Центробежные насосы технические характеристики: Центробежные насосы

Характеристики центробежных насосов

При применении центробежных насосов важно знать характер изменения одних величин в зависимости от других. Удобно независимой величиной считать расход жидкости в системе труб, обслуживаемых данным насосом. Таким образом, производительность насоса Q в этом смысле есть независимая переменная. Изменение остальных параметров в большей или меньшей мере зависит от изменения расхода. Гидравлические величины насоса Q, Н и каждая в отдельности зависят от изменения скоростей в рабочем колесе, поэтому между ними существует связь, определяющая внешнюю характеристику насоса. 

Рис. 10. Теоретические характеристики Рис. 11. Формы лопаток рабочего колеса центробежных насосов. 

Сначала найдем связь между теоретическим напором и расходом. Для этого воспользуемся основным уравнением и выражением . 

Принимая во внимание уравнение неразрывности и исключая из уравнений неизвестные и путем рассмотрения параллелограмма скоростей на выходе из рабочего колеса найдем зависимость  

Из рис. 7 имеем: , где . Следовательно  

Подставляя значение в основное уравнение получим . 

В этом уравнении при постоянном числе оборотов рабочего колеса , , — постоянные. Если обозначить и , получим уравнение . 

Графически в координатах уравнение представляет семейство прямых, исходящих из одной точки , с различными углами наклона к осям в зависимости от значения угла между относительной и окружной скоростью на выходе из рабочего колеса (рис. 10). 

Проанализируем влияние угла на теоретическую характеристику насоса. Из рассмотренного (рис. 11) видно, что при характеристика нисходящая, что соответствует рабочему колесу с лопатками, загнутыми назад по отношению к направлению вращения. При характеристика параллельна оси , а лопатки рабочего колеса радиальные. 

Рис. 12. Характеристики центробежного насоса: а) построение характеристики Н—Q; б) характеристика Н—Q, N—Q, —Q. 

При характеристика восходящая, а лопатки рабочего загнуты вперед по направлению вращения. Таким образом, при возрастании угла все большая доля напора создается в форме скоростного напора. Этот скоростной напор должен быть преобразован в давление в диффузорной части отвода, что связано с большими гидравлическими потерями. 

Следовательно, гидравлические потери в насосе с лопатками, изогнутыми вперед по ходу, значительно больше, чем в насосе с лопатками, загнутыми назад. Кроме этого, насосы с лопатками, изогнутыми вперед, весьма чувствительны к изменению режима работы. В связи с этим на насосных станциях, где главным критерием их качества является экономичность, применяют насосы с лопатками, загнутыми назад. 

Для получения расчетной характеристики насоса необходимо учесть допущения, которые были приняты при выводе основного уравнения:

Теоретический напор при конечном числе лопаток всегда будет меньше полученного из основного уравнения. Это уменьшение учитывалось коэффициентом поэтому прямая теоретического напора насоса с конечным числом лопаток без учета потерь находится по условию и она пройдет ниже (см. линию Нт , рис. 12а).  

При расчете необходимо учесть потери напора, которые состоят из:

  • потерь на трение в каналах рабочего колеса;
  • потерь на входе в рабочее колесо и переходе в направляющий аппарат;
  • потерь, связанных с вращательным движением жидкости и отрывом от стенок. 

При расчетной производительности  потери на входе минимальны, но при изменении расхода в ту или другую сторону относительные скорости на входе и выходе из рабочего колеса не совпадают с направлением касательных к лопатке, что приводит к увеличению потерь. В результате всех перечисленных потерь действительная (рабочая) характеристика насоса имеет вид кривой (см. кривую Q — H на рис. 12 а), причем расчетом невозможно точно установить характер этой кривой. 

Рис. 13. Схема стенда для энергетических испытаний насоса: 1 — насос; 2 — мотор-динамометр; 3 — тахометр; 4 — манометр; 5 — вакуумметр; 6 — всасывающая труба; 7 — сливная труба; 8 — поворотный патрубок; 9 — мерный бак; 10 — указатель уровня воды.  

Эта кривая получается путем испытания насоса на специальной установке. В точке А кривая H, полученная опытным путем, ближе всего подходит к кривой и чем меньше расстояние между этими кривыми, тем совершеннее насос. 

Рабочие характеристики центробежных насосов получают при постоянном числе оборотов, изменяя производительность насоса и соответствующий ей напор, мощность и коэффициент полезного действия. Обычно результаты испытания насоса изображают на одном графике в виде трех кривых: , характеризующих работу насоса с энергетической точки зрения. 

Совокупность этих трех экспериментальных кривых называют рабочими характеристиками насоса. Рабочие характеристики, полученные при испытании насоса, являются основными техническими документами, характеризующими энергетические свойства насоса. Они прилагаются к техническому паспорту и используются как исходный материал при подборе насосов и эксплуатационных расчетах. 

На рис. 12б изображена рабочая характеристика «центробежного насоса. На этой характеристике нанесены кривые H, N и функции от Q. Для снятия рабочих характеристик насоса необходимо оборудовать испытательный стенд с приспособлениями для измерения параметров насоса. 

Схема стенда показана на (рис. 13). Испытуемый насос 1 является основным агрегатом стенда, а питание насоса принято по циркуляционной cxeме. Жидкость всасывается из резервуара большой емкости и подается в мерный бак 9, откуда снова возвращается в резервуар. Регулирование расхода производится задвижкой 11. На заводских и лабораторных стендах применяются устройства для непосредственного замера крутящего момента на валу насоса. 

Этой цели могут служить крутильные динамометры, «позволяющие судить о передаваемом моменте по углу закручивания стержня, но чаще применяют мотор-динамометры 2 (балансирные электромоторы), у которых статор имеет возможность качаться на опорах, и момент, возникающий между статором и ротором, можно измерять на статоре с помощью весов. Зная число оборотов по показаниям тахометров и учитывая потери в самом электромоторе, легко определить мощность на валу насоса.  

При более точных измерениях число оборотов фиксируют по показаниям тахоскопов или электроимпульсных счетчиков с точным отсчетом интервалов времени подачи импульсов. Измерение производительности насоса можно производить по-разному. При расходах до 20 л/сек измерение проще всего делать объемным способом. При помощи секундомера или устройства для отсчета интервалов времени определяется время наполнения объема V0, а затем вычисляется расход , где T — время наполнения в сек. 

Для измерения больших расходов применяют водомеры Вентури или мерные шайбы, установленные на прямом горизонтальном трубопроводе. Для водомеров и мерных шайб имеются коэффициенты, позволяющие вычислять расход по показаниям дифференциального манометра, пользуясь формулой , где С — коэффициент, зависящий от вида водомерного устройства, рабочей жидкости в дифманометре и диаметра трубопровода; h — перепад по манометру в м ст. жидкости. 

Измерение напора производится по показаниям двух приборов: вакуумметра, установленного на входе в насос, и манометра, установленного на выходе из насоса. Последние могут быть пружинные или жидкостные. Вакуумметр следует применять жидкостный, для точного определения вакуума на входе в насос. Перед каждым испытанием необходимо проверять приборы и регулярно продувать соединительные трубки. 

Переводя показания приборов в метры Столба жидкости, для подсчета манометрического напора получим формулу , где — напор по манометру; — вакуум по вакуумметру; — поправка на вертикальное расстояние между манометром и вакуумметром (рис, 13). Если нагнетательный я всасывающий патрубки имеют разные диаметры, то полный напор Н равен , где — скорость во всасывающем патрубке; — скорость в нагнетательном патрубке. Общий к. п. д. насоса подсчитывается по уравнению (формула) где (формула). 

Кроме энергетических испытаний проводят также кавитационные испытания насосов. Эти испытания можно проводить либо на универсальном стенде, либо на специальном кавитационном стенде. Целью кавитационных испытаний является получение допустимого значения вакуума на входе в центробежный насос НВдоП) при котором еще нигде не наблюдается холодное кипение жидкости.  

Как уже указывалось в § 3, при понижении давления у входа в рабочее колесо ниже давления насыщенных паров данной жидкости при обычной температуре последняя вскипает. Указанное явление называют кавитацией. Когда говорят о кавитации в насосах, то под этим понимают комплекс явлений, сопровождающих вскипание жидкости: 

Рис. 14. Кавитационные разрушения лопаток рабочих колес. 

  • Выделение пара и растворенных газов в тех местах, где давление жидкости становится равным давлению ее насыщенных паров.
  • Местное повышение скорости в местах скопления пузырьков пара и движение жидкости в смеси с пузырьками газа.
  • Конденсация пузырьков, увлеченных потоком в область повышенного давления; при конденсации жидкость устремится к центрам исчезнувших пузырьков газа. 

Это сопровождается быстрым повышением давления с сильными и частыми местными ударами, похожими на уколы, что приводит к навигационному разрушению поверхности лопаток на выходе из рабочего колеса (эрозия, ом. рис. 14).4). Химическое разрушение металла в зоне кавитации кислородом воздуха, который выделяется из жидкости в месте пониженного давления (коррозия). 

Все это сопровождается характерным кавитационным треском и вибрацией насоса. Особенно сильно кавитационному разрушению подвержены чугуны и углеродистые стали, более устойчивы в этом отношении бронза и нержавеющая сталь. В последнее время в крупных насосах наряду с улучшением качества материалов для экономии высококачественных материалов применяют защитные покрытия деталей, подверженных действию кавитации. 

Защитные покрытия встречаются следующих видов: наплавка поверхности твердым сплавом, металлизация поверхности в холодном состоянии, местная поверхностная закалка, тщательная обработка поверхности, покрытие основного металла тонкими пластинками нержавеющей стали. 

Причиной кавитации может быть:

  • низкое барометрическое давление на входе во всасывающую трубу,
  • большая высота расположения насоса над уровнем жидкости,
  • высокая температура жидкости,
  • большие потерн напора во всасывающей трубе.  

Рис. 15. Схема кавитационного стенда: 1—насос; 2—резервуар; 3—вакуумметр; 4—водомер Вентури; 5—задвижка; 6— манометр; 7—вакуум-насос. 

Кавитация в центробежных насосах недопустима, так как это уменьшает к.п.д., напор и производительность насоса при одновременном повреждении деталей насоса. 

Рис. 16. Кавитационная характеристика центробежного насоса. 

Для определения кавитационных особенностей насосов составляются кавитационные характеристики Нвлоп =f(Q), полученные путем обработки результатов кавитационных испытаний. Кавитационный стенд представляет собой замкнутую циркуляционную систему, состоящую из насоса, всасывающего и напорного трубопроводов, герметичного резервуара, верхняя часть которого заполнена воздухом. 

Откачивая воздух из резервуара, можно поддерживать различное пониженное давление на входе в насос (рис. 15). Так как система замкнута, то это приводит лишь к общему падению давления в системе без нарушения режима работы. Как показал опыт, в определенных границах изменение показания вакуумметра Hв значения Q, Н и остаются неизменными (рис. 16). При уменьшении давления в резервуаре 2 до некоторого значения Нв появляется шум, характеризующий наступление кавитации, но значения Q, Н и еще не претерпевают заметных изменений. 

При дальнейшем понижении давления Q, И и начинают падать, кавитационный шум усиливается и в конечном счете происходит срыв работы насоса. При полном кавитационном срыве шум становится менее резким. Точно трудно установить момент начала воздействия кавитации, в связи с чем за допустимую вакуумметрическую высоту всасывания Hвкоп принимают то значение, при котором напор насоса Н при неизменной производительности уменьшается на 1÷2% от своего первоначального значения.

 

Проводя серию испытаний при различных расходах, устанавливают допустимое значение вакуумметрической высоты всасывания для каждого Q. На основании этих данных строят кривую Нвкоп=f(Q) и добавляют ее к рабочей характеристике. Таким образом получают график с нанесенными четырьмя кривыми: Н — Q; N — Q; — Q, Hвдоп-Q которые полностью характеризуют работу центробежного насоса по фактическим данным энергетических и кавитационных испытаний (рис. 17). 

  

Рис. 17. Рабочая характеристика насосов 4К-8.  Рис. .18. Подобие режимов работы.

Технические характеристики насосов ЦНС

Насосное оборудование ЦНС и ЦНСг – это многоступенчатые секционные центробежные насосы, которые имеют горизонтальную конструкцию и предназначены для перекачивания чистой холодной и горячей воды. Существуют и другие разновидности этих агрегатов, используемые для перемещения масла и нефтепродуктов. Каждая модель обладает набором характеристик, которые и определяют сферу ее применения.

Использование центробежного насосного оборудования

Насосы типа ЦНС и агрегаты на их основе часто используются в теплоэнергетической промышленности для того, чтобы подавать питательную воду в паровые котельные теплоэлектроцентрали (ТЭЦ) небольшой мощности, в системы горячего водоснабжения, отопления и т. п.

Такое оборудование предназначено для того, чтобы перекачивать воду, которая имеет водородный показатель рН в диапазоне от 7 до 8,5, с массовой долей механических примесей не более 0,1%, размером твердых частиц до 0,1 мм.

Центробежные секционные насосы работают с подпором от двух до шести метров. Если такой подпор отсутствует, то кавитация быстро разрушает насосное оборудование. В случае установки для перекачивания воды температурой выше 45 градусов Цельсия нужно будет повышать подпор.

Характеристики центробежных секционных насосов

Насос ЦНС представлен на рынке широким модельным рядом. Модели отличаются между собой мощностью, напором, частотой вращения и подачей. Кроме того, каждый агрегат имеет определенные размеры. Изучить характеристики центробежных секционных насосов вы можете с помощью таблицы.

Модель насоса

Подача (м3/час)

Напор (м)

Частота вращения (об/мин)

Мощность (кВт)

ЦНС 13-70

13,00

70,00

2 950

5,2

13-105

13,00

105,00

2 950

7,7

13-140

13,00

140,00

2 950

10,3

13-210

13,00

210,00

2 950

15,2

13-315

13,00

315,00

2 950

22,8

38-44

38,00

44,00

2 950

6,8

38-66

38,00

66,00

2 950

10,2

38-132

38,00

132,00

2 950

19,8

60-200

60,00

200,00

1 475

51,00

60-66

60,00

66,00

2 950

15,7

60-231

60,00

231,00

2 950

53,2

180-255

180,00

255,00

1 475

178

180-297

180,00

297,00

1 475

208

180-340

180,00

340,00

1 475

238

300-1040

300,00

1040,00

2 950

1 140

300-120

300,00

120,00

1 475

140

300-600

300,00

600,00

1 475

700

850-360

850,00

360,00

1 500

1 157

850-960

850,00

960,00

1500

3 086

В таблице представлены характеристики только части насосного оборудования. Более подробно ознакомиться с модельным рядом, параметрами конкретного оборудования вы можете на нашем сайте или связавшись по телефону с менеджером.

Для всех насосов такого типа значение максимально допустимого давления на входе составляет не более 3 кгс/см2. Для системы горячего водоснабжения предназначены насосы ЦНСг. Они перекачивают воду температурой до 105 градусов Цельсия. Минимальное давление воды в них на входе равно 1 кгс/см2.

Насосы для масла и нефти

На основе оборудования ЦНС производятся и выпускаются насосы ЦНСм (для перекачки масла) и ЦНСн (для перекачивания нефти). Первые не предназначены для работы со взрывоопасными жидкостями. Они имеют сальниковое уплотнение и используются для перекачки масла в системе турбоагрегатов.

Оборудование ЦНСн используется для перекачки обводненной газонасыщенной смеси, а также товарной нефти при температуре 0 – 45 градусов Цельсия в системах нефтепромыслового сбора и транспортировки.

Насос ЦНС – это специализированное оборудование, каждая модель которого применяется в определенной отрасли, выполняет конкретную функцию. Так что выбор этих агрегатов зависит от применения.

Стандарты центробежных насосов

Международные стандарты конструкции и размеров центробежных насосов.

Рекламные ссылки

Для обеспечения единства центробежных насосов необходимы стандарты конструкции и размеров. Стандарты предоставляются такими организациями, как

  • ISO — Международные организации по стандартизации
  • API — Американский институт нефти
  • ANSI — Американский национальный институт стандартов
  • DIN — Немецкий институт нормирования
  • NPFA — Национальное агентство противопожарной защиты
  • BSi — Британский институт стандартов

Некоторые широко используемые стандарты центробежных насосов:

  • ANSI/API 610-1995 — Центробежные насосы для общего обслуживания нефтеперерабатывающих заводов. насосы, в том числе насосы, работающие в обратном направлении в качестве гидротурбин рекуперации энергии, для использования в нефтяной, тяжелой химической и газовой промышленности. Типы насосов, подпадающие под действие настоящего стандарта, можно разделить на консольные, между подшипниками и вертикально подвешенные.
  • DIN EN ISO 5199 — Технические спецификации для центробежных насосов
  • ASME B73.1-2001 — Спецификация для горизонтальных центробежных насосов с односторонним всасыванием для химических процессов. разгрузочная конструкция. Настоящий стандарт включает требования к взаимозаменяемости размеров и некоторые конструктивные особенности, облегчающие установку и техническое обслуживание. Цель настоящего стандарта состоит в том, чтобы насосы одного и того же стандартного размерного обозначения из всех источников поставки были взаимозаменяемы по монтажным размерам, размеру и расположению всасывающих и нагнетательных патрубков, входных валов, опорных плит и отверстий под фундаментные болты
  • ASME B73. 2-2003 — Технические характеристики вертикальных центробежных насосов для химических процессов
  • BS 5257:1975 — Технические характеристики горизонтальных центробежных насосов с односторонним всасыванием (16 бар) — Основные размеры и номинальная рабочая точка . Размеры полостей уплотнения и установки опорной плиты.

Рекламные ссылки

Связанные темы

Связанные документы

Engineering ToolBox — расширение SketchUp — 3D-моделирование в режиме онлайн!

Добавляйте стандартные и настраиваемые параметрические компоненты, такие как балки с полками, пиломатериалы, трубопроводы, лестницы и т. д., в свою модель Sketchup с помощью Engineering ToolBox — расширения SketchUp, которое можно использовать с потрясающими, интересными и бесплатными приложениями SketchUp Make и SketchUp Pro. .Добавьте расширение Engineering ToolBox в свой SketchUp из хранилища расширений SketchUp Pro Sketchup!

Перевести

О программе Engineering ToolBox!

Мы не собираем информацию от наших пользователей. В нашем архиве сохраняются только электронные письма и ответы. Файлы cookie используются только в браузере для улучшения взаимодействия с пользователем.

Некоторые из наших калькуляторов и приложений позволяют сохранять данные приложения на локальном компьютере. Эти приложения будут — из-за ограничений браузера — отправлять данные между вашим браузером и нашим сервером. Мы не сохраняем эти данные.

Google использует файлы cookie для показа нашей рекламы и обработки статистики посетителей. Пожалуйста, прочитайте Конфиденциальность и условия Google для получения дополнительной информации о том, как вы можете контролировать показ рекламы и собираемую информацию.

AddThis использует файлы cookie для обработки ссылок на социальные сети. Пожалуйста, прочитайте AddThis Privacy для получения дополнительной информации.

Реклама в ToolBox

Если вы хотите продвигать свои товары или услуги в Engineering ToolBox — используйте Google Adwords. Вы можете настроить таргетинг на Engineering ToolBox с помощью управляемых мест размещения AdWords.

Citation

Эту страницу можно цитировать как

  • Engineering ToolBox, (2008). Стандарты центробежных насосов . [онлайн] Доступно по адресу: https://www.engineeringtoolbox.com/centrifugal-pumps-standards-d_1116.html [День доступа, мес. год].

Изменить дату доступа.

. .

закрыть

Спецификация насосов, покупка, установка и применение

Насосы и системы, Март 2013 г.

Более 90 процентов всех насосов в различных отраслях промышленности являются центробежными. Крупные центробежные насосы с регулируемой скоростью хорошо известны для критических и крупных насосных услуг. Центробежные насосы имеют подходящую рабочую кривую по сравнению с другими насосами (например, осевые насосы и объемные насосы имеют относительно крутые кривые). Характеристики кривой могут быть согласованы с системными требованиями. Больший угол назад может вызвать более сильную реакцию (со стороны крыльчатки насоса) и относительно более крутую кривую.

Поскольку ступени насоса объединены, общий диапазон расхода объединенных ступеней может быть меньше наименьшего диапазона расхода отдельных ступеней. Из-за эффекта смешения при изменении расхода комбинированная кривая многоступенчатого насоса может иметь меньший рабочий диапазон. При разработке насосной системы и перед определением и покупкой насоса следует учитывать множество факторов, включая применение, установку, систему смазки, работу насоса и уровень шума, создаваемый насосом. Эти соображения обсуждаются в первой части настоящей статьи. Часть 2 будет опубликована в апрельском выпуске журнала Pumps & Systems за 2013 год.

 

Пример насосов разных размеров/моделей в семействе насосов. Это герметичные насосы с магнитным приводом ANSI. В этом семействе шесть моделей.

Спецификация насоса и покупка

Условия работы насоса следует разделить на набор нормальных условий и набор ненормальных условий. Весь ожидаемый диапазон рабочих условий должен определяться либо пределами диапазона, либо альтернативными рабочими условиями. Необычные условия эксплуатации, даже незначительные, следует указывать при разработке перечня. Вся доступная информация должна быть предоставлена ​​производителю насоса. Во многих случаях незначительные системные или экологические условия могут вызвать серьезные проблемы. Примерами могут быть следы коррозии в жидкости, даже если они находятся на уровне частей на миллион.

Покупатель должен знать как можно больше о системе, в которой будет установлен насос, и о жидкости, которую будет перемещать насос/система, а затем сообщить об этом производителю. В частности, покупатель должен знать о любых необычных условиях и потенциальных неисправностях, которые могут повлиять на работу насоса. Примером может служить потенциал разгона температуры жидкости в некоторых установках с горячей жидкостью. В спецификации насоса должны быть указаны все ожидаемые максимальные значения температуры, а у поставщика насоса следует спросить о максимальной температуре, которую может выдержать насос.

Другим примером является возможность внезапной остановки центробежного насоса при переключении операций во время некоторых периодических процессов. Производитель насоса также должен быть проинформирован о возможности загрязнения. Следует тщательно изучить потенциальные условия работы насоса и отметить любую возможность загрязнения. Правильно включив потенциалы загрязнения в описание условий системы, поставщик насоса может включить решение, например, дополнительный запас по напору, при выборе/изготовлении наилучшего насоса для конкретного применения.

Заявка на насос должна содержать полный перечень объема поставки и обслуживания (желательно в виде таблицы). Ориентация сопла насоса также важна. В идеале детали ориентации патрубков должны быть согласованы с производителем насоса с самого начала.

Не думайте, что поставщик насоса полностью осведомлен о требованиях к материалам для системы/процесса. Указание минимальных требований к конструкционному материалу может помочь поставщику насоса на этапе проектирования/выбора насоса и избежать проблем в будущем. Поставщик стремится предоставить насос, совместимый со спецификациями и достаточно надежный, чтобы покрыть гарантийный период поставщика при минимально возможных затратах. При правильной формулировке технических характеристик насоса можно отметить минимальные требования к материалам. Он также может содержать комментарии, которые могут раскрыть опыт поставщика в выборе материала насоса.

Большое количество незапланированных остановов связано с дизайном поставщика; выбор поставщика материала; или выбор компонентов, таких как проблемы с уплотнениями, проблемы с подшипниками, чрезмерное загрязнение, высокая деградация, коррозия, эрозия и другие факторы. Однако эти проблемы на самом деле отражают недостаток знаний о применении, которого можно было бы избежать, если бы покупатель сообщил неправильные спецификации. Хорошим примером является использование аустенитных нержавеющих сталей, которые обычно считаются материалами высшего качества. Однако их нельзя использовать, если в перекачиваемой жидкости присутствуют хлориды из-за межкристаллитной коррозии и последующего растрескивания.

Ориентация входного трубопровода и ее влияние на производительность насоса очень важны. Не должно быть ни предротации, ни антиротации. Поток должен быть свободен от случайных искажений. В зависимости от конструкции, скорости жидкости и условий системы/процесса перед входом в насос может потребоваться прямая труба минимальной длины.

 

Оценка предложений по насосам

Оценка предложений должна проводиться с учетом стоимости энергии, первоначальных затрат и вопросов надежности с использованием установленного экономического уравнения. Если данные доступны, можно оценить общую стоимость владения, что является наилучшей доступной мерой для оценки предложения насоса. Крайне необходимо исправить все детали и уточнить все вопросы до размещения заказа на покупку насоса. Пока продавец не будет уверен, что у него есть заказ, он будет оставаться в торговой позе.

Рисунок 1. Пример насосов разных размеров в семействе насосов

Победитель торгов становится продавцом, когда контракт составлен и принят. Это важно, потому что в это время часы запустились, и все будущие даты будут отсчитываться от этой даты. Это также дата, с которой отсчитывается подача насоса.

 

Система смазки насоса

Согласно некоторым отчетам, может произойти значительное снижение расхода масла изготовленной системы смазки по сравнению с первоначально предложенной системой, которая была включена на этапе согласования. Покупатель и продавец имеют много дискуссий и дебатов по этому вопросу.

В некоторых случаях производительность системы смазки может быть снижена на 20–30 процентов, а иногда и на 40 процентов для некоторых крупных и ответственных насосов. Технические данные предложения (технические детали заявки) не являются окончательными, и можно ожидать некоторых изменений.

Однако обычно не должно происходить снижения расхода масла более чем на 25 процентов по сравнению с заказом на поставку. Любое сокращение, превышающее 30 процентов, потребует подробного обоснования. Поставщик должен предоставить данные и обоснование любого происходящего снижения расхода масла, особенно значительного снижения расхода масла гидродинамических подшипников. Достаточная подача масла к гидродинамическим подшипникам и редукторам всегда является проблемой.

 

Установка насоса

Необходимо также учитывать способ и место установки насоса/насосной системы. Основной функцией фундамента насоса является удержание насосного агрегата в соосном положении во всех режимах работы. Для выполнения этой функции фундамент должен быть жестким. Установление и поддержание соосности между компонентами насосного агрегата — особенно для больших насосных агрегатов, поставляемых на нескольких салазках, — затруднено, если фундамент склонен к чрезмерным прогибам.

Рис. 2. Пример насоса ANSI с ременным приводом — конструкция насоса ANSI иногда может помочь преодолеть такие проблемы, как нехватка места или низкий NPSH.

Фундамент должен быть достаточно большим, чтобы предотвратить чрезмерные дифференциальные отклонения и динамические вибрации, которые могут существенно повлиять на долгосрочную эксплуатацию. Другим аспектом является собственная частота фундамента. Фундамент должен быть настроен таким образом, чтобы любая собственная частота фундамента не совпадала с какой-либо частотой возбуждения насосного агрегата. Желательно, чтобы все собственные частоты фундамента были намного выше любой скорости возбуждения насоса, насколько это практически возможно.

В идеале насос можно разместить на фундаменте, выровнять и залить раствором, а трубопровод можно подсоединить в соответствии с процедурой установки насоса. Лаги часто возникают между разными шагами. Небрежность может задержать запуск и привести к неудачной установке насоса. Подробнее об установке будет рассказано в части 2 апрельского выпуска 2013 года.

 

Эксплуатация насоса

Во многих случаях основные причины проблем с центробежным насосом связаны с динамикой уплотнения, подшипника и ротора. Длинные тонкие роторы могут вызвать проблемы в центробежных насосах. Роторы некоторых высокоскоростных насосов подвержены критическим скоростям, которые возникают при запуске (особенно в насосах высокого давления).

Чувствительность к дисбалансу также может вызвать проблемы в работе. Во время эксплуатации, с течением времени, насосы подвергаются деградации, что обычно проявляется в постоянно увеличивающемся уровне дисбаланса. Чем чувствительнее ротор, тем короче время работы.
Во многих случаях решение о замене или изменении конструкции компонента насосного агрегата было неверным. Неправильный диагноз или неверная интерпретация причины отказа насоса иногда приводит к решению, которое, по-видимому, устраняет проблему.

Однако, если оно неверно, решение может привести к более серьезным проблемам в будущем, поскольку устанавливается неверная связь между симптомом и причиной. Тщательное решение проблемы должно точно определить реальную причину проблемы и предотвратить осложнения.

Чистота потока жидкости также является ключевым фактором для бесперебойной работы и надежности насоса. Коррозионные вещества и следы требуют особого выбора материала и соображений эксплуатации. Загрязнение из-за загрязнения или жидкостной реакции может привести к быстрой деградации.

 

Уровень шума насоса

Общий уровень звукового давления, как правило, основан на расстоянии 1 метр от края блока насоса. Это означает, что уровень звукового давления каждого компонента на расстоянии 1 м от края рамы может отличаться, обычно ниже для больших насосных агрегатов, чем указанное значение шума для каждого компонента, то есть шум на расстоянии 1 м от этого компонента. Шум насосного агрегата — это не просто сумма шумов различных компонентов агрегата.

Редуктор, если он используется в насосном агрегате, является основным источником шума. На уровень шума редуктора больше влияет конструкция редуктора, чем передаваемая мощность. При работе с частичной нагрузкой редуктор может издавать такой же шум, а иногда и немного больше, чем при работе с полной нагрузкой. В качестве другого примера, редуктор мощностью 1 МВт и редуктор мощностью 1,5 МВт, использующие одни и те же принципы конструкции, могут генерировать практически одинаковый уровень шума.

Программы расчета уровня шума, предлагаемые поставщиками насосов, обычно не имитируют граничные условия звука вблизи насосного агрегата. Например, граничные условия (например, стена рядом с насосным блоком) могут влиять на шум, измеряемый на установке. Следовательно, необходимо учитывать этот эффект. Исходя из опыта, при некоторых неблагоприятных граничных условиях наблюдается повышение ожидаемого уровня звука для насосного агрегата примерно на 3–5 децибел.

 

Заключение

Когда пользователь насоса и поставщик насоса работают вместе как одна команда и если все вовлеченные инженеры уделяют достаточное внимание деталям, изменениям и требованиям, можно ожидать надежных и высокопроизводительных насосов. Ключом к успеху являются современные знания, правильные спецификации, надлежащий анализ документов поставщиков насосов, правильная проверка деятельности поставщиков и современные правила эксплуатации и технического обслуживания. Истинная рентабельность и экономия затрат при установке насосов могут быть достигнуты только за счет сочетания производительности, надежности, безопасности, доступности и ремонтопригодности.