Газобетонные и газосиликатные блоки в чем разница: Чем отличается газобетон от газосиликата: технология производства, сравнение параметров, достоинства и недостатки, что лучше

Содержание

Сравнительные характеристики газобетона и газосиликата


Главная
» Полезные статьи о строительстве дома
» Газобетон или газосиликат: в чем разница?

Открытоячеистая однородная структура газобетона характеризуется небольшим весом, низкой теплопроводностью, повышенной стойкостью к механическим нагрузкам.

Меняя дозировку алюминиевой присадки, можно получать газобетон заданной прочности в виде стеновых и перегородочных блоков или готовых архитектурных элементов.

Более совершенный газобетон автоклавный, прошедший паротепловую обработку в специальных емкостях. Помимо улучшения рабочих свойств, автоклавный газобетон отличается сокращенным производственным циклом.

Главные отличия газобетонных и газосиликатных материалов

Стеновые блоки Bonolit, цена которых по всем показателям может называться бюджетной, входят в категорию газосиликатных материалов. Разница заключается в замене дорогостоящего цементного связующего более дешевой известью.

  • Все разновидности газосиликатных материалов подвергаются энергоемкой автоклавной обработке, поэтому отпускные цены на газосиликаты идентичны стоимости цементного газобетона.
  • По теплопроводности и стойкости к нагрузкам на сжатие газобетонные и газосиликатные блоки одинаковой плотности равноценны, что определяет их пригодность для реализации строительных проектов разной сложности.
  • Монтаж стандартных и газосиликатных блоков производится по одинаковым технологиям. Для кладки блоков с несовершенной геометрией и значительным разбросом размеров, традиционно используется бетонный раствор. Недостатки строительного материала компенсируются изменением толщины монтажных швов.

Купить песок и цемент оптом в Москве для самостоятельного приготовления кладочного раствора можно в специализированных торговых организациях. С другой стороны, бетонно-растворная кладка никаких особых преимуществ не имеет. Теплосохранение таких стен и перегородок существенно хуже, не исключается образование постоянных мостиков холода.

Проблема частично решается применением специальных кладочных растворов. Для их приготовления задействуются сухие строительные смеси, характеристики которых отвечают заявленным требованиям по теплопроводности, прочности, влаго- и морозостойкости или ускоренному твердению.

Заказывайте услугу обратного звонока в любое для Вас удобное время, и наши опытные специалисты Вам обязательно перезвонят!

Преимущества блочно-клеевого монтажа

Более прогрессивный и совершенный блочный монтаж – клеевой. Кроме монолитной прочности клеевых швов, газоблочные конструкции характеризуются минимальными межблочными зазорами, отсутствием участков с повышенной теплопроводностью, экономичным расходом штукатурных отделочных материалов.

В ассортименте имеются цементно-полимерные клеи для газоблоков, обладающие ускоренным твердением, повышенной прочностью, влаго-морозостойкостью и другими полезными свойствами.

В частности, морозостойкий состав позволяет монтировать блоки без предварительного прогрева при температуре воздуха до -10°С.

  • Несмотря на более высокую стоимость сухих смесей, клеевой монтаж блоков менее затратный, поскольку ширина зазоров между элементами газоблочной конструкции составляет всего 1,5-2 мм.
  • Поверхность газоблочных стен и перегородок не нуждается в предварительном выравнивании перед нанесением штукатурной отделки.
  • Толщина слоя варьируется в пределах 3-5 мм, поэтому расход материала оптимальный.

Поризованные бетоны, как правило, гигроскопичны. Возведенные стены и перегородки нельзя оставлять на зимовку без временной, но достаточно надежной гидроизоляции. Фасадным гидробарьером может служить полиэтиленовая пленка или другой влагонепроницаемый материал.

Доверьте работу профессионалам! Заказывайте у нас уже сейчас монтаж газоблоков на выгодных для Вас условиях!


Тэги :

В той же категории
  • Что такое газобетон и пенобетон?
  • Что лучше – кирпич или газосиликатный блок?
  • Что включают в себя строительные фасадные работы на доме из газобетона?
  • Чем штукатурить газобетон внутри дома?
  • Чем отделать газобетон снаружи?
  • Фундаментные работы – прочная основа любого строительства!
  • Фасадные работы под ключ: воплощение мечты об идеальном доме!
  • Утеплять ли газобетон?
  • Утеплять или нет газобетон?
  • Строительство домов под ключ: быстро, профессионально, надежно!
Похожие блоги по тегам
  • Что такое газобетон и пенобетон?
  • Что лучше – кирпич или газосиликатный блок?
  • Что включают в себя строительные фасадные работы на доме из газобетона?
  • Чем штукатурить газобетон внутри дома?
  • Чем отделать газобетон снаружи?
  • Фундаментные работы – прочная основа любого строительства!
  • Фасадные штукатурки: Оптимальный выбор для бетонных конструкций
  • Фасадные работы под ключ: воплощение мечты об идеальном доме!
  • Утеплять ли газобетон?
  • Утеплять или нет газобетон?

что лучше выбрать, в чес разница и отличия

29 марта 2021


В последнее время выросла потребность в специализированных материалах, которые отличаются высокими техническими характеристиками. Это связано с желанием сократить теплопотери. При строительстве люди всё чаще стали выбирать газобетонные или газосиликатные блоки, но вместе с этим мало кто знает особенности этих материалов. Их путают из-за большого сходства, более того, не все консультанты в магазинах способны объяснить разницу между ними.


Для того, чтобы избежать проблем с покупкой, предлагаем вам ознакомиться с этой статьёй. В ней мы сравним два материала, чтобы понять их различия и выбрать лучший вариант.


Начнём с составов и способов схватывания растворов.


Газобетон состоит из цемента, извести и песка. Это основа. Также в неё входит алюминиевая пудра.


Газобетонные блоки застывают либо в естественной среде, либо специальных автоклавах.


Газосиликат, в свою очередь, состоит из смеси песка (62%) и извести (24%).


Он всегда должен подвергаться термообработке паром при высокой температуре.  Для него не характерен воздушный способ застывания.


В чём плюс застывания в автоклавах?

  1. Состав схватывается намного быстрее.
  2. Такая обработка сделает его прочнее и обеспечит небольшую усадку в процессе эксплуатации.
  3. На выходе мы получаем хорошую теплоизоляцию.


В итоге мы получаем застывший раствор и можем различать его по цвету. Газобетон и газосиликат, которые застывали в автоклавах, имеют белый цвет. А вот если газобетон застывал сам, то он получится серым. Для некоторых людей цвет материала также важен при выборе, т.к. Белые дома смотрятся лучше. Поэтому, если для вас эстетическое восприятие стоит не на последнем месте, лучше не забывать про этот пункт.


С составами ознакомились, теперь разберём преимущества каждого материала. 


У газобетона не так много пор, поэтому он не разрушается под воздействием воды. Из этого можно сделать вывод, что такие блоки более морозоустойчивы.


Из других плюсов газобетона:

  1. Он устойчив к огню. Возгорание происходит не сразу.
  2. Ему не страшны перепады температуры.
  3. Низкая стоимость материала. При постройке дома это будет выгодным вложением.


Из перечисленного выше видно, что у газобетона достаточно преимуществ, однако это не означает, что газосиликат во всём ему проигрывает.


Из-за этих самых пор газосиликатные блоки отличаются большей плотностью, т.к. пузырьки воздуха распределены по всей поверхности равномерно. Кроме того, за счёт пор получается неплохая звукоизоляция и теплоизоляция.


Вывод: если вы строите дом, то при возведении газосиликатных стен трещины будут появляться гораздо реже. 


Именно поэтому из этого материала чаще строятся многоэтажные дома. Если выбор стоит между кирпичом и газосиликатом, то лучше обойтись вторым вариантов. Это будет дешевле и быстрее. А вот если выбор предстоит между газобетоном и газосиликатом, то тут решайте исходя из того, что для вас важнее – прочность, звукоизоляция или устойчивость к температурам и цена.



Что ещё можно сказать об этих материалах?


Кладка из газосиликата выходит легче, да и клея со штукатуркой нужно гораздо меньше. Так что оба материала различаются весом, что немаловажно.


Газобетон отличается повышенной теплопроводностью.


Силикат очень активно впитывает влагу. Это может стать причиной его разрушения. Если для вашего региона характерна повышенная влажность, то стоит забыть про этот вариант. Или задуматься о хорошей гидроизоляции, что выйдет дороже. Зато защитит материал от промерзания и плесени.


Мы не случайно упомянули выше способы затвердевания составов. Один и тот же блок из газобетона может быть различен по качеству. Об этом не стоит забывать. Если газобетон неавтоклавный, то его свойства уступают не только газосиликату, но и автоклавному газобетону. На этапе эксплуатации он будет отличаться низкой прочностью, да и теплоизоляционные качества будут намного ниже.


Неавтоклавный газобетон можно довольно часто встретить на рынке, т.к. производители хотят сэкономить и предоставляют некачественные составы. Поэтому будьте осторожны.   


Автоклавный или неавтоклавный газобетон?


Вернемся к автоклавам. Что из себя представляет такая конструкция?


Это резервуар, в котором материал застывает при высоком давлении и температуре. Таким образом, он становится гораздо плотнее, чем был до этого.


Материал, который обрабатывается при помощи этого резервуара, имеет однородную структуру и белый цвет.


Неавтоклавный газобетон, в свою очередь, часто делается в домашних (гаражных) условиях. Из-за этого страдает геометрия поверхности, а структура выходит абсолютно неровной. Эти нюансы негативно сказываются на качестве газоблока. Единственный плюс неавтоклавного газобетона – его низкая стоимость. Но стоит ли это того? Даже если производитель добавляет фибру, это не является гарантией того, что со временем в стенах не появятся трещины.


Какой толщины должен быть материал?


Этот показатель очень важен при выборе, т.к. толщина стен влияет на то, будет ли в помещении холодно. Если газобетон или газосиликат выбрать потолще, то он однозначно лучше будет сохранять тепло. Более того, от толщины блоков будет зависеть несущая способность здания. А это тоже очень важный момент.


Если вы выберете достаточно плотный материал, то вам не нужно будет продумывать дополнительное отопление и тратить на это большое количество денег.


Ещё один момент. Если у нас есть такой блок, то его площадь будет больше, следовательно, нагрузка от других блоков, крыши и т.д. распределится более равномерно.


От себя советуем выбирать газобетон или газосиликат толщиной более 200 мм.


Какой высоты должны быть блоки?


У производителей встречаются самые разные виды материалов. Если у вас высокие блоки, то количество рядов заметно сократится, а расход клея будет не так велик.



Какую плотность выбрать?


Нашли блоки с плотностью D300 или D600? Они отлично подойдут для строительства небольших домов. Не больше двух этажей. Для D300 существует ограничение в один этаж.


Если уж вы занялись строительством многоэтажных зданий, то тут следует обратиться к таблицам в интернете, в которых есть наглядная информация о допустимой плотности материала.


Интересный факт. Чаще всего с трещинами сталкивается тот, кто предпочитает неавтоклавный газобетон с небольшой плотностью.


Вывод: применяйте такие блоки в качестве утепления, а для возведения стен используйте что-то более подходящее.


Многие люди используют блоки из газобетона именно для возведения ненесущих перегородок. При этом высота их обычно составляет 250 мм., а плотность доходит до D400.


Как работать с этими материалами?


Мы подготовили для вас несколько рекомендаций. Ознакомьтесь с ними.

  1. Для кладки используйте только специальные клеевые растворы.


    Такая цементно-песчаная смесь обеспечивает быстрое схватывание поверхностей. Специальный клей затвердевает быстрее, следовательно, работа с блоками будет проходить быстрее.

  2. Не забывайте про отделочные материалы. Наружная отделка поверхности гарантирует хорошую защиту от осадков и промерзания.
  3. Если вы занимаетесь отделкой фасадов облицовочным кирпичом, то не забывайте про вентиляционный зазор.
  4. Паропроницательность отделочных материалов должна быть всегда больше, чем у изначальной поверхности. Иначе появится плесень.
  5. Для дополнительного утепления используйте минеральную вату.
  6. Любой крепеж к газосиликату выполняется за счёт крепежа с дюбелями.


    Для газобетонных блоков используются болты.

  7. Для защиты стен используется армирование.
  8. Слой гидроизоляции лежит под конструкцией из газобетона или газосиликата.


Это основа, которую нужно знать для того, чтобы не получить неприятных сюрпризов.



Как выбрать материал в магазине?


Для начала необходимо обратить внимание на внешний вид материала, который вам нужен. Начните исследовать товар с самой упаковки. Она должна быть герметичной. Производители, которые любят сэкономить, часто допускают дефекты даже в этом.


Теперь переходим к осмотру газобетона или газосиликата. Материал должен быть равномерно окрашен. Никаких неровностей или разводов просто нельзя допускать. Пятна краски, масляные разводы – всего этого не должны быть на материале. Далее стоит обратить внимание на наличие сколов или трещин. Вы же не хотите переплачивать за некачественную продукцию?


Не стоит забывать и о самой структуре. По наличию мелких пузырьков можно понять, что перед вами именно газосиликат.


Важен ли производитель при выборе материала? Однозначно да. Разные компании производят различный по плотности, качеству и размеру газобетон или газосиликат. У одних производителей могут быть использованы современные технологии в обработке материалов, другие же могут экономить даже на способе застывания материала.


Вывод.


Не бывает материалов, которые имели бы только положительные аспекты. Всегда есть какое-то «но». Блоки из газобетона очевидно уступают блокам из газосиликата, но это не значит, что их лучше не использовать совсем. Напротив, каждый из этих материалов подходит под свои условия. Подходите грамотно к покупке материала, чтобы не столкнуться с нарушением технологии производства из-за недобросовестных производителей.

Теги:

  • выбор стройматериала

Оцените материал:

Оставить комментарий / Всего комментариев: 0

Оставить комментарий

Разработка и характеристики аэрированного щелочно-активированного шлакового цемента, смешанного с цинковым порошком

1. Чеа С.Б., Тан Л.Е., Рамли М. Последние достижения в области связующего на основе шлака и химических активаторов, полученных из промышленных побочных продуктов — обзор. Констр. Строить. Матер. 2021;272:12167. doi: 10.1016/j.conbuildmat.2020.121657. [CrossRef] [Google Scholar]

2. Элахи М.М.А., Хоссейн М.М., Карим М.Р., Заин М.Ф.М. Обзор щелочеактивируемых вяжущих: состав материалов и свойства бетона в свежем виде. Констр. Строить. Матер. 2020;260:19788. doi: 10.1016/j.conbuildmat.2020.119788. [CrossRef] [Google Scholar]

3. Атира В.С., Бахурудин А., Салджас М., Джаячандран К. Влияние различных методов отверждения на механические и прочностные свойства щелочеактивируемых вяжущих. Констр. Строить. Матер. 2021;299:123963. doi: 10.1016/j.conbuildmat.2021.123963. [CrossRef] [Google Scholar]

4. Гёкче Х.С., Туян М., Нехди М.Л. Активированные щелочью и геополимерные материалы, разработанные с использованием инновационных технологий производства: критический обзор. Констр. Строить. Матер. 2021;303:124483. doi: 10.1016/j.conbuildmat.2021.124483. [Перекрестная ссылка] [Академия Google]

5. Ибрагим М., Маслехуддин М. Обзор факторов, влияющих на свойства активируемых щелочью вяжущих. Дж. Очиститель Прод. 2021;286:124972. doi: 10.1016/j.jclepro.2020.124972. [CrossRef] [Google Scholar]

6. Mendes B.C., Pedroti L.G., Vieira C.M.F., Marvila M., Azevedo A.R.G., Franco de Carvalho J.M., Ribeiro J.C.L. Применение экологически чистых альтернативных активаторов в материалах, активированных щелочью: обзор. Дж. Билд. англ. 2021;35:102010. doi: 10.1016/j.jobe.2020.102010. [Перекрестная ссылка] [Академия Google]

7. Ши С., Рой Д., Кривенко П. Щелочноактивированные цементы и бетоны. КПР Пресс; Бока-Ратон, Флорида, США: 2003. [Google Scholar]

8. Ван В., Ногучи Т. Щелочно-кремнеземная реакция (ASR) в системе цемента, активированного щелочью (AAC): современное состояние обзор. Констр. Строить. Матер. 2020;252:119105. doi: 10.1016/j.conbuildmat. 2020.119105. [CrossRef] [Google Scholar]

9. Руан С., Чжу В., Ян Э.-Х., Венг Ю., Унлюер К. Улучшение характеристик и развитие микроструктуры смесей активированных щелочью шлаков. Констр. Строить. Матер. 2020;261:120017. doi: 10.1016/j.conbuildmat.2020.120017. [Перекрестная ссылка] [Академия Google]

10. Адесанья Э., Перумал П., Луукконен Т., Юлиниеми Дж., Охеноя К., Киннунен П., Илликайнен М. Возможности повышения устойчивости материалов, активированных щелочью: обзор активаторов на основе побочного потока. Дж. Очиститель Прод. 2021;286:125558. doi: 10.1016/j.jclepro.2020.125558. [CrossRef] [Google Scholar]

11. Gu G., Xu F., Ruan S., Huang X., Zhu J., Peng C. Влияние сборного пенопласта на пористую структуру и свойства геополимера на основе летучей золы. пены. Констр. Строить. Матер. 2020;256:119410. doi: 10.1016/j.conbuildmat.2020.119410. [CrossRef] [Google Scholar]

12. Амран М., Федиок Р., Ватин Н., Ли Ю.Х., Мурали Г., Озбаккалоглу Т., Клюев С., Алабдульджаббер Х. Фиброармированный пенобетон: обзор. Материалы. 2020;13:4323. doi: 10.3390/ma13194323. [Бесплатная статья PMC] [PubMed] [CrossRef] [Google Scholar]

13. Хоу Л., Ли Дж., Лу З., Ню Ю. Влияние пенообразователя на цемент и пенобетон. Констр. Строить. Матер. 2021;280:122399. doi: 10.1016/j.conbuildmat.2021.122399. [CrossRef] [Google Scholar]

14. Пасупати К., Рамакришнан С., Санджаян Дж. Улучшение механических и термических свойств газогеополимерного бетона с использованием легких пористых заполнителей. Констр. Строить. Матер. 2020;264:120713. doi: 10.1016/j.conbuildmat.2020.120713. [CrossRef] [Google Scholar]

15. Fu X., Lai Z., Lai X., Lu Z., Lv S. Получение и характеристики пористых материалов на основе магнезиально-фосфатного цемента. Констр. Строить. Матер. 2016; 127:712–723. doi: 10.1016/j.conbuildmat.2016.10.041. [Перекрестная ссылка] [Академия Google]

16. Новаис Р.М., Асенсан Г., Феррейра Н., Сибра М.П., ​​Лабринча Дж.А. Влияние содержания воды и алюминиевой пудры на свойства отходовсодержащих геополимерных пен. Керам. Междунар. 2018;44:6242–6249. doi: 10.1016/j.ceramint.2018.01.009. [CrossRef] [Google Scholar]

17. Киупис Д., Цизимопулу А., Цивилис С., Какали Г. Разработка пористых геополимеров, вспененных порошками алюминия и цинка. Керам. Интернет. 2021;47:26280–26292. doi: 10.1016/j.ceramint.2021.06.037. [Перекрестная ссылка] [Академия Google]

18. Shuai Q., ​​Xu Z., Yao Z., Chen X., Jiang Z., Peng X., An R., Li Y., Jiang X., Li H. Огнестойкость на основе фосфорной кислоты геополимерные пены, изготовленные из метакаолина и перекиси водорода. Матер. лат. 2020;263:127228. doi: 10.1016/j.matlet.2019.127228. [CrossRef] [Google Scholar]

19. Yan S., Zhang F., Liu J., Ren B., He P., Jia D., Yang J. Зеленый синтез высокопористых пустых микросфер/геополимерных композиционных пен путем модификации перекисью водорода. Дж. Очиститель Прод. 2019;227:483–494. doi: 10.1016/j.jclepro.2019.04.185. [CrossRef] [Google Scholar]

20. Shi J., Liu B., Liu Y., Wang E., He Z., Xu H. , Ren X. Получение и характеристика пеногеополимерных бетонов с легким заполнителем, аэрируемых водородом перекись. Констр. Строить. Матер. 2020;256:119442. doi: 10.1016/j.conbuildmat.2020.119442. [CrossRef] [Google Scholar]

21. Yang Y., Zhou Q., Deng Y., Lin J. Влияние армирования многослойным гибридным волокном на поведение при изгибе и разрушении сверхлегких композитов на основе вспененного цемента. . Цементобетон Комп. 2020;108:103509. doi: 10.1016/j.cemconcomp.2019.103509. [CrossRef] [Google Scholar]

22. Дукман В., Корат Л. Характеристика пенопластов на основе геополимерной летучей золы, полученных с добавлением порошка Al или H 2 O 2 в качестве пенообразователей. Матер. Характер. 2016;113:207–213. doi: 10.1016/j.matchar.2016.01.019. [CrossRef] [Google Scholar]

23. Li T., Huang F., Zhu J., Tang J., Liu J. Влияние вспенивающего газа и типа цемента на теплопроводность пенобетона. Констр. Строить. Матер. 2020;231:117197. doi: 10.1016/j. conbuildmat.2019.117197. [CrossRef] [Google Scholar]

24. Ji Z., Li M., Su L., Pei Y. Пористость, механическая прочность и структура геополимерных пен на основе отходов при воздействии различных стабилизаторов. Констр. Строить. Матер. 2020;258:119555. doi: 10.1016/j.conbuildmat.2020.119555. [CrossRef] [Google Scholar]

25. Falliano D., De Domenico D., Ricciardi G., Gugliandolo E. Экспериментальное исследование прочности пенобетона на сжатие: влияние условий отверждения, типа цемента, пенообразователя и плотности в сухом состоянии. . Констр. Строить. Матер. 2018;165:735–749. doi: 10.1016/j.conbuildmat.2017.12.241. [CrossRef] [Google Scholar]

26. He J., Gao Q., Song X., Bu X., He J. Влияние пенообразователя на физико-механические свойства пенобетона, активированного щелочным шлаком. Констр. Строить. Матер. 2019; 226: 280–287. doi: 10.1016/j.conbuildmat.2019.07.302. [CrossRef] [Google Scholar]

27. Пасупати К., Рамакришнан С., Санджаян Дж. Влияние переработанного заполнителя бетона на стабильность пены газогеополимерного бетона. Констр. Строить. Матер. 2021;271:121850. doi: 10.1016/j.conbuildmat.2020.121850. [Перекрестная ссылка] [Академия Google]

28. Хаджимохаммади А., Нго Т., Мендис П., Кашани К., ван Девентер Дж.С.Дж. Пены щелочного активированного шлака: влияние щелочной реакции на характеристики пены. Дж. Чистый. Произв. 2017; 147:330–339. doi: 10.1016/j.jclepro.2017.01.134. [CrossRef] [Google Scholar]

29. Kränzlein E., Pollmann H., Krcmar W. Металлические порошки как пенообразователи в синтезе геополимеров на основе летучей золы и их влияние на структуру в зависимости от соотношения Na/Al. Цем. Конкр. Комп. 2018;90:161–168. doi: 10.1016/j.cemconcomp.2018.02.009. [CrossRef] [Google Scholar]

30. Клапишевская И., Парус А., Лавничак Л., Есионовский Т., Клапишевский Л., Слосарчик А. Производство антибактериальных цементных композитов, содержащих ZnO/лигнин и ZnO-SiO 2 /гибридные примеси лигнина. Цем. Конкр. Комп. 2021;124:104250. doi: 10.1016/j.cemconcomp.2021.104250. [CrossRef] [Google Scholar]

31. Noeiaghaei T., Dhami N., Mukherjeem A. Обработка поверхности наночастицами на цементных материалах для подавления роста бактерий. Констр. Строить. Матер. 2017;150:880–891. doi: 10.1016/j.conbuildmat.2017.06.046. [CrossRef] [Google Scholar]

32. Або-Эль-Энейн С.А., Эль-Хосини Ф.И., Эль-Гамаль С.М., Амин М.С., Рамадан М. Гамма-радиационная защита, огнестойкость и физико-химические характеристики портландцементных паст, модифицированных синтетическими Fe 2 O 3 и наночастицы ZnO. Констр. Строить. Матер. 2018; 173: 687–706. doi: 10.1016/j.conbuildmat.2018.04.071. [CrossRef] [Google Scholar]

33. Le Pivert M., Zerelli B., Martin N., Capochichi-Gnambodoe M., Leprince-Wang Y. Smart ZnO декорированные оптимизированные инженерные материалы для очистки воды при естественном солнечном свете. Констр. Строить. Матер. 2020;257:119592. doi: 10.1016/j.conbuildmat.2020.119592. [CrossRef] [Google Scholar]

34. Троконис де Ринкон О., Перес О., Паредес Э., Кальдера Ю. , Урданета С., Сандовал И. Долгосрочная эффективность ZnO в качестве ингибитора коррозии арматуры. Цем. Конкр. Комп. 2002; 24:79–87. doi: 10.1016/S0958-9465(01)00029-4. [CrossRef] [Google Scholar]

35. Loh K., Gaylarde C.C., Shirakawa M.A. Фотокаталитическая активность ZnO и TiO 2 «наночастиц» для использования в цементных смесях. Констр. Строить. Матер. 2018; 167: 853–859. doi: 10.1016/j.conbuildmat.2018.02.103. [CrossRef] [Google Scholar]

36. Bica B.O., Staub de Melo J.V. Бетонные блоки, наномодифицированные оксидом цинка (ZnO) для фотокаталитического мощения: сравнение характеристик с диоксидом титана (TiO 2 ) Constr. Строить. Матер. 2020;252:119120. doi: 10.1016/j.conbuildmat.2020.119120. [CrossRef] [Google Scholar]

37. Reichlek R., Mccurdy E., Heple L. Гидроксид цинка: произведение растворимости и константы стабильности комплекса Hydroxy-597 в диапазоне 12,5–75 °C. Можно. Дж. Хим. 1975;53:3841–3845. дои: 10.1139/v75-556. [CrossRef] [Google Scholar]

38. Деген А., Косек М. Влияние рН и примесей на поверхностный заряд оксида цинка в водном растворе 599. Дж. Евр. Керам. соц. 2000;20:667–673. doi: 10.1016/S0955-2219(99)00203-4. [CrossRef] [Google Scholar]

39. ASTM International . Стандартная практика механического смешивания гидравлических цементных паст и растворов пластичной консистенции. АСТМ интернэшнл; Западный Коншохокен, Пенсильвания, США: 2014 г. ASTM C305. [Академия Google]

40. ASTM International . Стандартный метод испытаний на время схватывания гидравлического цементного теста с помощью игл Гиллмора. АСТМ интернэшнл; Западный Коншохокен, Пенсильвания, США: 2015 г. ASTM C266. [Google Scholar]

41. ASTM International . Стандартные технические условия на таблицу расхода для использования в испытаниях гидравлического цемента. АСТМ интернэшнл; Западный Коншохокен, Пенсильвания, США: 2008 г. ASTM C230. [Google Scholar]

42. ASTM International . Стандартный метод испытаний на скорость водопоглощения кладочных растворов. АСТМ интернэшнл; Уэст-Коншохокен, Пенсильвания, США: 2015 г. ASTM C1403. [Академия Google]

43. Ким Т., Канг С. Механические свойства щелочно-активированных шлакокремнеземных цементных паст методом смешивания. Междунар. Дж. Конкр. Структура Матер. 2020;14:41. doi: 10.1186/s40069-020-00416-x. [CrossRef] [Google Scholar]

44. Jun Y., Kim T., Kim J.H. Хлоридсодержащие характеристики активированного щелочью шлака, смешанного с морской водой: влияние различных уровней солености. Цементобетон Комп. 2020;112:103680. doi: 10.1016/j.cemconcomp.2020.103680. [CrossRef] [Академия Google]

45. Yum W.S., Jeong Y., Yoon S., Jeon D., Jun Y., Oh J.E. Влияние CaCl 2 на гидратацию и свойства связующего из активированного известью (CaO) шлака/зольной пыли. Цементобетон Комп. 2017; 84: 111–123. doi: 10.1016/j.cemconcomp.2017.09.001. [CrossRef] [Google Scholar]

46. Гарг Н., Уайт К.Э. Механизм замедления оксида цинка в материалах, активированных щелочью: исследование функции распределения рентгеновских пар in situ. Дж. Матер. хим. А. 2017;5:11794–11804. doi: 10.1039/C7TA00412E. [Перекрестная ссылка] [Академия Google]

47. Мохсен А., Абдель-Гаввад Х.А., Рамадан М. Характеристики, радиационная защита и противогрибковая активность активированного щелочью шлака, индивидуально модифицированного наночастицами оксида цинка и феррита цинка. Констр. Строить. Матер. 2020;257:119584. doi: 10.1016/j.conbuildmat.2020.119584. [CrossRef] [Google Scholar]

48. Taylor-Lange S.C., Riding K.A., Juenger M.C.G. Повышение реакционной способности метакаолин-цементных смесей с использованием оксида цинка. Цем. Конкр. Комп. 2012; 34: 835–847. doi: 10.1016/j.cemconcomp.2012.03.004. [Перекрестная ссылка] [Академия Google]

49. Амер М.В., Фавваз И.К., Акл М.А. Адсорбция ионов свинца, цинка и кадмия на модифицированной полифосфатом каолинитовой глине. Дж. Окружающая среда. хим. Экотоксикол. 2010; 2:1–8. [Google Scholar]

50. Ночайя Т., Секин Ю., Чупун С., Чайпанич А. Микроструктура, характеристики, функциональность и прочность на сжатие материалов на цементной основе с использованием наночастиц оксида цинка в качестве добавки. J. Alloys Compd. 2015; 630:1–10. doi: 10.1016/j.jallcom.2014.11.043. [Перекрестная ссылка] [Академия Google]

51. Шилер П., Коларжова И., Новотны Р., Масилко Ю., Поржижка Ю., Беднарек Ю., Швец Ю., Оправил Т. Применение изотермической и изопериболической калориметрии для оценки влияния цинка на гидратацию цемента . Дж. Терм. Анальный. Калорим. 2018; 133:27–40. doi: 10.1007/s10973-017-6815-1. [CrossRef] [Google Scholar]

52. Nambiar E.K.K., Ramamurthy K. Воздушно-пустотная характеристика пенобетона. Цем. Конкр. Рез. 2007; 37: 221–230. doi: 10.1016/j.cemconres.2006.10.009. [Перекрестная ссылка] [Академия Google]

53. Cabrillac R., Fiorio B., Beaucour A., ​​Dumontet H., Ortola S. Экспериментальное исследование механической анизотропии ячеистого бетона и корректирующих параметров на индуцированную пористость. Констр. Строить. Матер. 2006; 20: 286–295. doi: 10.1016/j.conbuildmat.2005.01.023. [CrossRef] [Google Scholar]

54. Masi G., Rickard W.D.A., Bignozzi M. C., Riessen A. Влияние коротких волокон и пенообразователей на физические и термические свойства геополимерных композитов. Доп. науч. Технол. 2014;92: 56–61. doi: 10.4028/www.scientific.net/AST.92.56. [CrossRef] [Google Scholar]

Строительство из световых блоков — виды, сравнение и характеристики | С вашими руками

Содержание ✓

  • ✓ Главный вопрос
  • ✓ Технология торговых центров
  • ✓ Типы световых блоков
  • ✓ Потепление и завершение дома с легких блоков

. уголок, и пришло время поговорить о трендовом материале – световых блоках. Какую толщину стенки выбрать? Они однослойные или многослойные? Чем армировать кладку и нужно ли укреплять проемы? В этой статье мы ответим на эти и другие вопросы

© Автор: ВЛАДИМИР ГРИГОРЬЕВ

Легкие (так называемые конструкционно-теплоизоляционные) блоки имеют множество преимуществ перед другими материалами. Это доступная цена, хорошая теплоизоляционная способность и скорость кладки, ведь каждый блок по объему равен нескольким кирпичам. Конечно. есть и недостатки, такие как низкая прочность и влагостойкость (в частности, это касается популярных изделий из ячеистого бетона). Однако современные технологии позволяют легко преодолеть эти недостатки. Иногда сложнее решить возникающие проблемы до начала строительства. -Определился с выбором типа блоков, толщины и конструкции стен.


ВСЕ НЕОБХОДИМОЕ ДЛЯ ЭТОЙ СТАТЬИ ЗДЕСЬ >>>


ОСНОВНОЙ ВОПРОС

Согласно действующему СП 50.13330.2012 «Тепловая защита зданий» требуется приведенное сопротивление теплопередаче наружных стен здание (R0). например. для Архангельска составляет 3,56 м2•°С/Вт, для Москвы и Санкт-Петербурга — около 3,2 м2•°С/Вт, для Краснодара — 2,34 м2•°С/Вт.

Узнать необходимую толщину однослойной стены из определенного материала, умножьте R0 на коэффициент теплопроводности этого материала (их значения мы привели в таблице). Решение этой задачи осложняется тем, что коэффициент теплопроводности легких блоков варьируется в достаточно широких пределах в зависимости от технологии производства. Так, в случае с керамзитом важна фракция гравия, а на теплопроводность пористых блоков влияет микроструктура керамического камня, объем и конфигурация пустот.

Следует отметить, что однослойные блочные стены «разумной» толщины на широте Москвы не достигают нормы. Например, R0 заборов из газосиликатных блоков марки Д500 (плотность 500 кг/м 3 ) при толщине 400 мм составляет примерно 2,9 мг•°С/Вт. Поэтому многие застройщики выбирают многослойные утепленная конструкция.

Утепление стен позволяет достичь высоких значений теплосбережения при значительной экономии материалов и работ, в том числе на этапе возведения фундамента, т.к. многослойная конструкция легче и, как правило, тоньше однослойной .

Кроме того, он обладает большей тепловой инерцией: если уйти из дома зимой на два-три дня, можно отключить отопление, не боясь, что в комнатах перехватит дыхание. Основным недостатком многослойных стен является относительно небольшой срок службы утеплителя (не более 50 лет), то есть со временем стены будут становиться холоднее.


См. также: Блоки деревянные — виды и состав


ТОРГОВАЯ ТЕХНОЛОГИЯ

Кладка из блоков ведется в загоне и не относится к сложным работам. Однако каждая разновидность этого материала имеет свою специфику сборки, и строители обязаны ее учитывать. Ошибки при ведении кладки отрицательно скажутся на геометрии стен, их прочности, герметичности и теплоизоляционной способности.

ВИДЫ ЛЕГКИХ БЛОКОВ

АРБОЛИТ (иногда не совсем правильно называют опилкобетон). Производится из песчано-цементной смеси и древесной стружки. Материал трудно воспламеняется и не поддерживает горение, пилится ножовкой, но хорошо держит крепеж (в отличие от газобетона).

ГАЗ-БЕТОН . Сырьем для его производства служит мелкий кварцевый песок, вяжущие вещества (известь, гипс, цемент) и алюминиевая пудра. При взаимодействии алюминия со щелочным раствором цемента или силиката образуются пузырьки водорода, благодаря которым материал приобретает ячеистую структуру. Схваченный объемный монолит распиливают на блоки, которые затем сушат в автоклаве или электропечи. Технология позволяет варьировать плотность блоков. Конструкционными (то есть способными воспринимать силовые нагрузки) считаются изделия плотностью 500 кг/м 3 и больше.

ГАЗОСИЛИКАТ . Разновидность газобетонных блоков, изготавливаемых без применения цементного вяжущего. Эту технологию используют ведущие производители (например, Ytong). Силикатные блоки несколько менее прочны, чем цементные блоки, но имеют более однородную структуру.

КЕРАМИЧЕСКИЙ БЕТОН . Изготавливается из пескоцемента и керамзитобетона в качестве наполнителя. Различают пустотелые (двухпустые, четырехщелевые) и полнотелые блоки. Первый дешевле и легче, но наличие больших полостей затрудняет некоторые строительные работы, например, штробление. Основными недостатками керамзитоблоков являются относительно низкая теплоизоляционная способность и нестабильность геометрических размеров (допуск до 5 мм).

КЕРАМИЧЕСКИЙ БЛОК P0XXXXXXX (иначе — керамический пористый многопустой блок). Его можно считать последним шагом в эволюции красного щелевого кирпича. Блок также изготавливается из легкоплавкой глины, но его размеры в 5-8 раз больше, а пустотность достигает 55%; Пустоты имеют вид узких каналов, в них отсутствует интенсивный конвективный теплообмен, что улучшает теплоизоляционную способность. Керамический блок необходимо класть только на пластичный раствор, который не заполняет пустоты. Материал обрабатывается сложнее, чем ячеистый бетон, но обладает гораздо большей прочностью и долговечностью.

ПЕНОБЕТОН . Этот ячеистый блок по своим основным характеристикам похож на газобетон, но отличается технологией производства: в смесь цемента и песка добавляются синтетические или органические пенообразователи. По прочности пенобетон превосходит газосиликат, но имеет менее однородную структуру.

ЖЕМЧУЖНЫЙ БЕТОН . В качестве наполнителя используется вспученный перлитный песок. По теплоизолирующей способности блок не уступает газобетону, при этом он гораздо более жаростойкий и долговечный. Материал производится в России в крайне малых объемах, а цена на него явно завышена (от 6 тысяч рублей за 1 м 3 ).

ПОЛИСТИРОЛБЕТОН . Гранулы пенополистирола занимают более 50% его объема. Этот блок очень «теплый», но имеет низкую паропроницаемость.

ГЛУБОКИЙ БЕТОН . Сегодня его производят только в некоторых регионах Нечерноземья. Материал очень дешевый, но имеет низкие теплоизоляционные характеристики.

Как уменьшить потери тепла через кладочные швы.

Для этого нужно минимизировать их ширину и/или использовать «теплые» решения. Если отклонения размеров блоков не превышают 1 мм, то опытный каменщик уложит их на слой раствора не толще 3 мм, и тогда потерями тепла через швы можно пренебречь. Увы, стабильной геометрией обладают только достаточно дорогие газосиликатные блоки, выпускаемые предприятиями с современными автоклавами и линиями распиловки (например, продукция марки Ytong).

При строительстве из керамических поризованных, арболитовых, керамзито- и пенобетонных блоков толщина швов обычно составляет 10-15 мм, поэтому кладку целесообразно производить на «теплый» раствор. Его можно приготовить на цементе и наполнителе низкой плотности, например на перлитовом песке, который продается в мешках и навалом.

Готовая «теплая» смесь (Поротерм ТМ, Кнауф ЛМ21 и др.) будет стоить в 2-2,5 раза дороже приготовленной (от 300 руб. за 20 кг), однако при строительстве небольшого дома (до до 150 мг) экономия вряд ли себя оправдает, тем более, что в специальные клеи добавлены пластификаторы и замедлители схватывания, обеспечивающие хорошее сцепление раствора с блоком.


См. также: Кладка дома из ячеистых (газобетон и пенобетон) стеновых блоков


Нужно ли усиливать кладку?

При строительстве из ячеистых блоков (пенобетонных и газосиликатных) армируют первый и каждый четвертый ряд кладки, а также опорные зоны перемычек и ряд под оконными проемами. При этом стальные или композитные стержни диаметром 10 мм укладываются в мелочи, которые изготавливаются ручным или электрическим способом.

Кроме того, требуется устройство объемных железобетонных поясов между этажами и под мауэрлатом. Чтобы эти пояса не стали мостиками холода, их изолируют со стороны улицы пенополистиролом или минеральной ватой. В доме из ячеистого бетона ДАОО, кроме того, требуется усиление проема входной двери, а также оконных проемов шириной и высотой более 1,5 м. Делается это с помощью сварных каркасов из металлопроката или стоек и болтов из армированного ячеистого газобетона Д700 или Д800, что предпочтительнее.

При кладке из арболитовых и полистиролбетонных блоков каждый третий ряд армируется сеткой (лучше — пластиковой), а между этажами заливается железобетонный пояс шириной (высотой) 100 мм.

В стенах из керамзитобетонных и керамических поризованных блоков усиление швов не требуется. Необходимость межэтажного армопояса определяется расчетом нагрузок от перекрытий и кровли.

Как сделать перемычки над проемами.

Крупные производители современных керамических и газосиликатных блоков, такие как Wienerberger и Ytong, предлагают усиленные перемычки, но эти изделия достаточно дороги и малодоступны, поэтому проемы часто забиваются кусками металлопроката — уголками и швеллеры, заделанные в мелочи.


Смотрите также: Блоки из арболита своими руками (+видео)


УТЕПЛЕНИЕ И ОТДЕЛКА ДОМА ИЗ ЛЕГКИХ БЛОКОВ

Легкие блоки, в том числе керамические , недостаточно декоративны и к тому же нуждаются в защите от атмосферной влаги. Наиболее распространенными способами отделки блочных стен являются облицовка (облицовка) кирпичом, оштукатуривание, облицовка плиткой клеевым раствором и монтаж навесного фасада. Все они позволяют дополнительно утеплить стены. Стены с облицовкой кирпичом относятся к строительной «классике» и пользуются популярностью по сей день, несмотря на то, что это достаточно дорогой и трудоемкий способ отделки, кроме его выполнения необходимо увеличение проектируемой ширины основания (основания) фундамента на 150 мм, а если предусмотрено утепление, то на 200/250 мм.

Паропроницаемость облицовочного кирпича небольшая, и он способен запирать влагу внутри несущей стены. Поэтому между кирпичом и блоками предусматривают проветриватель размером 20-40 мм. Если кладка стен и облицовка ведется одновременно, то кирпич соединяется с блоками перемычками. При облицовке уже построенного дома используйте анкер.

Утеплитель чаще всего прижимают к блокам с помощью пластиковых шайб, надетых на стержни-перемычки.

Гипсокартонный фасад должен обладать стойкостью к отслаиванию и паропроницаемостью не менее 0,09 мг/(м•ч•Па).

Надежнее всего использовать готовые цементные и цементно-известковые составы, например Cerzit ST24, weber.stuk A11. Стены из пенобетона, газобетона, полистиролбетона и керамических блоков рекомендуется штукатурить по сетке. Облицовка клинкером вошла в моду благодаря некоторому удешевлению этого красивого и прочного материала. Клинкерная плитка наклеивается на стену, облицованную базовым слоем штукатурки. При утеплении сначала специальным клеем фиксируют плиты из минеральной ваты высокой плотности, затем наносят слой штукатурки и монтируют плитку.