Бериллиевая бронза: Бериллиевая бронза – свойства и сферы применения

Содержание

Бронза бериллиевая — Словарь терминов | ПластЭксперт

Бронза бериллиевая

Общие сведения


Бериллиевыми бронзами называют группу металлических сплавов, основными компонентами которых являются медь и бериллий. Такие композиции металлов также называют «бериллиевая латунь» или «бериллий-латунь», «бериллиевая медь» или «бериллий-медь, «бериллий-бронза», Cu-Be и т.д.


Бериллиевые бронзы интересны для индустрии пластмасс тем, что их свойства позволяют достаточно широко применять бронзы при изготовлении форм для литья пластмасс под давлением (прессформах, литьевых формах) и другой формующей оснастки в качестве альтернативы сталям. Такое использование оправдано для изготовления компонентов оснастки, требующих повышенной теплоотдачи, то есть в формообразующих деталях при высоких скоростях переработки (коротких циклах литья). Кроме того, в составе литьевых форм детали из бериллиевой бронзы – частый компонент горячеканальных систем для доставки расплавленной пластмассы в формообразующую полость. При таких применениях используется важнейшее свойство бериллиевых сплавов – очень высокая теплопроводность.



Рис.1 Внешний вид бронзовых заготовок


Самой часто используемой маркой бронз является сплав БрБ2, что говорит о содержании в нем 98 процентов меди и 2 процентов бериллия. 


Особенности сплавов Cu-Be


Бериллиевая бронза является представителем типа дисперсионно-упрочняемых металлических сплавов. От других смесей металлов их прежде всего отличает наличие зависимости степени растворимости легирующих добавок от температуры материала.


Как правило, в бериллиевых бронзах содержание непосредственно элемента бериллия (Be) варьируется в пределах от 1,5 до 3 процентов. Кроме него в состав подобных бронз может входить кобальт (медь-кобальт-бериллий, МКБ-сплав) или никель (МНБ-сплав). В таких бронзах количество бериллия еще ниже – обычно до 0,8 процентов.


Как было упомянуто выше, при нагревании Cu-Be материала изменяется величина растворимости легирующих металлов, которые содержатся в его составе. Это важно для проведения закалки изделий из бериллиевой бронзы. Грамотно проведенная термообработка ведет к существенному повышению физико-механических свойств изделий и, кроме того, увеличивает предел текучести материала.


Свойства сплавов «медь – бериллий»


Ниже представлены основные характеристики бериллиево-медных сплавов, применяемым на сегодняшний день. 


— очень высокие электропроводность и теплопроводность;


— высокие показатели по износостойкости;


— хорошая сопротивляемость эффектам ползучести и усталости;


— повышенный модуль упругости;


— не обладают эффектом искрения при ударных нагрузках;


— очень большая коррозионная стойкость;


— высокая твердость и прочность.


Существует возможность улучшений характеристик бериллиевых бронз, как было сказано ранее, проведя процедуру их термообработки, а именно закалки и искусственному старению. Также разработана технология придания бронзе высокой пластичности – для этого необходимо закалить деталь при температуре около 775 градусов С.


При нормальных условиях (до закалки и старения) медно-бериллиевые сплавы характеризуются значением временного сопротивления порядка 450 МПа. Однако, этот параметр можно существенно повысить после проведения непосредственно закалки или процесса искусственного старения бронз. Так марка БрБ2 получает значение временного сопротивления в 1400 МПа после такой термообработки.


Другая ценная особенность бериллиевой бронзы — высокая теплостойкость и постоянство свойств в широком диапазоне температур. Так, при нагревании этого материала вплоть до 340 градусов С его основные характеристики практически не изменяются. При температуре в 500 градусов С свойства бериллиево-бронзовых изделий примерно соответствуют параметрам деталей из алюминиевого сплава, работающим при 20 градусах С.


Применение бронз


Бериллиевые бронзы широко используются в отраслях, требующих наличия у материала ценных свойств, описанных выше. В иных случаях можно обойтись более простыми и дешевыми материалами. Чаще всего бериллиево-медные сплавы применяются при изготовлении электронных компонентов и в электротехнике, например при выпуске:


— телекоммуникационных устройств, компонентов оптико-волоконных систем, компонентов прочих электронных устройств;


— детали соединений, пружинных контактов;


— гнездовых разъемов, деталей интегральных схем;


— деталей двигателей и прочих изделий для транспортной промышленности;


— авиационных компонентов, в том числе компонентов шасси самолетов;


— деталей оборудования, использующегося при переменных нагрузках высокой амплитуды и больших перепадах температуры;


— электродов, стержней и комплектующих оборудования для сварки повышенной надежности и долговечности;


— компонентов нефтеперерабатывающего и нефтедобывающего, в том числе бурового оборудования;


— детали резьбовых соединений, насосного оборудования в нефтепереработке и нефтехимии;


— компонентов оборудования для навигации, прочих ответственных изделий и механизмов.


Комплектующие из бериллиево-медных бронз почти наверняка находятся в каждом современном компьютере или гаджете, в том числе в смартфонах и планшетах.



Рис.2. Бериллиево-бронзовые вставки в прессформе


Также бериллиевые бронзы применяются для изготовления поршней для машин по литью металлических сплавов под давлением, прочих деталей литьевого оборудования. Применение бронзы в этом случае дает возможность избежать дорогостоящей защиты внутренней поверхности оборудования, работающего при высоких термо-механических нагрузках.


Незаменимы медно-бериллиевые сплавы при производстве оборудования для переработки пластмасс, где активно используются комбинация их прочности и теплопроводности, а также прочие ценные свойства. Существуют специальные торговые марки бронз, использующихся специально для изготовления пуансонов высокоточных и высокоскоростных прессформ для литья пластмасс под давлением. Материал CuBe находит применение и в экструзии, и в выдувном формовании, и в термоформовании, главным образом при изготовлении высокопроизводительной формующей оснастки. Его использование удорожает и усложняет оснастку, т.к. часто приходится применять комбинацию материалов вместо использования цельного стального элемента, однако оно окупается за счет повышения производительности получаемой оснастки.

Бронза БрБ2т бериллиевая 0,2 х 250 х 1000 мм

Бронза БрБ2т бериллиевая 0,2 х 250 х 1000 мм


















































  • Металлы и сплавы
  • Бронза
  • Бронзовая лента

Каталог

Информация

Доставка по России

Мы доставим ваш заказ курьером по Москве или службой экспресс-доставки по всей России.

Теги

  • ftp
  • utp
  • витая пара
  • диэлектрик
  • долговечное жало
  • изоляционный
  • изоляционный материал
  • изоляция трансформаторов
  • кабель витая пара
  • кабель контрольный
  • Описание
  • Характеристики
  • Отзывы

БрБ2 — это безоловянная бериллиевая бронза, обрабатываемая давлением. Химический состав этого сплава описан в ГОСТ 18175-78 и включает в себя следующие компоненты: 96,9-98,0 % меди, 1,8-2,1 % бериллия, 0,2-0,5 % никеля и до 0,5 % примесей.

Сплав выделяется среди прочих бронз высокой износостойкостью и стойкостью к коррозионной усталости. Наряду с другими бронзами БрБ2 обладает хорошими антифрикционными и пружинящими свойствами, а также средними тепло и электропроводностью.

Рекомендуем посмотреть

Текстолит ПТ лист 10 х 300 х 400 (ВС)

4 150 ₽ 

Титан пруток ВТ1-0 12 х 1000 мм, полированный

4 150 ₽ 

Стеклотекстолит СТЭФ 3,0 х 500 х 500 мм (ВС)

4 150 ₽ 

Тефлоновое полотно 0,13 х 1000 мм, без липкого слоя, 1 метр

4 150 ₽ 

Шлейф цветной RCA-16 AWG28 (0,13mm2) бухта 31 м.

4 150 ₽ 

Бериллиевая бронза — Медь Бериллий

Медно-бериллиевый инструмент

Бронза представляет собой семейство сплавов на основе меди, традиционно легированных оловом, но может относиться к сплавам меди и других элементов (например, алюминия, кремния и никеля). Бронза несколько прочнее латуни, но при этом обладает высокой степенью коррозионной стойкости. Как правило, они используются, когда помимо коррозионной стойкости требуются хорошие свойства при растяжении. Например, бериллиевая медь достигает наибольшей прочности среди сплавов на основе меди (1400 МПа).

Исторически сложилось так, что сплав меди с другим металлом, например, оловом, для получения бронзы впервые начали практиковать примерно через 4000 лет после открытия выплавки меди и примерно через 2000 лет после того, как «природная бронза» вошла в обиход. Древняя цивилизация определяется в бронзовом веке как производство бронзы путем плавки меди и сплавления ее с оловом, мышьяком или другими металлами. Бронза или бронзоподобные сплавы и смеси использовались для изготовления монет в течение более длительного периода. Бронзы до сих пор широко используются для изготовления пружин, подшипников, втулок, направляющих подшипников автомобильных трансмиссий и аналогичных фитингов, особенно в подшипниках небольших электродвигателей. Латунь и бронза являются распространенными конструкционными материалами в современной архитектуре и в основном используются для кровли и облицовки фасадов из-за их внешнего вида.

Бериллиевая бронза

Медный бериллий , также известный как бериллиевая бронза , представляет собой медный сплав с содержанием бериллия 0,5—3%. Медный бериллий представляет собой самый твердый и прочный медный сплав (UTS до 1400 МПа) в условиях полной термообработки и наклепа. Он сочетает в себе высокую прочность с немагнитными и безыскровыми качествами . По механическим свойствам она близка многим высокопрочным легированным сталям, но по сравнению со сталями обладает лучшей коррозионной стойкостью (аналогична чистой меди). Обладает хорошей теплопроводностью (210 Вт/м°С) в 3-5 раз больше, чем инструментальная сталь. Эти высокоэффективные сплавы уже давно используются для искробезопасного инструмента в горнодобывающей (угольные шахты), газовой и нефтехимической промышленности (нефтяные вышки). В этих средах доступны отвертки из бериллиевой меди, плоскогубцы, гаечные ключи, холодные долота, ножи и молотки. Из-за отличной усталостной прочности медный бериллий широко используется для изготовления пружин, пружинных проволок, тензодатчиков и других деталей, которые должны сохранять свою форму при циклических нагрузках.

Свойства бериллиевой бронзы

Свойства материала являются интенсивными свойствами , что означает, что они не зависят от количества массы и могут варьироваться от места к месту в системе в любой момент. Материаловедение включает в себя изучение структуры материалов и связывание их с их свойствами (механическими, электрическими и т. д.). Как только материаловед узнает об этой корреляции структура-свойство, он может приступить к изучению относительных характеристик материала в данном приложении. Основными факторами, определяющими структуру материала и, следовательно, его свойства, являются входящие в его состав химические элементы и то, как он был обработан до конечной формы.

Механические свойства бериллиевой бронзы

Материалы часто выбирают для различных применений, поскольку они имеют желаемое сочетание механических характеристик. Для конструкционных приложений свойства материалов имеют решающее значение, и инженеры должны их учитывать.

Прочность бериллиевой бронзы

В механике материалов прочность материала — это его способность выдерживать приложенную нагрузку без разрушения или пластической деформации. Прочность материалов учитывает взаимосвязь между внешними нагрузками , приложенными к материалу, и результирующей деформацией или изменением размеров материала. Прочность  материала  – это его способность выдерживать приложенную нагрузку без разрушения или пластической деформации.

Предел прочности при растяжении

Предел прочности при растяжении меди бериллия – UNS C17200 составляет около 1380 МПа.

предел прочности при растяжении является максимальным на инженерной кривой напряжения-деформации. Это соответствует максимальному напряжению , выдерживаемому растянутой конструкцией. Предельная прочность на растяжение часто сокращается до «предельной прочности» или «предела прочности». Если это напряжение применяется и поддерживается, в результате произойдет перелом. Часто это значение значительно превышает предел текучести (на 50–60 % превышает предел текучести для некоторых типов металлов). Когда пластичный материал достигает предела прочности, он испытывает сужение, когда площадь поперечного сечения локально уменьшается. Кривая напряжение-деформация не содержит более высокого напряжения, чем предел прочности. Несмотря на то, что деформации могут продолжать увеличиваться, напряжение обычно уменьшается после достижения предела прочности. Это интенсивное свойство; следовательно, его значение не зависит от размеров испытуемого образца. Однако это зависит от других факторов, таких как подготовка образца, наличие или отсутствие поверхностных дефектов, температура тестовой среды и материала. Предел прочности при растяжении варьируется от 50 МПа для алюминия до 3000 МПа для очень высокопрочных сталей.

Предел текучести

Предел текучести меди бериллия – UNS C17200 составляет около 1100 МПа.

Точка текучести — это точка на кривой напряжения-деформации, которая указывает предел упругого поведения и начало пластического поведения. Предел текучести или предел текучести — это свойство материала, определяемое как напряжение, при котором материал начинает пластически деформироваться. Напротив, предел текучести — это место, где начинается нелинейная (упругая + пластическая) деформация. Перед пределом текучести материал упруго деформируется и возвращается к своей первоначальной форме после снятия приложенного напряжения. Как только предел текучести пройден, некоторая часть деформации будет постоянной и необратимой. Некоторые стали и другие материалы демонстрируют явление, называемое явлением предела текучести. Пределы текучести варьируются от 35 МПа для низкопрочного алюминия до более 1400 МПа для высокопрочной стали.

Модуль упругости Юнга

Модуль упругости Юнга меди бериллия – UNS C17200 составляет около 131 ГПа.

Модуль упругости Юнга представляет собой модуль упругости при растяжении и сжатии в режиме линейной упругости одноосной деформации и обычно оценивается испытаниями на растяжение. Тело может восстановить свои размеры, сняв нагрузку, чтобы ограничить напряжение. Приложенные напряжения заставляют атомы в кристалле перемещаться из своего равновесного положения, и все атомы смещаются на одинаковую величину и сохраняют свою относительную геометрию. Когда напряжения снимаются, все атомы возвращаются в исходное положение, и никакой остаточной деформации не происходит. Согласно Закон Гука, напряжение пропорционально деформации (в упругой области), а наклон модуль Юнга . Модуль Юнга равен продольному напряжению, деленному на деформацию.

Твердость бериллиевой бронзы

Твердость по Роквеллу меди бериллия – UNS C17200 составляет приблизительно 82 HRB.

Испытание на твердость по Роквеллу является одним из наиболее распространенных испытаний на твердость при вдавливании, разработанных для определения твердости. В отличие от теста Бринелля, тестер Роквелла измеряет глубину проникновения индентора при большой нагрузке (большая нагрузка) по сравнению с проникновением, достигнутым при предварительном нагружении (незначительная нагрузка). Второстепенная нагрузка устанавливает нулевое положение, а большая нагрузка прикладывается, а затем снимается при сохранении второстепенной нагрузки. Разница между глубиной проникновения до и после приложения основной нагрузки используется для расчета Число твердости по Роквеллу . То есть глубина проникновения и твердость обратно пропорциональны. Главным преимуществом твердости по Роквеллу является возможность отображать значения твердости напрямую . Результатом является безразмерное число, обозначаемое как HRA, HRB, HRC и т. д., где последняя буква соответствует соответствующей шкале Роквелла.

Испытание Rockwell C выполняется с пенетратором Brale ( алмазный конус 120° ) и основной нагрузкой 150 кг.

Термические свойства бериллиевой бронзы

Термические свойства материалов относятся к реакции материалов на изменения их температуры и приложение тепла. Когда твердое тело поглощает энергию в виде тепла, его температура повышается, а его размеры увеличиваются. Но различных материалов реагируют на приложение тепла по-разному .

Теплоемкость, тепловое расширение и теплопроводность часто имеют решающее значение при практическом использовании твердых тел.

Температура плавления бериллиевой бронзы

Температура плавления меди бериллия – UNS C17200 составляет около 866°C.

В общем, плавление  является фазовым переходом  вещества из твердого состояния в жидкое. точка плавления вещества — это температура, при которой происходит это фазовое превращение. Точка плавления   также определяет состояние, при котором твердое тело и жидкость могут существовать в равновесии.

Теплопроводность бериллиевой бронзы

Теплопроводность меди бериллия – UNS C17200 составляет 115 Вт/(м·К).

Характеристики теплопередачи твердого материала измеряются свойством, называемым теплопроводностью , k (или λ), измеряемой в Вт/м. K . Он измеряет способность вещества передавать тепло через материал за счет теплопроводности. Обратите внимание, что закон Фурье применяется ко всем веществам, независимо от их состояния (твердое, жидкое или газообразное). Поэтому его также определяют как жидкости и газы.

Теплопроводность большинства жидкостей и твердых тел зависит от температуры, а для паров она также зависит от давления. В целом:

Большинство материалов практически однородны. Поэтому обычно мы можем написать k = k (T) . Аналогичные определения связаны с теплопроводностью в направлениях y и z (ky, kz). Однако для изотропного материала теплопроводность не зависит от направления переноса, kx = ky = kz = k.

Ссылки:

Материаловедение:

Министерство энергетики США, Материаловедение. Справочник по основам Министерства энергетики, том 1 и 2. Январь 1993 г.
Министерство энергетики США, материаловедение. Справочник по основам Министерства энергетики, том 2 и 2. Январь 1993 г.
Уильям Д. Каллистер, Дэвид Г. Ретвиш. Материаловедение и инженерия: введение, 9-е издание, Wiley; 9 издание (4 декабря 2013 г.), ISBN-13: 978-1118324578.
Эберхарт, Марк (2003). Почему все ломается: понимание мира по тому, как он разваливается. Гармония. ISBN 978-1-4000-4760-4.
Гаскелл, Дэвид Р. (1995). Введение в термодинамику материалов (4-е изд.). Издательство Тейлор и Фрэнсис. ISBN 978-1-56032-992-3.
Гонсалес-Виньяс, В. и Манчини, Х.Л. (2004). Введение в материаловедение. Издательство Принстонского университета. ISBN 978-0-691-07097-1.
Эшби, Майкл; Хью Шерклифф; Дэвид Себон (2007). Материалы: инженерия, наука, обработка и дизайн (1-е изд.). Баттерворт-Хайнеманн. ISBN 978-0-7506-8391-3.
Дж. Р. Ламарш, А. Дж. Баратта, Введение в ядерную технику, 3-е изд., Prentice-Hall, 2001, ISBN: 0-201-82498-1.

Бериллиевая бронза

Tropag Oscar H. Ritter Nachf. ООО


Поиск продукта

  • Деталь
  • Деталь

Вернуться к списку

 

Качество

Сплав на основе меди с содержанием кобальта от 0,4 до 2,1%, а также сплавы никеля с низким содержанием кобальта или кремния, с пониженным содержанием бериллия, опционально с другими элементами. В противном случае с типичными примесями.

Если изготовлено не по спецификациям заказчика в соответствии с DIN EN ISO 1412.

 

Описание

Это высокопрочный бериллиево-медный сплав, который обычно применяется для применений с особыми требованиями к прочности, коррозионной стойкости и термическим и электрическая проводимость. Это важно для обеспечения безопасности при разведке нефти и газа, а также при транспортировке и переработке нефти и газа (незажигательные и немагнитные инструменты и оборудование вместо стальных инструментов), а также в автомобильной промышленности и в авиации. , но и для форм (пластиковых, стеклянных, металлических), сварки и других ответственных применений с наиболее комбинированными и высокими механическими, термическими и химическими требованиями. Свойства Be-бронзы могут быть изменены путем закалки еще больше. Потребители также используют его для микроотливок или индивидуальных форм

 

Упаковка

Эти бериллиевые сплавы выпускаются в виде заготовок для ковки и волочения (как литых, так и точеных или полированных), небольших слитков по 60-100 г или 2 кг слитков, а также мелких кусков, отрезанных или отрезанных плиты с ок. длиной около 1-2,5 см. Упаковка производится на поддонах и/или в прочных ящиках или бочках.

 

Хранение

Поскольку все металлы и сплавы в металлургии хранятся в сухом виде.

 

Наличие

Этот материал изготавливается по запросу. Срок доставки составляет примерно 4-16 недель ARO.

 

Детали
Имя: Бериллиевая бронза
Номер CAS: Cu 7440-50-8 Be 7440-41-7 Co 7440-48-4 Ni 7440-02-0
№ ЕС: Cu 231-159-6 Be 231-150-7 Co 231-158-0 Ni 231-111-4
Краткая характеристика опасности:
Менеджер по продукции
Идентификация:

EC-No.: Cu 231-159-6 Be 231-150-7 Co 231-158-0 Ni 231-111-4 CAS-No.

: Cu 7440-50-8 Be 7440-41-7 Co 7440-48-4 Ni 7440-02-0

Тропаг Оскар Х.