твердом и жидком состоянии, а также объяснить характер изменения свойств сплава, используют диаграмму состояний.

Из неё видно, что наибольшая растворимость Cu в сплаве с алюминием наблюдается при температуре 548 °С и при этом она составляет 5,7 %. При повышении температуры она будет увеличиваться, а при понижении – уменьшаться. Минимальная растворимость (0,5 %) будет наблюдаться при комнатной температуре. Если же дюраль закалить выше 400 °С, он станет твердым однородным раствором – α.

Во время данного процесса будет происходить распад твердого раствора. Очень необычно ведёт себя сплав алюминия и меди, формула которого - CuAl2. Процесс сопровождается выделением избыточной фазы А1. Такой распад протекает в течение длительного времени. Это и есть то естественное старение, о котором мы уже ранее упоминали.

Свойства сплава

Легирование металла теми или иными элементами позволяет повысить его характеристики. Вы запомнили, как называется сплав алюминия с медью? Какими же свойствами он обладает?

Сам по себе алюминий очень легкий, мягкий и совершенно непрочный. Он растворим в слабо концентрированных щелочах и кислотах. Добавив к алюминию медь и магний, можно получить уже достаточно прочный сплав. Его эксплуатационные параметры достаточно легко улучшить – просто нужно оставить его полежать при комнатной температуре. Так, эффект старения увеличивает прочность дюраля, о чём мы говорили выше.

Сам по себе алюминий достаточно легкий. Незначительный процент меди не утяжеляет сплав. Еще одна положительная характеристика – это возможность многократно переплавлять сплав. При этом он не будет терять своих свойств. Единственное, что необходимо, так это после отливки дать ему «отдохнуть» пару суток.

Недостатком дюралюминия является его низкая коррозионная стойкость. Поэтому чаще всего такой материал покрывают чистым слоем алюминия или же красят лаками и красками.

Алюминиевые сплавы и их применение

Впервые дюраль был использован для изготовления дирижаблей. Легкость и прочность этого материала позволила создать отличный летательный аппарат. Для этого применялась марка Д16т. В настоящее время сплавы с алюминием, цинком, медью и другими легирующими элементами широко используются в космонавтике, авиации и иных областях машиностроения.

Так, например, использование дюралюминия при изготовлении авто может значительно снизить его вес и стоимость, но при этом оно будет достаточно прочным.

В общем, можно отметить, что ассортимент данного сплава достаточно широк: трубы, проволоки, листы, ленты, прутки и литые детали разных форм. Одной из самых востребованных и распространенных марок по-прежнему считается Д16т. Маленькая буква «т» в конце маркировки означает, что сплав закаленный и естественно состарился. Он используется:

  • В конструкциях космических аппаратов, морских судов и самолетов.
  • Для изготовления различных деталей для станков и машин.
  • Для изготовления уличных табличек, дорожных знаков.

Название сплава алюминия и меди должен знать каждый. Дюраль используется и в нефтяной промышленности. Так, специальные трубы, изготовленные из него, могут обеспечить эксплуатацию скважины в течение 6-7 лет.

Как называется сплав алюминия и меди, запомнить легко. Итак, мы рассказали, каким свойствами он обладает и где применяется. Он с легкостью может заменить стальной прокат, в особенности если необходимо сделать конструкцию маловесной.

загрузка...

buyokproduction.ru