Металлы и сплавы материаловедение: учебное пособие — Научно-исследовательский портал Уральского федерального университета

Глава 2.1. Понятие о металлах и сплавах — Купити в Харкові, Києві, Україні. Безкоштовне тестування


Из всех известных в настоящее время элементов более половины являются металлами. Металлы — непрозрачные вещества, обладающие специфическим металлическим блеском, пластичностью, высокой тепло- и электропроводностью. По последнему свойству металлы легко отличить от других веществ (дерево, стекло и т.д.).


Все металлы и образованные из них сплавы делят на черные, к которым относят железо и сплавы на его основе (на их долю приходится около 95 % производимой в мире металлопродукции), и цветные. В технике принята условная классификация, по которой цветные металлы делят на группы: легкие (Al, Mg), тяжелые (Си, РЬ), тугоплавкие (W, Мо), благородные (Au, Pt), рассеянные (Gd, In), редкоземельные (Sc, Y), радиоактивные (Ra, U).


Понятие «чистый металл» условно, любой чистый металл содержит примеси. Под этим термином понимается металл, содержащий 0,010. ..0,001 % примесей. Современная металлургия позволяет получать металлы высокой чистоты (99,999%). Однако примеси, даже в малых количествах, могут оказывать влияние на свойства металла.


Чистые металлы обладают низкой прочностью, поэтому их применение в технике в качестве конструкционных материалов ограниченно. Наиболее широко применяют сплавы, которые по сравнению с чистыми металлами обладают более высокой прочностью и твердостью.


Сплавы — это сложные вещества, получаемые сплавлением или спеканием двух или более компонентов. Компоненты — простые вещества (часто это химические элементы), образующие сплав. При сплавлении все компоненты сплава первоначально находятся в жидком состоянии; при спекании, по крайней мере, один из компонентов находится в твердом состоянии. Сплавы могут состоять только из металлов, например латуни — это сплавы двух металлов: меди и цинка, или металлов и неметаллов, так, наиболее распространенные в технике материалы — стали и чугуны являются сплавами железа и углерода. Строение металлического сплава более сложное, чем у чистого металла.


Для рассмотрения строения, превращений и свойств металлов и сплавов введем понятия «фаза» и «структура».
Фазой называется однородная часть сплава, обладающая одинаковым химическим составом, строением и имеющая границы раздела с другими фазами, при переходе через которые свойства сплава резко меняются. Например, жидкий металл является однофазной системой. В процессе кристаллизации система состоит уже из двух фаз: жидкой и твердой. При этом свойства фаз значительно различаются. Фазами могут быть отдельные металлы или неметаллы, химические и другие соединения.


Под структурой понимается строение металла, т.е. количество фаз, их форма и размер, а также взаимное расположение. Структурными составляющими сплава называются обособленные части сплава, имеющие одинаковое строение с присущими им характерными особенностями. Структурные составляющие могут состоять из одной, двух или более фаз.





  • Наступна

Глава 1. Металлические материалы / Глава 1.2. Основные свойства металлов и сплавов — Купити в Харкові, Києві, Україні. Безкоштовне тестування


Металлы и сплавы характеризуются комплексом физических, механических, химических и технологических свойств.

Физические свойства металлов и сплавов: блеск, плотность, температура плавления, теплопроводность, теплоемкость, электропроводность, магнитные свойства, расширяемость при нагревании и фазовых превращениях.

Механические свойства металлов и сплавов: твердость, упругость, прочность, хрупкость, пластичность, вязкость, износостойкость, сопротивление усталости, ползучесть.

Химические свойства металлов и сплавов определяют их способность сопротивляться воздействию окружающей среды. При контакте с окружающей средой металлы и сплавы подвергаются коррозии, растворяются, окисляются и снижают свою жаропрочность.

Технологические свойства металлов и сплавов: ковкость, свариваемость, прокаливаемость, склонность к обезуглероживанию, обрабатываемость резанием, жидкотекучесть, закаливаемость. Они характеризуют способность металлов и сплавов обрабатываться различными методами. Кроме того, они позволяют определить, насколько экономически эффективно можно изготовить изделие.

Ковкость — способность металла и сплава обрабатываться путем пластического деформирования.

Свариваемость — способность металла и сплава образовывать неразъемное соединение, свойства которого близки к свойствам основного металла (сплава).

Прокаливаемость — способность металла и сплава закаливаться на определенную глубину.

Склонность к обезуглероживанию металла и сплава — возможность выгорания углерода в поверхностных слоях изделий из сплавов и сталей при нагреве в среде, содержащей кислород и водород.

Обрабатываемость резанием — поведение металла и сплава под воздействием режущего инструмента.

Жидкотекучесть — способность расплавленного металла и сплава заполнять литейную форму.

Закаливаемость — способность металла и сплава к повышению твердости при закалке (нагрев и быстрое охлаждение).

Физические свойства металлов и сплавов важны для самолетостроения, автомобилестроения, медицины, строительства, изготовления космических аппаратов и являются основными характеристиками, по которым определяют возможность использования того или иного металла или сплава.

Блеск — способность поверхности металла и сплава направленно отражать световой поток.

Плотность — масса единицы объема металла или сплава. Величину, обратную плотности, называют удельным объемом.

Температура плавления — это температура, при которой металл или сплав целиком переходят в жидкое состояние.

Теплопроводность — количество теплоты, проходящее в секунду через сечение в 1 см2, когда на расстоянии в 1 см изменение температуры составляет в 1 °С.

Теплоемкость — количество теплоты, необходимой для повышения температуры тела на 1 °С.

Электрическая проводимость — величина, обратная электрическому сопротивлению. Под удельным электрическим сопротивлением понимают электрическое сопротивление проводника длиной 1 м и площадью поперечного сечения в 10-6 м2 при пропускании по нему электрического тока.

К магнитным свойствам металлов и сплавов относятся: начальная магнитная проницаемость, максимальная магнитная проницаемость, коэрцитивная сила, намагниченность насыщения, индукция насыщения, остаточная магнитная индукция, точка Кюри, петля гистерезиса.

При помещении стального образца в магнитное поле возникающая в нем магнитная индукция (b) является функцией напряженности магнитного поля (Нm).

Намагниченность (М) пропорциональна напряженности магнитного поля. Эта величины связаны между собой коэффициентом χm, который называется магнитной восприимчивостью стали или сплава.

Между магнитной индукцией и напряженностью магнитного поля существует аналитическая связь

где μь — магнитная проницаемость вакуума.

Для ферромагнетиков (сплавов, способных намагничиваться до насыщения в малых магнитных полях) b = μНтμв, где μ= 1 + χ — коэффициент магнитной проницаемости.

При намагничивании ферромагнитных материалов (стали, полученные соединением ферромагнетиков с парамагнетиками) намагниченность сначала плавно возрастает, потом резко повышается и постепенно достигает насыщения. При уменьшении напряженности магнитного поля Нт после намагничивания и реверсирования (изменение направления поля) его кривая изменения индукции образует замкнутую петлю. ‘Эта петля называется петлей гистерезиса.

Основными параметрами начальной кривой и петли гистерезиса являются остаточная индукция br, коэрцитивная сила Hc, напряженность насыщающего поля Нн и намагниченность насыщения Мs, По начальной кривой определяется кривая магнитной проницаемости, в которой основными точками являются начальная магнитная проницаемость μ0 и максимальная магнитная проницаемость μmax .

Наибольшее значение индукции на петле гистерезиса называется индукцией насыщения b3 .

Ферромагнетики при нагреве до определенной температуры переходят в парамагнитное состояние (в состояние с малой магнитной восприимчивостью). Эта температура называется точкой Кюри. Точка Кюри определяется в основном химическим составом сплава или стали и не зависит от давлений, напряжений и других факторов.

Все характеристики ферромагнитных материалов можно разделить на структурно-нечувствительные и структурно-чувствительные. К структурно-нечувствительным характеристикам относятся точка Кюри, намагниченность насыщения, зависящие от произвольной намагниченности, к структурно-чувствительным — магнитная проницаемость, остаточная индукция и коэрцитивная сила.

Структурно-нечувствительные характеристики ферромагнитных материалов зависят в основном от химического состава и числа фаз и практически не зависят от кристаллической структуры, размера частиц зерна металла. Следовательно, измерение точки Кюри, намагниченности насыщения и т. д. необходимо для качественного фазового анализа стали и сплава.

Измерение структурно-чувствительных характеристик необходимо при изучении структурных изменений в сплавах и сталях при термической или механической обработке.

Магнитная проницаемость, коэрцитивная сила и остаточная индукция изменяются при обработке сплавов и сталей. Расширение при нагревании изделий из сталей и сплавов — изменение размеров и формы зерен — характеризуется температурными коэффициентами объемного и линейного расширения. Расширение при нагревании в интервале температур фазовых превращений сталей и сплавов характеризуется коэффициентом линейного расширения отдельных фаз. Внутренние (фазовые и структурные) превращения в металлах и сплавах характеризуются изменением объема, линейных размеров и коэффициента расширения. При фазовых превращениях в металлах и сплавах происходит выделение или поглощение скрытой теплоты превращения, изменяется теплоемкость изделия. Поэтому при изменении структуры металла или сплава нагреваемых или охлаждаемых с постоянной скоростью, могут появиться отклонения от нормальной кривизны на кривых изменения температуры по времени. По этим кривым, называемым термическими кривыми, определяют температуру (температурный интервал) превращения.




  • Попередня

  • Наступна

Материаловедение и инженерия: металлы

От самурайского меча до стальной двутавровой балки и катушек электромагнита металлы являются частью нашего прошлого, настоящего и будущего.

Металлы характеризуются ковкостью, пластичностью, высокой электро- и теплопроводностью и блестящей поверхностью, отражающей свет. Металлическая связь, при которой валентные электроны являются общими для всего твердого тела, приводит к появлению «свободных» электронов, ответственных за электрические, тепловые и оптические свойства металла.

Знаете ли вы?  Подавляющее большинство химических элементов в периодической таблице представляют собой металлы.

Элементарные металлы имеют недостатки, ограничивающие их полезность. Материаловеды и инженеры производят превосходные металлы, часто сплавляя (смешивая элементы).

Практическое инженерное применение — Из огромного количества сплавов и с использованием соответствующих методов обработки ученые определяют сплавы, которые являются более прочными, легкими и наиболее инертными для технических применений; например: для строительства небоскребов, мостов, самолетов и подводных лодок.

Новаторские исследования в области материаловедения и инженерии в Университете Мэриленда

 

Профессор Лян Бинг Ху и его сотрудники разработали новый метод приготовления ранее недоступных сплавов. Прочтите полную историю здесь.

Статья из научного журнала

Веб-страница лаборатории профессора Ху

 

Профессор Манфред Вуттиг и его коллеги из Кильского университета, Германия, разработали сплав с памятью формы, который может выдерживать миллионы циклов нагрузки и нагревания без признаков усталости. Это делает технологию подходящей для искусственных сердечных клапанов и хлопающих крыльев. Прочтите полную историю здесь.

Ссылка на статью журнала Science Magazine здесь.

Ссылка на отчет BBC здесь.

Профессор Саламанка-Риба возглавляет разработку технологии производства, включающей графен в алюминий и медь. Полученные композитные материалы, называемые «коветиками», обладают лучшими электрическими, механическими и тепловыми свойствами, чем исходный металл. Covetics может повысить энергоэффективность линий электропередачи и межсоединений устройств, среди прочего. Прочтите полную историю здесь.

Профессор Одед Рабин и его исследовательская группа используют серебряные кубики размером 100 нанометров (1/10000 миллиметра) для обнаружения молекул. С помощью кубов сигнал можно идентифицировать всего с десятью тысячами молекул. Без нанокубов потребовалось бы десять миллиардов молекул. Прочтите полную историю здесь.

Ссылка на статью ACS Nano здесь.

Ссылка на веб-страницу лаборатории профессора Рабина.

Начните захватывающую карьеру, поступив в бакалавриат, магистр наук. или доктор философии программы Департамента материаловедения и инженерии, и вы можете принять участие в развитии области материалов. Всем студентам предоставляется возможность присоединиться к исследовательским группам и выполнять лабораторные работы в интересующей их области.

Узнайте о нашей программе бакалавриата здесь.

Узнайте о нашей программе для выпускников здесь.

Металлы — UMD Researchers

Анкем Ху Рабин
Саламанка-Риба Вуттиг Чжао

 

Большинство металлических сплавов обладают высокой степенью кристалличности, что является ключом к их способности пластически деформироваться и сопротивляться разрушению при повторяющихся механических нагрузках — хорошими примерами этого являются сплавы, используемые в самолетах, которые могут компенсировать деформацию при высокоскоростном полете, или мосты предназначен для сгибания на ветру.

Знаете ли вы? Материаловеды используют быстрое затвердевание для получения аморфных (некристаллических) металлов, известных как металлические стекла. Они удивительно твердые, хрупкие и электропроводящие.

Время перерыва   —   MSE @ UMD Media Center

Аморфный металл:  Аморфные металлы не обладают механизмом поглощения механической энергии. Достигающие их объекты отскакивают, не передавая энергию металлу. Это показано в связанном видео путем сравнения обычного металла (слева) с аморфным металлом (справа). Нажмите на изображение, чтобы продолжить. Видео откроется в новой вкладке.

В этом примере аморфный металл образовался путем объединения 5 различных атомов: циркония, титана, меди, никеля и бериллия (Zr41.2Be22.5Ti13.8Cu12.5Ni10.0). Различные атомные диаметры этих элементов и необычный состав сплава не позволяют атомам выстраиваться в правильную кристаллическую структуру. Атомы не могут легко скользить друг относительно друга при деформации, что приводит к очень твердому материалу. Когда стальной шариковый подшипник падает на аморфный металл, шарик много раз отскакивает, прежде чем остановится. Металлическое стекло не деформируется при ударе, поэтому шарикоподшипник дольше сохраняет свою энергию.

Металлы с памятью формы:  Материалы с памятью формы обладают необычным свойством «запоминать» форму, в которую они были сформированы при высокой температуре. Например, если кусок проволоки из металлического сплава с памятью формы деформируется, он вернется в исходное состояние при воздействии тепла. Нажмите на изображение, чтобы продолжить. Видео откроется в новой вкладке.

В этом примере проволока изготовлена ​​из нитинола, никель-титанового сплава. Материалы с памятью формы претерпевают фазовый переход в твердом состоянии, при котором атомы перестраиваются, но материал остается твердым. В низкотемпературной фазе материал может реагировать на механические силы, слегка сдвигая положения атомов друг относительно друга. Когда это происходит, мы наблюдаем деформацию материала. В высокотемпературной фазе эти сдвиги невозможны; поэтому при нагревании атомы возвращаются в исходное положение, и мы наблюдаем восстановление формы материала.

MSE не только улучшает обычные свойства металлов, но и обнаруживает необычное поведение. Например, характеристики нитинола, металлического сплава титана и никеля, включают:

  • Материал с памятью формы — после деформации он возвращается к своей первоначальной форме при нагревании.
  • Сверхэластичность — сохраняет уровень натяжения, несмотря на изменения длины.
  • Биосовместимый — не оказывает неблагоприятного воздействия при контакте с живой тканью.
  • Использование в медицине — сердечно-сосудистые стенты, зубные брекеты и многое другое.

Инструменты металлообработки зависят от того, являются ли характеристики объекта метрами, миллиметрами или нанометрами. При приближении к нанометровому масштабу, в котором электроны ведут себя как волны и важны поверхностные эффекты, металлические объекты приобретают интригующие свойства. Например, наночастицы металлов интенсивно рассеивают свет, из-за чего они кажутся намного больше, чем они есть на самом деле! Сферические наночастицы серебра делают воду ярко-желтой, а наночастицы золота окрашивают ее в бордовый цвет. Эти новые оптические свойства интересны для сенсорных и коммуникационных технологий.

Узнайте больше о нанотехнологиях и MSПосетите Наноцентр

Фильмы, истории и ссылки

Демонстрация — Аморфные металлы

(видео открывается в новой вкладке)

Демонстрация — сплав с памятью формы

(видео открывается в новой вкладке)

  • Weird, Weird Science
    Джон Сайзмор предлагает фильмы на самые разные темы на своем сайте Dailymotion. Его серия видео о материалах «Увеличить масштаб» включает «Увеличить масштаб стали», «Увеличить масштаб латуни» и «Увеличить масштаб алюминия».
  • Домашние инструменты науки: узнайте о металлах
    Объясняет свойства и типы металлов, как металлы получают из руды и коррозию.
  • The Aluminium Association
    Знаете ли вы, что более трети общего объема производства алюминия в США поступает за счет вторичной переработки? Узнайте больше здесь.

 

Назад к «Что такое MSE?»Полезная информация для будущих студентов

Металлы и сплавы | SpringerLink

  1. Бейн, Э. К. и Пакстон, Х. В., Легирующие элементы в стали , 2-е изд., Американское общество металлов, Металс-Парк, Огайо, 1961.

    Google ученый

  2. Скотт, Д.А., Армстронг, В.М. и Форвард., Ф.А., Влияние никеля и молибдена на изотермическое превращение аустенита в чистых сплавах железо-никель и железо-никель-молибден, содержащих 0,55% углерода», Trans. АСМ , 41 , 1949, 1145.

    Google ученый

  3. Дауэс, К. и Трантер, Д.Ф., «Применение теории газового науглероживания на практике», Metals Technology , сентябрь 1974 г., 397.

    Google ученый

  4. Джонс, Ф. В. и Памфри, В. И., «Свободная энергия и метастабильные состояния в железо-никелевых и железо-марганцевых системах», J. Iron Steel Inst. , 163 , 1949, 121.

    Google ученый

  5. Подрядчик, генеральный директор, «Чудо Мараджинга», J. Metals , 18 , 1966, 938.

    Google ученый

  6. Франкс, Р., «Хромистые стали с низким содержанием углерода», Trans. АСМ , 35 , 1945, 616.

    Google ученый

  7. «>

    Аборн, Р. Х. и Бейн, Э. К., «Природа никель-хромовых нержавеющих сталей», Trans. АСМ , 18 , 1930, 837.

    Google ученый

  8. Хэм, Дж.Л., Парк, Р.М. и Герциг, А.Дж., «Влияние молибдена на скорость диффузии углерода в аустените», Trans. АСМ , 31 , 1943, 877.

    Google ученый

  9. Боуман, Ф.Е., «Распределение молибдена в стали и его отношение к прокаливаемости», Trans. АСМ , 35 , 1945, 112.

    Google ученый

  10. Вишванатан, Р., «Прочность и пластичность 2¼Cr-1Mo сталей при ползучести при повышенных температурах», Metals Technology , июнь 1974 г., 284.

    Google ученый

  11. Циглер, Н.А., Мейнхарт, В.Л. и Голдсмит, Дж. Р., «Влияние ванадия на свойства литых углеродистых и углеродисто-молибденовых сталей», Транс. АСМ , 41 , 1949, 565.

    Google ученый

  12. Каплан, Д. и Коэн, М., «Высокотемпературное окисление сплавов железо-хром», Trans. А.И.М.Е. , 194 , 1952, 1057.

    Google ученый

  13. Альм, С. и Кисслинг, Р., «Истощение хрома вокруг зернограничных выделений в аустенитных нержавеющих сталях», J. Inst. Металлы , 91 (5), 1962–63, 190.

    Google ученый

  14. Ост, К.Т., Армиджо, Дж.С., Кох, Э.Ф. и Вестбрук, Дж.Х., «Межкристаллитная коррозия и электронно-микроскопические исследования аустенитных нержавеющих сталей», Trans. Квартал АСМ. , 60 , 1967, 360.

    Google ученый

  15. Розенберг С.Дж. и Дарр, Дж. Х., «Стабилизация аустенитных нержавеющих сталей», стр. 9.0175 Транс. АСМ , 41 , 1949, 1261.

    Google ученый

  16. Трент, Э.М., «Материалы для режущих инструментов», Metall. Rev. , № 127 (октябрь 1968 г.).

    Google ученый

  17. «Свойства и выбор материалов», Metals Handbook , 8-е изд., Vol. 1, Американское общество металлов, Metals Park, Огайо, 1961, стр. 637–59.

    Google ученый

  18. Моррог, Х., «Статус металлургии чугуна», J. Iron Steel Inst. , 206 , 1968, 1.

    Google ученый

  19. Джейкоб М.Х., Лоу Т.Дж., Мелфорд Д.А. и Стоуэлл, М.Дж., «Основные процессы, контролирующие зарождение графитовых конкреций в кокильном чугуне», Metals Technology , ноябрь 1974 г., 490.

    Google ученый

  20. «>

    Gilbert, G.N.J., «Механические свойства чугуна», Chart. мех. инж. , 12 , 1965, 316.

    Google ученый

  21. Дэвис, Д.В., «Обрабатываемость и микроструктура некоторых распространенных цветных металлов и сплавов», Metals Technology , май – июнь 1976 г., 272.

    Google ученый

  22. Скалли, Дж. К., 9 лет0175 Теория коррозионного растрескивания под напряжением в сплавах , Отдел научных дел НАТО, Брюссель, 1971, с. 127.

    Google ученый

  23. Гай, А.Г., «Сплавы на основе никеля для высокотемпературных применений», Trans. АСМ , 41 , 1949, 125.

    Google ученый

  24. Лор, Дж. М. и Хопкинс, С. М., «Тепловое расширение сплавов никеля и железа (никель от 30 до 70%)», Транс. А.И.М.Е. , 135 , 1939, 535.

    Google ученый

  25. Дикс, Э.Х., младший, «Новые разработки в области высокопрочных изделий из алюминиевых сплавов», Trans. КАК М. , 35 , 1945, 130.

    Google ученый

  26. Смит А.И., «Механические свойства материалов при высоких температурах», Chart. мех. Eng . (Лондон), 1961, 278.

    Google ученый

  27. Коллинз, Х.Е., «Разработка жаропрочных сплавов на основе никеля для применения в лопатках турбин реактивных двигателей», Отчет НАСА CR-54507 TRW Inc. (20 июня 1967 г.), контракт NAS3–7267.

    Google ученый

  28. Симс, Г.Т., «Современный взгляд на суперсплавы на основе никеля», J. Metals , 18 , 1966, 1119.