Импедансный метод неразрушающего контроля. Импедансный метод неразрушающего контроля


Оборудование для импедансного метода акустического неразрушающего контроля

Импедансный акустический метод применяется для выявления дефектов клеевых соединений композитных материалов, изделий из дерева, непроклеенных областей и расслоений в изделиях из полимеров, имеющих неметаллическое покрытие толщиной до 4-7 миллиметров. В отдельных случаях, импедансный контроль используют для контроля объектов из полимерных композиционных материалов со слоистой структурой. В доброкачественной зоне комплексный импеданс определяется всеми слоями изделия, колеблющегося как одно целое. А в зоне дефекта связь между слоями и основной массой контролируемого изделия нарушена. Непроклеи и расслоения приводят к изменению характера колебаний.

Физические основы импедансного метода акустического контроля

Акустический импедансный метод неразрушающего контроля основан на регистрации изменений характера колебаний контактирующего с поверхностью контролируемого изделия датчика под действием механического импеданса. Для обнаружения дефектов данным методом применяются специальные приборы - акустические импедансные дефектоскопы. Типовая схема импедансного дефектоскопа изображена на рисунке ниже. Контроль реализуется при одностороннем доступе датчика к поверхности контролируемого изделия. Существует два типа датчиков для акустического контроля импдансным методом: совмещённые и раздельно-совмещённые преобразователи.

Основа совмещённого преобразователя - стержень (1). На торцах стержня установлены: генерирующий колебания (2) и регистрирующий (3) пьезоэлементы. Между объектом контроля (4) и регистрирующим пьезоэлементом находится контактная зона со сферической поверхностью (5). Генерирующий пьезоэлемент подключен к генератору синусоидальных электрических колебаний (6), а регистрирующий пьезоэлемент к усилителю (7). Отражающая масса 8 увеличивает энергию колебаний, отдаваемых в стержень датчика. Генератор и усилитель соединены с модулем обработки сигналов (9). После обработки сигнала текущее значение механического импеданса выводится на дисплей (10) или стрелочный индикатор дефектоскопа. Акустические дефектоскопы этого типа также могут быть оборудованы звуковой и световой сигнализацией (11), которая срабатывает при обнаружении дефекта.

Раздельно-совмещённый датчик для импедансного акустического контроля состоит из двух отдельных элементов - возбуждающего колебания и измерительного вибраторов. Этот тип датчиков применяют для обнаружения в определённой части изделия зон, где отсутствует механическое сцепление. Контактные наконечники вибраторов располагаются в корпусе преобразователя. Измерение механического импеданса осуществляется при одновременном контакте обоих наконечников с поверхностью контролируемого изделия.

xrs.ru

Импедансный метод неразрушающего контроля - Справочник химика 21

    В процессе склеивания из-за несовершенства технологии и по ряду других причин в клееных соединениях возникают дефекты, влияющие на прочность и надежность клеевых конструкций. Для их выявления используются методы неразрушающего контроля (НРК). Принятым в СССР методом выявления дефектов (непроклеи, отсутствие адгезии) склеивания элементов многослойных конструкций является акустический импедансный метод с помощью дефектоскопа ИАД-3. Метод можно использовать в тех случаях, когда модуль упругости материала обшивки изделия достаточно велик (металлы, стеклопластики и т. д.). Контроль со стороны, где находятся низкомодульные материалы (резины, пено-пласты и др.), этим методом невозможен. Импедансный метод с успехом применяется и для контроля качества клеевых конструкций с. неметаллическими обшивками, в том числе сотовых конструкций. В приборе ИАД-3 результаты контроля записываются на электротермическую бумагу [74]. [c.250]     К неразрушающим методам контроля относят визуальный осмотр, простукивание, инфракрасную дефектоскопию, световой метод, рентгенодефектоскопию, радиоинтроскопию и ультразвуковую дефектоскопию. Наибольшее распространение получил последний метод, основанный на измерении длины волны, амплитуды, частоты или скорости распространения ультразвуковых колебаний в контролируемом клееном изделии. В ультразвуковой дефектоскопии используют несколько разновидностей — теневой метод, эхо-метод, резонансный, импедансный и метод свободных колебаний, для реализации которых в нашей стране и за рубежом разработаны соответствующие приборы [406, с. 232] (см. гл. IV). [c.263]

    Возможен также неразрушающий контроль соединения между муфтой и трубой импедансным методом. Для этого используют импульсный импедансный дефектоскоп с раздельно-совмещенным преобразователем. Чувствительность зависит от отношения толщин стенок трубы и муфты. С уменьшением отношения толщины наружного (по отношению к преобразователю) слоя к внутреннему чувствительность повышается. Этим методом обнаруживали непроклей между муфтами с толщиной стенки 12 мм и трубами (толщина стенки 6 мм) в трубопроводе из стеклопластика. Несмотря на неблагоприятное отношение толщин стенок при НК с наружной стороны, при контроле со стороны муфты выявляли дефекты размером от 30 мм и более, со стороны трубы - более 20 мм. Большое затухание упругих волн не препятствует применению импедансного метода. [c.624]

    Исторически первыми для целей неразрушающего контроля бьши использованы упругие волны ультразвуковых частот (> 20 кГц). Поэтому естественно появились термины "ультразвуковой метод" и их производные. Однако в дальнейшем были разработаны и широко внедрены методы, основанные на применении более низких частот звукового диапазона (метод собственных колебаний, импедансный метод и др.), которые не охватьшаются термином "ультразвуковой контроль". Для устранения этого противоречия в принятом в 1979 г. ГОСТ 18353-79, регламентирующем классификацию видов и методов неразрушающего контроля, термин "ультразвуковой контроль" и его производные заменены более общим термином "акустический контроль", включающим в себя упругие колебания любых частот. При этом термин "ультразвуковой контроль" сохранен, но имеет уже более узкий смысл, распространяясь на случаи использования частот только ультразвукового диапазона. Принятая в ГОСТ 18353-79 терминология широко использована во всех последующих отечественных публикациях. [c.9]

    Периодическое изменение потока теплоты приводит также к периодическому изменению температур в точках тела, на которое воздействует тепловой поток. Причем изменения температур внутри тела имеют относительно меньшие значения, чем глубина модуляции первичного теплового потока, и запаздывают по времени. Эти эффекты являются основой импедансных методов теплового неразрушающего контроля теплотехнических свойств и геометрических параметров различных объектов, в частности толщины и теплофизических свойств покрытий. [c.172]

    Акустические свойства полимерных материалов устойчиво зависят от физико-механических свойств. Так, скорость распространения звуковых волн в стекло- и углепластиках зависит от направления про-звучивания изделия (по основе или по утку ткани), от содержания связующего, наличия в нем пор или посторонних включений и т. п. Следовательно, имея заранее составленные тарировочные графики акустических свойств различных изделий из пластмасс и соответствующую электронно-акустическую аппаратуру, можно организовать сплошной неразрушающий контроль качества полимерных материалов в детали [10, 11]. Наиболее распространенными методами акустической дефектоскопии являются следующие ультразвуковой собственных колебаний и импедансный (метод реакции). [c.201]

chem21.info

Импедансный метод неразрушающего контроля – Telegraph

Импедансный метод неразрушающего контроля

Скачать файл - Импедансный метод неразрушающего контроля

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны. Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования. Казанский национальный исследовательский технический университет им. Методы неразрушающего контроля НК основываются на наблюдении, регистрации и анализе результатов взаимодействия физических полей излучений или веществ с объектом контроля, причем характер этого взаимодействия зависит от химического состава, строения, состояния структуры контролируемого объекта и т. Универсального метода неразрушающего контроля, способного обнаружить самые разнообразные по характеру дефекты, нет. Каждый отдельно взятый метод НК решает ограниченный круг задач. Система средств неразрушающего обычно состоит из прибора, преобразователя и контрольного образца. Важной характеристикой любого метода неразрушающего контроля является его чувствительность. Чувствительность - выявление наименьшего по размерам дефекта; зависит от особенностей метода неразрушающего контроля, условий проведения контроля, материала изделий. Удовлетворительная чувствительность для выявления одних дефектов может быть совершенно непригодной для выявления дефектов другого характера. По характеру взаимодействия упругих колебаний с контролируемым материалом акустические методы подразделяют на следующие основные методы:. Основоположником развития импедансного метода контроля является д. Долгое время импедансный метод применяли только в СССР. Лишь в г. При работе импедансных дефектоскопов применяются изгибные и продольные упругие волны и используют непрерывные отечественные дефектоскопы ИАД-3, АД И, английские AFD-2, MIA, MIA или импульсные упругие колебания, совмещенные или раздельно-совмещенные преобразователи. Контроль - мероприятия, включающие проведение измерений, испытаний, проверки одной или нескольких характеристик изделий или услуги и их сравнение с установленными требованиями. Средство контроля - техническое устройство, вещество и или материал для проведения контроля. Импеданс -- это сопротивление потоку переменного тока через проводящий материал. Аёналог понятия сопротивления для постоянного тока в приложении к синусоидальному току. Механическим импедансом Z называется комплексное отношение силы F, действующей на поверхности контролируемого участка, к средней колебательной скорости V на этой поверхности в направлении силы: Пьезоэлектрические преобразователи -- это устройства, использующие пьезоэлектрический эффект в кристаллах, керамике или плёнках и преобразующие механическую энергию в электрическую и наоборот. Неразрушающий контроль НК - контроль свойств и параметров объекта, при котором не должна быть нарушена пригодность объекта к использованию и эксплуатации. Амплитуда А - максимальное значение напряжения сигнала, измеряющееся в вольтах. Этот параметр определяет возможность регистрации АЭ события. Амплитуды сигналов прямо связаны с магнитудами событии? Амплитуды АЭ принято выражать в децибельном логарифмиче6ском масштабе, при этом 1 мкВ на выходе датчика принимается за 0 дБ, 10мкВ - 20 дБ, мкВ - 40 дБ и т. Импедансным методом контроля выявляют дефекты соединений в многослойных конструкциях из композиционных полимерных материалов и металлов, применяемых в различных сочетаниях. Импедансный акустический метод основан на анализе изменения механического или входного акустического импеданса участка поверхности контролируемого объекта, с которым взаимодействует преобразователь. В низкочастотных импедансных дефектоскопах преобразователем служит колеблющийся стержень, опирающийся на поверхность. Между ними нет контактной жидкости сухой контакт. Появление подповерхностного дефекта в виде расслоения делает расположенный над дефектом участок поверхности более гибким, податливым, т. В результате изменяется режим колебаний стержня, в частности уменьшаются механические напряжения на приемнике, что служит признаком дефекта. Техника контроля импедансным методом весьма проста и сводится к тому, что оператор водит концом датчика по поверхности контролируемого изделия, наблюдая за отклонением стрелки прибора, включенного на выходе усилителя. Схема контроля данным методом показана на рисунке Датчик стержень 1 совершает продольные колебания и, контактируя с изделием 4, заставляет его колебаться как единое целое. Механическое сопротивление, оказываемое изделием стержню, определяется жесткостью системы: При контактировании датчика с участком конструкции А, где жесткая связь, сила реакции Fp изделия на стержень значительна. При положении датчика в месте нарушения жесткой связи Б, сила реакции будет меньше -Fp! Дефект вызывает также значительный фазовый сдвиг. Поэтому, измеряя фазовый сдвиг между принятым сигналом и напряжением возбуждающего излучатель генератора, выявляют дефекты по вызываемому ими изменению фаз. В зоне дефекта соединения модуль Z механического импеданса уменьшается и меняется аргумент ц. Устройством, чувствительным к изменению механического импеданса контролируемого объекта, служит преобразователь дефектоскопа. В импедансных дефектоскопах применяют совмещенные и раздельно-совмещенные преобразователи. Совмещенные преобразователи рисунок Достоинство данного преобразователя, называемого также абсолютным, - простота, недостаток - наличие сигнала в режиме холостого хода. Этот сигнал появляется в результате инерционной нагрузки контактного наконечника и приемного пьезоэлемента. Данный недостаток устранен в совмещенном дифференциальном преобразователе. Конструктивно дифференциальный преобразователь похож на абсолютный. Он имеет излучающий пьезоэлемент, расположенный в середине колебательной системы, и два приемных пьезоэлемента: Контролируемый объект выступает в роли элемента связи между вибраторами. Области применения этих вариантов метода различны. Основная область применения первого варианта аксустического импедансного метода:. Метод, реализуемый с использованием раздельно-совмещенного преобразователя позволяет выявлять дефекты по изменению оцененного с поверхности конструкции механического импеданса. Излучающий и приемный вибраторы, имеющие сферические контактные наконечники, расположены в общем корпусе преобразователя так, что передача энергии между ними практически может происходить только при их контакте с контролируемой конструкцией. Признаком дефекта при этом служит увеличение амплитуды принятого сигнала вследствие уменьшения механического импеданса в зоне дефекта. Большую роль в повышении достоверности обнаружения дефекта играет правильный выбор информативных параметров и методов обработки полученного сигнала. Самый простой вид обработки сигнала - амплитудная обработка, где регистрируется изменение амплитуды принятого сигнала. Изменение сигнала импеданса или скорости распространения упругих волн регистрируется по изменению фазы принятого сигнала. В частотной обработке регистрируется изменение частоты системы, в которой преобразователь является частотозадающим звеном. Импедансный метод контроля также имеет и недостатки: Дефектоскоп импедансный АДИ предназначен для неразрушающего контроля клееных и паяных соединений между элементами многослойных конструкций. Позволяет обнаруживать зоны нарушения сплошности соединения между обшивками и внутренними элементами контролируемых конструкций. Датчики снабжены износоустойчивыми корундовыми наконечниками. Позволяет осуществить контроль изделий в полуавтоматическом режиме. Масса - 9,5 кг. Дефектоскоп ИДМ используется для обнаружения расслоений и непроклеев в изделиях из слоистых пластиков и композиционных материалов при производстве и эксплуатации авиакосмической техники. Принцип действия прибора импульсный импедансный. Предназначен для контроля композиционных материалов. Позволяет обнаруживать дефекты типа расслоения, непроклея, нарушения сплошности контролируемого объекта. Может эксплуатироваться в лабораторных, цеховых и полевых условиях. Предназначен для использования в импедансных дефектоскопах для контроля композиционных материалов. Применяется для выявления дефектов типа 'непроклей' и 'расслоение' на глубине залегания:. Применяется для выявления дефектов типа 'непроклей' и 'расслоение' на относительно малых глубинах залегания:. В настоящее время трудно найти отрасль хозяйства России, где бы не применялся акустический вид НК. Состоящий из множества методов, в основу которых положено свойство акустических колебаний проникать в глубь материалов и отражаться от раздела двух сред, он нашел широкое применение при контроле изделий из различных материалов пластмасс, бетона, металлов и т. Широкий спектр деталей железнодорожного подвижного состава оси локомотивов и вагонов, бандажи и цельнокатаные колеса, коленчатые валы дизелей и компрессоров, детали тяговых передач локомотивов. Применение системы акустических методов НК наряду с другими позволило обеспечить безопасность движения на железнодорожном транспорте. Методы и средства измерений, испытаний и контроля: Основы неразрушающего контроля методом акустической эмиссии: М 38 Измерения, контроль, испытания и диагностика. Метод неразрушающего контроля состояния поверхности полупроводниковых пластин, параметров тонких поверхностных слоёв и границ раздела между ними. Методика измерений на эллипсометре компенсационного типа. Применение эллипсометрических методов контроля. Колебания частиц в упругих средах, распространяющиеся в форме продольных волн, частота которых лежит в пределах, воспринимаемых ухом. Объективные, субъективные характеристики звука. Звуковые методы исследования в клинике. Положение пальцев при перкуссии. Состав элегазового электротехнического оборудования, задачи контроля его параметров. Канал контроля влажности элегаза. Диапазон величин контролируемых параметров. Конструкции системы диагностики и контроля КРУЭ. Основные виды контроля состояния силового трансформатора во время работы и при периодических обследованиях, выявление его дефектов. Газохроматографический анализ масла и методы его интерпретации. Использование автоматизированных систем контроля. Классификация и модели тепловой дефектоскопии. Модель активного теплового контроля пассивных дефектов. Схемы яркостного визуального пирометра с исчезающей нитью. Природа и характеристики магнитного поля. Магнитные свойства различных веществ и источники магнитного поля. Устройство электромагнитов, их классификация, применение и примеры использования. Соленоид и его применение. Методы учета и контроля ядерных материалов в 'мокром' хранилище отработавшего ядерного топлива реакторных установок ВВЭР Требования к применению средств контроля доступа и проведению физической инвентаризации. Порядок оценки безвозвратных потерь. Типы волн и их отличительные особенности. Понятие и исследование параметров упругих волн: Сущность и характеристика стоячих волн. Явление и условия наложения волн. Описание звуковых и стоячих волн. Основные виды физических полей в конструкциях РЭС. Моделирование теплового поля интегральной схемы в САПР ANSYS. Моделирование поля электромагнитного поля интегральной схемы, изгибных колебаний печатного узла. Высокая точность и скорость моделирования. Связь между переменным электрическим и переменным магнитным полями. Свойства электромагнитных полей и волн. Специфика диапазонов соответственного излучения и их применение в быту. Воздействие электромагнитных волн на организм человека и защита от них. Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т. PPT, PPTX и PDF-файлы представлены только в архивах. Главная Коллекция рефератов 'Otherreferats' Физика и энергетика Приборы и методы импедансного контроля. Регистрация и анализ результатов взаимодействия физических полей или веществ с объектом контроля. Работа импедансных дефектоскопов, применение изгибных и продольных упругих волн. Непрерывные, импульсные упругие колебания. Туполева-КАИ Институт автоматики и электронного приборостроения Реферат на тему: Приборы и методы импедансного контроля Автор: Преимущества и недостатки импедансного метода контроля 5. По характеру взаимодействия упругих колебаний с контролируемым материалом акустические методы подразделяют на следующие основные методы: Основные определения Контроль - мероприятия, включающие проведение измерений, испытаний, проверки одной или нескольких характеристик изделий или услуги и их сравнение с установленными требованиями. Метод контроля - правила применения определенных принципов и средств контроля. Принцип работы Импедансным методом контроля выявляют дефекты соединений в многослойных конструкциях из композиционных полимерных материалов и металлов, применяемых в различных сочетаниях. Схема контроля качества склейки. Область применения Области применения этих вариантов метода различны. Основная область применения первого варианта аксустического импедансного метода: Преимущества и недостатки импедансного метода контроля Импедансный контроль имеет следующие преимущества: Импедансные дефектоскопы Импедансный дефектоскоп АДИ Дефектоскоп импедансный АДИ предназначен для неразрушающего контроля клееных и паяных соединений между элементами многослойных конструкций. Особенности акустического импедансного дефектоскопа ИДМ: Импедансный дефектоскоп ИД Особенности: Применяется для выявления дефектов типа 'непроклей' и 'расслоение' на глубине залегания: Совместим с дефектоскопами ИД, АД Совмещенный преобразователь ПИ Предназначен для использования в импедансных дефектоскопах для контроля композиционных материалов. Применяется для выявления дефектов типа 'непроклей' и 'расслоение' на относительно малых глубинах залегания: Заключение В настоящее время трудно найти отрасль хозяйства России, где бы не применялся акустический вид НК. Эллипсометрия, как метод неразрушающего контроля. Физические основы звуковых методов исследования в клинике. Методы и средства контроля КРУЭ кВ. Разработка автоматизированной системы контроля состояния крупных силовых трансформаторов. Расчет намагничивающего устройства для магнитопорошкового метода неразрушающего контроля. Совершенствование системы учета и контроля ядерных материалов хранилища отработавшего ядерного топлива. Разработка лабораторного практикума по моделированию физических полей в САПР ANSYS. Другие документы, подобные 'Приборы и методы импедансного контроля'.

Акустические методы

Тест рассказпо картинкам

Симс 4 играть без номера телефона

Неразрушающий контроль. Акустическая дефектоскопия

Как отключить пвп в регионе

Сонник птичьи яйца

Где находится офис uberв москве

Карта куйбышевского района г самары

Приборы и методы импедансного контроля

Скачать дополнительное соглашениек договору образец

Где центр кисловодска

Тихвин как доехать на машине

Методы. Низкочастотные акустические методы контроля.

Поэт иван жданов стихи

Чаэс на карте яндекс

Аквапарк мореон адрес

telegra.ph

Импедансный метод неразрушающего - Справочник химика 21

    Периодическое изменение потока теплоты приводит также к периодическому изменению температур в точках тела, на которое воздействует тепловой поток. Причем изменения температур внутри тела имеют относительно меньшие значения, чем глубина модуляции первичного теплового потока, и запаздывают по времени. Эти эффекты являются основой импедансных методов теплового неразрушающего контроля теплотехнических свойств и геометрических параметров различных объектов, в частности толщины и теплофизических свойств покрытий. [c.172]     Возможен также неразрушающий контроль соединения между муфтой и трубой импедансным методом. Для этого используют импульсный импедансный дефектоскоп с раздельно-совмещенным преобразователем. Чувствительность зависит от отношения толщин стенок трубы и муфты. С уменьшением отношения толщины наружного (по отношению к преобразователю) слоя к внутреннему чувствительность повышается. Этим методом обнаруживали непроклей между муфтами с толщиной стенки 12 мм и трубами (толщина стенки 6 мм) в трубопроводе из стеклопластика. Несмотря на неблагоприятное отношение толщин стенок при НК с наружной стороны, при контроле со стороны муфты выявляли дефекты размером от 30 мм и более, со стороны трубы - более 20 мм. Большое затухание упругих волн не препятствует применению импедансного метода. [c.624]

    В процессе склеивания из-за несовершенства технологии и по ряду других причин в клееных соединениях возникают дефекты, влияющие на прочность и надежность клеевых конструкций. Для их выявления используются методы неразрушающего контроля (НРК). Принятым в СССР методом выявления дефектов (непроклеи, отсутствие адгезии) склеивания элементов многослойных конструкций является акустический импедансный метод с помощью дефектоскопа ИАД-3. Метод можно использовать в тех случаях, когда модуль упругости материала обшивки изделия достаточно велик (металлы, стеклопластики и т. д.). Контроль со стороны, где находятся низкомодульные материалы (резины, пено-пласты и др.), этим методом невозможен. Импедансный метод с успехом применяется и для контроля качества клеевых конструкций с. неметаллическими обшивками, в том числе сотовых конструкций. В приборе ИАД-3 результаты контроля записываются на электротермическую бумагу [74]. [c.250]

    Исторически первыми для целей неразрушающего контроля бьши использованы упругие волны ультразвуковых частот (> 20 кГц). Поэтому естественно появились термины "ультразвуковой метод" и их производные. Однако в дальнейшем были разработаны и широко внедрены методы, основанные на применении более низких частот звукового диапазона (метод собственных колебаний, импедансный метод и др.), которые не охватьшаются термином "ультразвуковой контроль". Для устранения этого противоречия в принятом в 1979 г. ГОСТ 18353-79, регламентирующем классификацию видов и методов неразрушающего контроля, термин "ультразвуковой контроль" и его производные заменены более общим термином "акустический контроль", включающим в себя упругие колебания любых частот. При этом термин "ультразвуковой контроль" сохранен, но имеет уже более узкий смысл, распространяясь на случаи использования частот только ультразвукового диапазона. Принятая в ГОСТ 18353-79 терминология широко использована во всех последующих отечественных публикациях. [c.9]

    Акустические свойства полимерных материалов устойчиво зависят от физико-механических свойств. Так, скорость распространения звуковых волн в стекло- и углепластиках зависит от направления про-звучивания изделия (по основе или по утку ткани), от содержания связующего, наличия в нем пор или посторонних включений и т. п. Следовательно, имея заранее составленные тарировочные графики акустических свойств различных изделий из пластмасс и соответствующую электронно-акустическую аппаратуру, можно организовать сплошной неразрушающий контроль качества полимерных материалов в детали [10, 11]. Наиболее распространенными методами акустической дефектоскопии являются следующие ультразвуковой собственных колебаний и импедансный (метод реакции). [c.201]

    К неразрушающим методам контроля относят визуальный осмотр, простукивание, инфракрасную дефектоскопию, световой метод, рентгенодефектоскопию, радиоинтроскопию и ультразвуковую дефектоскопию. Наибольшее распространение получил последний метод, основанный на измерении длины волны, амплитуды, частоты или скорости распространения ультразвуковых колебаний в контролируемом клееном изделии. В ультразвуковой дефектоскопии используют несколько разновидностей — теневой метод, эхо-метод, резонансный, импедансный и метод свободных колебаний, для реализации которых в нашей стране и за рубежом разработаны соответствующие приборы [406, с. 232] (см. гл. IV). [c.263]

chem21.info

Импульсный импедансный способ дефектоскопии объектов

 

Сущность изобретения: способ относится к области неразрушающего контроля и предназначен для обнаружения скрытых дефектов соединений типа расслоений, непроклеев и т.п. в однослойных, многослойных, сотовых и других конструкциях, состоящих из пластиков, металлов или их комбинаций. Принцип работы способа основан на том, что в системе совмещения преобразователь-объект периодически возбуждают импульсы вынужденных незатухающих колебаний и измеряют амплитуду и разность фаз, между излучаемым и приемным сигналом и по измеренным параметрам в любых их соотношениях судят о дефектности объекта. Способ обладает высокой чувствительностью и малым расходом энергии на возбуждение импедансного преобразователя. Это позволяет создать чувствительные, энергоэкономичные портативные дефектоскопы. 1 ил.

Изобретение относится к акустической дефектоскопии, в частности к импедансному способу неразрушающего контроля и может быть использовано для обнаружения скрытых дефектов соединений типа расслоений, непроклеев и т.п. в однослойных, многослойных, сотовых и других конструкциях, состоящих из пластиков, металлов или их комбинаций.

Известен импедансный способ дефектоскопии объектов, в котором для возбуждения акустических колебаний в системе преобразователь-объект используют непрерывные вынужденные колебания [1] Способ обладает наибольшей чувствительностью в импедансной дефектоскопии при использовании совмещенного преобразователя с одной зоной контакта с контролируемым объектом. Необходимая частота возбуждения преобразователя устанавливается с помощью перестраеваемого звукового генератора. Признаками обнаружения дефекта в способе служат изменения амплитуды и фазы сигнала с приемника преобразователя. Недостатком способа является относительно большой расход энергии на возбуждение акустических колебаний в преобразователе. Это обстоятельство препятствует появлению портативных дефектоскопов использующих данный способ, что является ограничением области его применения. Наиболее близким к изобретению по технической сущности и достигаемому результату является способ импульсной импедансной дефектоскопии объектов, заключающийся в том, что совмещенный импедансный преобразователь с одной зоной контакта с контролируемым объектом прижима к этому объекту, периодически возбуждают с помощью излучателя преобразователя в системе преобразователь-объект упругие свободно затухающие колебания, измеряют амплитуду, частоту и фазу электрического сигнала на приемнике и по измеренным параметрам в любых сочетаниях судят о дефектности объекта [2] Импульсный способ с использованием свободно затухающих колебаний энерго экономичен, но уступает в чувствительности способу с возбуждением вынужденных колебаний по ряду причин, в частности: отношение механических импедансов в доброкачественной и дефектной зонах объекта, определяющее выявляемость дефектов по изменению амплитуды или фазы сигнала в режиме свободных колебаний меньше, чем при использовании вынужденных колебаний; нельзя осуществить резонансный режим работы, при котором вследствиe нарушения условий резонанса в дефектных зонах контролируемого объекта по отношению к бездефектным, наиболее резко меняются амплитуда и фаза сигнала с приемника преобразователя; отсутствует возможность выбора оператором рабочей частоты, при которой условия контроля становятся оптимальными; по причине физических особенностей способа, технически сложно осуществить фазовые детектирования, поэтому до настоящего времени фазовый режим работы в приборах не реализован. Техническим результатом изобретения является повышение чувствительности импульсного импедансного способа дефектоскопии объектов. Он достигается тем, что совмещенным импедансным преобразователем с одной зоной контакта с объектом периодически возбуждают импульсы вынужденных колебаний с заданной частотой, и на приемнике преобразователя, дополнительно к измеренной амплитуде колебаний, измеряют разность колебаний импульсного сигнала относительно фазы колебаний сигнала возбуждения, и по измеренным параметрам в любых их соотношениях судят о дефектности объекта. На чертеже приведена блок-схема устройства для реализации способа. Устройство содержит: импедансный совмещенный преобразователь 1 с одной зоной контакта с контролируемым объектом 8, и имеющего излучающий 2 и приемный 3 преобразователи, генератор импульсов 4, фильтр-усилитель 5, детектор амплитуды и фазы 6, сигнализатор дефектов 7. Генератор импульсов 4 с помощью излучателя 2 импедансного совмещенного преобразователя 1 периодически возбуждает в системе прбразователь-объект акустические импульсы вынужденных синусоидальных колебаний, имеющих постоянную амплитуду и частоту повторения. Длительность возбуждающих импульсов определяется = nT = n/F, где T и F соответственно, период и частота синусоидальных колебаний в импульсе; n число периодов колебаний. Как следствие реакции контролируемого объекта 8 на возбуждение преобразователем 1, в его приемнике 3 возникают электрические импульсы, содержащие синусоидальные колебания той же частоты, что и импульсы возбуждения, но по отношению к параметрам этих импульсов, амплитуде и фазе, и в зависимости от импедансов контролируемого объекта в зонах его возбуждения, изменяются параметры колебаний сигнала с приемника 3 преобразователя 1, амплитуда A и фаза . Отклонения последних от допустимых значений служат признаком обнаружения дефекта в объекте. Полезная частота импульсного сигнала фильтруется и усиливается до необходимого уровня детектирования по амплитуде и фазе в блоке фильтра-усилителя 5. Опорным сигналом при детектировании фазы в блоке детектора амплитуды и фазы 6 служит сигнал генератора импульсов 4. Продетектированные в блоке 6 сигналы, амплитуда A и фаза v, а также сигналы в любых соотношениях A и v (например: A+, AS и др.) поступают в блок сигнализатора дефектов 7. Предлагаемый способ импульсной импедансной дефектоскопии объектов по физической сущности обнаружения дефектов близок к способу использующему вынужденные непрерывные колебания и поэтому близок к нему и по чувствительности. В то же время импульсный режим работы возбуждения колебаний в системе преобразователь-объект существенно уменьшает расход энергии на осуществление способа. Экспериментальная проверка способа показала, что по чувствительности он практически одинаков со способом, в котором используются вынужденные непрерывные колебания. При эксперименте был использован совмещенный дифференциальный преобразователь ПАДИ-6 от серийного импедансного дефектоскопа АД-4ОИ. Для реализации способа было вполне достаточно иметь 5 10 периодов колебаний в импульсе, в частотном диапазоне от 1 до 8 аГц. Частота следования импульсов составляла 25 40 Гц. Способ позволит создать чувствительные, энергоэкономичные портативные приборы для обнаружения дефектов.

Формула изобретения

Импульсный импедансный способ дефектоскопии объектов, заключающийся в том, что совмещенный импедансный преобразователь с одной зоной контакта с контролируемым объектом периодически возбуждает с помощью излучателя преобразователя упругие колебания в системе преобразователь контролируемый объект и измеряют амплитуду электрического сигнала на приемнике преобразователя, по которой судят о дефектности объектов, отличающийся тем, что преобразователь возбуждают радиоимпульсами с заданной несущей частотой, в качестве информационного параметра в электрическом сигнале приемника преобразователя дополнительно измеряют разность фаз в сигналах излучателя и приемника, а о дефектности объектов судят совместно по амплитуде и разности фаз.

РИСУНКИ

Рисунок 1

www.findpatent.ru

Методы неразрушающего контроля

Рекомендуем приобрести:

Установки для автоматической сварки продольных швов обечаек - в наличии на складе! Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки - в наличии на складе! Защита от излучения при сварке и резке. Большой выбор. Доставка по всей России!

В настоящее время широко применяют различные физические методы и средства неразрушающего контроля (НК) металлов и металлоизделий, позволяющие проверять качество продукции без нарушения ее пригодности к использованию по назначению.

Все дефекты, как известно, вызывают изменение физических характеристик металлов и сплавов — плотности, электропроводности, магнитной проницаемости, упругих свойств и т. д. Исследование изменений характеристик металлов и обнаружение дефектов, являющихся причиной этих изменений, составляет физическую основу методов неразрушающего контроля. Эти методы основаны на использовании проникающих излучений рентгеновских и гамма-лучей, ультразвуковых и звуковых колебаний, магнитных и электромагнитных полей, оптических спектров, явлений капиллярности и т. д.

К достоинствам методов неразрушающего контроля (МНК) относятся: сравнительно большая скорость контроля, высокая надежность (достоверность) контроля, возможность механизации и автоматизации процессов контроля, возможность применения МНК в пооперационном контроле изделий сложной формы, возможность применения МНК в условиях эксплуатации без разборки машин и сооружений и демонтажа их агрегатов, сравнительная дешевизна контроля и др.

По ГОСТ 18353—73 МНК классифицируются на виды (Вид неразрушающего контроля — условная группировка методов НК, объединенная общностью физических характеристик.): акустический, магнитный, оптический, проникающими веществами, радиационный, радиоволновый, тепловой, электрический и электромагнитный.

Акустические методы

Основаны на регистрации параметров упругих колебаний, возбужденных в контролируемом объекте (Под объектом контроля подразумеваются материалы, полуфабрикаты и готовые изделия). Применяются для обнаружения поверхностных и внутренних дефектов (нарушений сплошности, неоднородности структуры, межкристаллитной коррозии, дефектов склейки, пайки, сварки и т. д.) в заготовках и изделиях, изготовленных из различных материалов. Они позволяют измерять геометрические параметры при одностороннем доступе к изделию, а также физико-механические свойства металлов и металлоизделий без их разрушения.

К акустическим методам относятся методы звукового (импедансный, свободных колебаний и др.) и ультразвукового (эхо-импульсный, резонансный, теневой, эмиссионный, велосиметрический и др.) диапазонов.

Магнитные методы

Основаны на регистрации магнитных полей рассеяния над дефектами или магнитных свойств контролируемого объекта. Применяют для обнаружения поверхностных и подповерхностных дефектов в деталях и полуфабрикатах различной формы, изготовленных из ферромагнитных материалов. К ним относятся магнитно-порошковый, магнитно-графический, феррозондовый, магнитно-индукционный и другие методы.

Магнитные поля рассеяния над дефектами регистрируются в магнитно-порошковом методе с помощью ферромагнитного порошка или суспензии, в магнитно-графическом — с помощью ферромагнитной ленты и в феррозондовом — с помощью чувствительных к магнитным полям феррозондов.

Магнитно-порошковый метод нашел широкое применение на заводах промышленности, ремонтных предприятиях и эксплуатирующих подразделениях. С его помощью надежно выявляют поверхностные трещины, микротрещины, волосовины, флокены и другие дефекты.

Магнитно-графический метод наибольшее применение получил для контроля сварных соединений. Он позволяет выявлять трещины, непровары, шлаковые и газовые включения и другие дефекты в стыковых сварных швах.

Феррозондовый метод применяют для обнаружения тех же дефектов, что и магнитно-порошковым методом, а также дефектов, расположенных на глубине до 20 мм. С его помощью измеряют толщину листов и стенок сосудов при двухстороннем доступе.

Оптические методы

Основаны на взаимодействии светового излучения с контролируемым объектом. Они предназначены для обнаружения различных поверхностных дефектов материала деталей, скрытых дефектов агрегатов, контроля закрытых конструкций, труднодоступных мест машин и силовых установок (при наличии каналов для доступа оптических приборов к контролируемым объектам). Регистрация поверхностных дефектов осуществляется с помощью оптических устройств, создающих полное изображение проверяемой зоны. Достоинства этих методов — простота контроля, несложное оборудование и сравнительно небольшая трудоемкость. Поэтому их применяют на различных стадиях изготовления деталей и элементов конструкций, в процессе регламентных работ и осмотров, проводимых при эксплуатации техники, а также при ее ремонте.

Так как контроль с помощью оптических приборов обладает невысокой чувствительностью и достоверностью, то его применяют для поиска достаточно крупных поверхностных трещин, коррозионных и эрозионных повреждений, забоин, открытых раковин, пор, для обнаружения течей, загрязнений, наличия посторонних предметов и т. д.

Методы контроля проникающими веществами

К ним относятся капиллярные методы и методы течеискания.

Капиллярные методы основаны на капиллярном проникновении индикаторных жидкостей в полости поверхностных дефектов и регистрации индикаторного рисунка.

При контроле этими методами на очищенную поверхность детали наносят проникающую жидкость, которая заполняет полости поверхностных дефектов. Затем жидкость удаляют, а оставшуюся в полостях дефектов часть обнаруживают путем нанесения проявителя, который адсорбирует жидкость, образуя индикаторный рисунок. Эти методы применяют в цехозых, лабораторных и полевых условиях, при положительных и отрицательных температурах. Они позволяют обнаруживать дефекты производственно-технологического и эксплуатационного происхождения: трещины шлифовочные, термические, усталостные, волосовины, закаты и др. Капиллярные методы могут быть применены для обнаружения дефектов в деталях из металлов и неметаллов простой и сложной формы.

Благодаря высокой чувствительности, простоте контроля и наглядности результатов эти методы применяют не только для обнаружения, но л для подтверждения дефектов, выявленных другими методами дефектоскопии— ультразвуковым, магнитным, вихревых токов и др.

Наиболее распространенными капиллярными методами являются цветной, люминесцентный, люминесцентно-цветной, фильтрующихся частиц, радиоактивных жидкостей и др.

Методы течеискания основаны на регистрации индикаторных жидкостей и газов, проникающих в сквозные дефекты контролируемого объекта. Их применяют для контроля герметичности работающих под давлением сварных сосудов, баллонов, трубопроводов гидро-, топливо-, масляных систем силовых установок и т. п. К методам течеискания относятся гидравлическая опрессовка, аммиачно-индикаторный метод, фреоновый, масс-спектрометрический, пузырьковый, с помощью гелиевого и галоидного течеискателей и т. д. Проведение течеискания с помощью радиоактивных веществ позволило значительно увеличить чувствительность метода.

Радиационные методы

Основаны на взаимодействии проникающих излучений с контролируемым объектом. Их применяют для контроля качества сварных и паяных швов, литья, качества сборочных работ, состояния закрытых полостей агрегатов и т. д. Проникающие излучения (рентгеновское, потока нейтронов, γ- и β-лучей), проходя через толщу материала детали и взаимодействуя с его атомами, несут различную информацию о внутреннем строении вещества и наличии скрытых дефектов внутри контролируемых объектов.

Наиболее распространенными радиационными методами являются рентгенография, рентгеноскопия и гамма-контроль, которые нашли применение на предприятиях металлургии и машиностроения. В качестве источников проникающих излучений применяют рентгеновские аппараты, бетатроны, линейные ускорители и микротроны, гамма-дефектоскопы и др.

Радиоволновые методы

Основаны на регистрации изменения параметров электромагнитных колебаний, взаимодействующих с контролируемым объектом. Их применяют для контроля качества и геометрических размеров изделий из диэлектрических материалов (стеклопластики и пластмассы, резина, термозащитные и теплоизоляционные материалы, фибра), вибраций, толщины металлического листа и т. п. В качестве источников энергии служат магнетроны, клистроны, лампы обратной волны, преобразователи частоты, твердотельные генераторы, диоды Ганна и т. п.

Эти методы еще не нашли должного применения в промышленности, хотя и являются весьма перспективными. Так, с их помощью можно обнаруживать непроклеи, расслоения (площадью от 10 мм2 и более), воздушные включения, трещины (от 10 мкм и более), неоднородности по плотности, напряжения, измерять геометрические размеры и т. п.

Тепловые методы

Основаны на регистрации тепловых полей, температуры или теплового контраста контролируемого объекта. Их применяют для измерения температур, получения информации о тепловом режиме объекта, определения и анализа температурных полей, дефектов типа нарушения сплошности (расслоения, трещины и т.п.), выявления дефектов пайки многослойных соединений из металлов и неметаллов, склейки металл — металл, металл — неметалл и т. п. Контроль осуществляется с помощью термометров, термоиндикаторов, пирометров, инфракрасных микроскопов и радиометров и т. д.

Эти методы также пока применяют ограниченно, в основном в приборостроении для контроля радиоэлектронной аппаратуры. В пленочных проводниках и резисторах выявляют микротрещины, утонения, плохую адгезию, плохой контакт; в микросхемах — плохой контакт, нарушения теплового контакта, короткие замыкания, перегрев; в пленочных конденсаторах — токи утечки; в микродиодах и микротранзисторах — перегрев, неудовлетворительные контакты.

Электрические методы

Основаны на регистрации электростатических полей и электрических параметров контролируемого объекта. Их применяют для выявления раковин и других дефектов в отливках, расслоений в металлических листах, различных дефектов в сварных и паяных швах, трещин в металлических изделиях, растрескиваний в эмалевых покрытиях и органическом стекле и т. д. Кроме того, эти методы применяют для сортировки деталей, измерения толщин пленочных покрытий, проверки химического состава и определения степени термообработки металлических изделий. Наиболее распространенными из этих методов являются измерение электрического сопротивления, трибоэлектрический, термоэлектрический и др.

Электромагнитный (вихревых токов) метод

Основан на регистрации изменения взаимодействия собственного электромагнитного поля катушки с электромагнитным полем вихревых токов, наводимых этой катушкой в контролируемом объекте. Применяется для обнаружения поверхностных дефектов в магнитных и немагнитных деталях и полуфабрикатах. Метод позволяет выявлять нарушения сплошности, в основном трещин, на различных по конфигурации деталях, в том числе имеющих покрытия. На основе метода вихревых токов разработаны приборы для измерения толщины листов и покрытий, диаметра проволоки и прутков. Применяют на заводах и ремонтных предприятиях. В условиях эксплуатации применяют для профилактического контроля лопаток турбин газотурбинных двигателей, сварных и литых узлов элементов конструкций и др.

Приведенный краткий обзор позволяет сделать вывод, что для контроля металлов и металлоизделий имеется достаточный арсенал методов и средств неразрушающего контроля.

Следует отметить, что методы НК не являются универсальными. Каждый из них может быть использован наиболее эффективно для обнаружения определенных дефектов. Так, например, с помощью радиационных методов можно выявлять внутренние дефекты в виде пустот и пор в деталях, изготовленных из различных материалов, однако нельзя обнаружить весьма опасные тонкие усталостные трещины. Для этой цели требуется применить другой, чувствительный к поверхностным трещинам метод, например капиллярный, магнитный или вихревых токов. Поэтому для контроля деталей ответственного назначения применяют два или несколько различных методов.

Применение комплексного контроля изделий в условиях производства и эксплуатации позволит повысить качество и надежность техники. Систематическое проведение НК на различных этапах технологического процесса и статистическая обработка результатов этих испытаний позволят устанавливать и устранять причины брака. При этом контроль становится активным методом корректировки технологического процесса.

www.autowelding.ru

Неразрушающий контроль. Методы.

Неразрушающий контроль (в переводе с английского – NDT,  nondestructive testing) – это проверка, контроль, оценка надежности  параметров и свойств конструкций, оборудования либо отдельных узлов, без вывода из строя (эксплуатации) всего объекта. Основным отличием, и безусловным преимуществом, неразрушающего контроля (НК) от других видов диагностики является возможность оценить параметры и рабочие свойства объекта, используя способы контроля, которые не предусматривают остановку работы всей системы, демонтажа, вырезки образцов. Исследование проводится непосредственно в условиях эксплуатации. Это позволяет частично исключить материальные и временные затраты, повысить надежность контролируемого объекта.

Благодаря неразрушающему контролю выявляются опасные и мелкие дефекты: заводские браки, внутренние напряжения, трещины, микропоры, пустоты, расслоения, включения и многие другие, вызванные, в том числе, процессами коррозии.  

Классификация методов неразрушающего контроля (по ГОСТ 18353-79)

Зависимо от физических явлений, положенных в основу неразрушающего контроля, различают девять основных его видов:

- радиоволновой метод;

- электрический;

- акустический метод;

- вихретоковый метод;

- магнитный;

- тепловой;

- радиационный метод неразрушающего контроля;

- проникающими веществами;

- оптический метод НК.

Каждый из видов неразрушающего контроля может включать в себя несколько методов.

Классификация методов НК по признакам:

- первичным информативным параметрам;

- характеру взаимодействия с контролируемым (исследуемым) объектом;

- методу получения первоначальной информации.

Возможно использование нескольких методов, которые классифицируются по нескольким признакам, нескольких либо одного видов неразрушающего контроля.

Радиоволновой метод неразрушающего контроля

Первичный информативный параметр: фазовый, временной, амплитудный, поляризационный, частотный, геометрический.

Взаимодействие с контролируемым объектом физических полей: резонансный, рассеянного, отраженного, прошедшего излучений.

Классификация  радиоволнового неразрушающего контроля по способу получения первоначальной информации: термисторный, термолюминофоров, диодный (детекторный), калориметрический, жидких кристаллов, болометрический, полупроводниковых фотоуправляемых пластин, голографический, термобумаг и интерференционный.

Суть радиоволнового НК заключается в фиксировании изменений показателей радиомагнитных волн, которые взаимодействуют с исследуемой конструкцией (объектом).

Электрический метод неразрушающего контроля

Первичный информативный параметр: электроемкостный, электропотенциальный.

Взаимодействие с контролируемым объектом физических полей: термоэлектрический, электрический, трибоэлектрический.

Классификация электрического метода по способу получения первоначальной информации: контактной разности потенциалов, электропараметрический, экзоэлектронной эмиссии, порошковый электростатический, рекомбинационного излучения, шумовой, электроискровой.

В основу электрического метода неразрушающего контроля положена регистрация показателей электрического поля, которое в результате воздействия извне возникает в исследуемом (контролирующем) объекте, либо взаимодействует с ним.

Акустический метод

Первичный информативный параметр: временной, спектральный, амплитудный, частотный, фазовый.

Взаимодействие с контролируемым объектом физических полей: резонансный, свободных колебаний, прошедшего, отраженного (эхо-метод) излучения, импедансный, акустико-эмиссионный.

Классификация акустического неразрушающего контроля по способу получения первоначальной информации: порошковый, пьезоэлектрический, микрофонный, электромагнитно-акустический.

Такой вид мониторинга, как акустический, заключается в снятии параметров упругих волн, возникающих и (либо) возбуждаемых в предмете контроля. Использование ультразвуковых упругих волн  (частота которых более 20 кГц) дает возможность называть данный вид НК уже не акустическим, а ультразвуковым.

Вихретоковый метод неразрушающего контроля

Первичный информативный параметр: частотный, амплитудный, многочастотный, фазовый, спектральный.

Взаимодействие с контролируемым объектом физических полей: отраженного и прошедшего излечения.

Классификация вихретокового  неразрушающего контроля по способу получения первоначальной информации: параметрический, трансформаторный.

Суть вихретокового метода заключается в исследовании с последующим анализом взаимодействия электромагнитного поля вихревых токов (которые наводятся в исследуемом объекте)  и поля вихретокового преобразователя.

Магнитный метод неразрушающего контроля

Первичный информативный параметр: магнитной проницаемости, коэрцитивной силы, напряженности Эффекта Баркгаузена, остаточной индукции, намагниченности.

Взаимодействие с контролируемым объектом физических полей: магнитный.

Классификация магнитного  неразрушающего контроля по способу получения первоначальной информации: феррозондовый, магниторезисторный, магнитографический, индукционный, пондеромоторный.

Магнитный метод НК основан на анализировании взаимодействия исследуемой конструкции с магнитным полем.

Тепловой метод

Первичный информативный параметр: теплометрический, термометрический.

Взаимодействие с контролируемым объектом физических полей: конвективный, контактный тепловой, собственного излучения.

Классификация теплового НК по способу получения первоначальной информации: калориметрический, термозависимых параметров, термобумаг, пирометрический, термокрасок, оптический, жидких кристаллов, интерференционный, термолюминофоров.

Тепловой метод неразрушающего контроля состоит в обнаружении дефектов, опираясь на анализ температурных или тепловых полей конструкции. Метод используется при наличии тепловых потоков в контролируемой конструкции или объекте.

Радиационный метод неразрушающего контроля

Первичный информативный параметр: спектральный, плотности потока энергии.

Взаимодействие с контролируемым объектом физических полей: активационного анализа, автоэмиссионный, прошедшего излучения, характеристического излучения, рассеянного излучения.

Классификация радиационного  неразрушающего контроля по способу получения первоначальной информации: вторичных электронов, радиоскопический, сцинтилляционный, радиографический, ионизационный.

Суть радиационного метода НК состоит в исследовании проникающего излучения (нейтронного, рентгеновского и др.).

Метод неразрушающего контроля проникающими веществами

Первичный информативный параметр: газовый, жидкостной.

Взаимодействие с контролируемым объектом физических полей: молекулярный.

Классификация  неразрушающего контроля проникающими веществами по способу получения первоначальной информации: пузырьковый, хроматический (цветной), фильтрующихся частиц, люминесцентный, ахроматический (яркостной), манометрический, люминесцентно-цветной, масс-спектрометрический, галогенный, радиоактивный, химический, акустический, устойчивых остаточных деформаций, высокочастотного разряда, катарометрический.

Обнаружение дефектов ведется с использованием веществ, которые заполняют поры, полости дефектов, после чего их можно визуально (воочию либо при помощи специальных приборов) рассмотреть и судить о степени поражения.

Зависимо от используемого вещества и вида выявленных дефектов (сквозные, поверхностные) название метода контроля может меняться с «проникающими веществами» на «течеискание», «капиллярный» и т.п.

Оптический метод неразрушающего контроля

Первичный информативный параметр: частотный, поляризационный, амплитудный, спектральный, фазовый, геометрический, временной.

Взаимодействие с контролируемым объектом физических полей: индуцированного, рассеянного, прошедшего, отраженного излучений.

Классификация оптического  НК  по способу получения первоначальной информации: визуально-оптический, голографический, интерференционный, рефлексометрический, нефелометрический, рефрактометрический.

Метод основан на фиксировании и анализе показателей оптического излучения.

Зависимо от целей и задач, используется тот или иной метод неразрушающего контроля. В некоторых случаях, для получения более полной и информативной картины,  используется несколько методов НК.

www.okorrozii.com