Какие бывают диэлектрики: Диэлектрики. Виды и работа. Свойства и применение. Особенности

Содержание

Диэлектрики. Виды и работа. Свойства и применение. Особенности

Диэлектрики — это вещество, которое не проводит, или плохо проводит электрический ток. Носители заряда в диэлектрике имеют плотность не больше 108 штук на кубический сантиметр. Одним из основных свойств таких материалов является способность поляризации в электрическом поле.

Параметр, характеризующий диэлектрики, называется диэлектрической проницаемостью, которая может иметь дисперсию. К диэлектрикам можно отнести химически чистую воду, воздух, пластмассы, смолы, стекло, различные газы.

Если бы вещества имели свою геральдику, то герб сегнетовой соли непременно украсили бы виноградные лозы, петля гистерезиса, и символика многих отраслей современной науки и техники.

Родословная сегнетовой соли начинается с 1672 года. Когда французский аптекарь Пьер Сегнет впервые получил с виноградных лоз бесцветные кристаллы и использовал их в медицинских целях.

Тогда еще невозможно было предположить, что эти кристаллы обладают удивительными свойствами.

Эти свойства дали нам право из огромного числа диэлектриков выделить особые группы:

  • Пьезоэлектрики.
  • Пироэлектрики.
  • Сегнетоэлектрики.

Со времен Фарадея известно, что во внешнем электрическом поле диэлектрические материалы поляризуются. При этом каждая элементарная ячейка обладает электрическим моментом, аналогичным электрическому диполю. А суммарный дипольный момент единицы объема определяет вектор поляризации.

В обычных диэлектриках поляризация однозначно и линейно зависит от величины внешнего электрического поля. Поэтому диэлектрическая восприимчивость почти у всех диэлектриков величина постоянная.

P/E=X=const

Кристаллические решетки большинства диэлектриков построены из положительных и отрицательных ионов. Из кристаллических веществ наиболее высокой симметрией обладают кристаллы с кубической решеткой. Под действием внешнего электрического поля кристалл поляризуется, и симметрия его понижается. Когда внешнее поле исчезает, кристалл восстанавливает свою симметрию.

В некоторых кристаллах электрическая поляризация может возникать и при отсутствии внешнего поля, спонтанно. Так выглядит в поляризованном свете кристалл молибдената гадолиния. Обычно спонтанная поляризация неоднородная. Кристалл разбивается на домены – области с однородной поляризацией. Развитие многодоменной структуры уменьшает суммарную поляризацию.

Пироэлектрики

В пироэлектриках спонтанная поляризация экранирует со свободными зарядами, которые компенсируют связанные заряды. Нагревание пироэлектрика изменяет его поляризацию. При температуре плавления пироэлектрические свойства исчезают вовсе.

Часть пироэлектриков относится к сегнетоэлектрикам. У них направление поляризации может быть изменено внешним электрическим полем.

Существует гистерезисная зависимость между ориентацией поляризации сегнетоэлектрика и величиной внешнего поля.

В достаточно слабых полях поляризация линейно зависит от величины поля. При его дальнейшем увеличении все домены ориентируются по направлению поля, переходя в режим насыщения. При уменьшении поля до нуля кристалл остается поляризованным. Отрезок СО называют остаточной поляризацией.

Поле, при котором происходит изменение направления поляризации, отрезок ДО называют коэрцитивной силой.

Наконец, кристалл полностью меняет направление поляризации. При очередном изменении поля кривая поляризации замыкается.

Однако, сегнетоэлектрическое состояние кристалла существует лишь в определенной области температур. В частности, сегнетова соль имеет две точки Кюри: -18 и +24 градусов, в которых происходят фазовые переходы второго рода.

Группы сегнетоэлектриков

Микроскопическая теория фазовых переходов разделяет сегнетоэлектрики на две группы.

Первая группа

Титанат бария относится к первой группе, и как ее еще называют, группе сегнетоэлектриков типа смещения. В неполярном состоянии титанат бария имеет кубическую симметрию. При фазовом переходе в полярное состояние ионные подрешетки смещаются, симметрия кристаллической структуры понижается.

Вторая группа

Ко второй группе относят кристаллы типа нитрата натрия, у которых в неполярной фазе имеется разупорядоченная подрешетка структурных элементов. Здесь фазовый переход в полярное состояние связан с упорядочением структуры кристалла.

Причем в различных кристаллах может быть два или несколько вероятных положений равновесия. Существуют кристаллы, в которых цепочки диполя имеют антипараллельные ориентации. Суммарный дипольный момент таких кристаллов равен нулю. Такие кристаллы называют антисегнетоэлектриками. В них зависимость поляризации линейная, вплоть до критического значения поля.

Дальнейшее увеличение величины поля сопровождается переходом в сегнетоэлектрическую фазу.

Третья группа

Существует еще одна группа кристаллов – сегнетиэлектриков.

Ориентация дипольных моментов у них такова, что по одному направлению они имеют свойства антисегнетоэлектриков, а по-другому сегнетоэлектриков. Фазовые переходы у сегнетоэлектриков бывают двух родов.

При фазовом переходе второго рода в точке Кюри спонтанная поляризация плавно уменьшается до нуля, а диэлектрическая восприимчивость, меняясь резко, достигает огромных величин.

При фазовом переходе первого рода поляризация исчезает скачком. Также скачком изменяется электрическая восприимчивость.

Большая величина диэлектрической проницаемости, электрополяризации сегнетоэлектриков, делает их перспективными материалами современной техники. Например, уже широко используют нелинейные свойства прозрачной сегнетокерамики. Чем ярче свет, тем сильнее он поглощается специальными очками.

Это является эффективной защитой зрения рабочих в некоторых производствах, связанных с внезапными и интенсивными вспышками света. Для передачи информации с помощью лазерного луча применяют сегнетоэлектрические кристаллы с электрооптическим эффектом. В пределах прямой видимости лазерный луч моделируется в кристалле. Затем луч попадает в комплекс приемной аппаратуры, где информация выделяется и воспроизводится.

Пьезоэлектрический эффект

В 1880 году братья Кюри обнаружили, что в процессе деформации сегнетовой соли на ее поверхности возникают поляризационные заряды. Это явление было названо прямым пьезоэлектрическим эффектом.

Если на кристалл воздействовать внешним электрическим полем, он начинает деформироваться, то есть, возникает обратный пьезоэлектрический эффект.

Однако эти изменения не наблюдаются в кристаллах, имеющих центр симметрии, например, в сульфиде свинца.

Если на такой кристалл воздействовать внешним электрическим полем, подрешетки отрицательных и положительных ионов сместятся в противоположные стороны. Это приводит к поляризации кристаллов.

В данном случае мы наблюдаем электрострикцию, при которой деформация пропорциональна квадрату электрического поля. Поэтому электрострикцию относят к классу четных эффектов.

ΔX1=ΔX2

Если такой кристалл растягивать или сжимать, то электрические моменты положительных диполей будут равны по величине электрическим моментам отрицательных диполей. То есть, изменение поляризации диэлектрика не происходит, и пьезоэффект не возникает.

В кристаллах с низкой симметрией при деформации появляются дополнительные силы обратного пьезоэффекта, противодействующие внешним воздействиям.

Таким образом, в кристалле, у которого нет центра симметрии в распределении зарядов, величина и направление вектора смещения зависит от величины и направления внешнего поля.

Благодаря этому можно осуществлять различные типы деформации пьезокристаллов. Склеивая пьезоэлектрические пластинки, можно получить элемент, работающий на сжатие.

В этой конструкции пьезопластинка работает на изгиб.

Пьезокерамика

Если к такому пьезоэлементу приложить переменное поле, в нем возбудятся упругие колебания и возникнут акустические волны. Для изготовления пьезоэлектрических изделий применяют пьезокерамику. Она представляет собой поликристаллы сегнетоэлектрических соединений или твердые растворы на их основе. Изменяя состав компонентов и геометрические формы керамики, можно управлять ее пьезоэлектрическими параметрами.

Прямые и обратные пьезоэлектрические эффекты находят применение в разнообразной электронной аппаратуре. Многие узлы электроакустической, радиоэлектронной и измерительной аппаратуры: волноводы, резонаторы, умножители частоты, микросхемы, фильтры работают, используя свойства пьезокерамики.

Пьезоэлектрические двигатели

Активным элементом пьезоэлектрического двигателя служит пьезоэлемент.

В течение одного периода колебаний источника переменного электрического поля он растягивается и взаимодействует с ротором, а в другом возвращается в исходное положение.

Великолепные электрические и механические характеристики позволяют пьезодвигателю успешно конкурировать с обычными электрическими микромашинами.

Пьезоэлектрические трансформаторы

Принцип их действия также основан на использовании свойств пьезокерамики. Под действием входного напряжения в возбудителе возникает обратный пьезоэффект.

Волна деформации передается в генераторную секцию, где за счет прямого пьезоэффекта изменяется поляризация диэлектрика, что приводит к изменению выходного напряжения.

Так как в пьезотрансформаторе вход и выход гальванически развязаны, то функциональные возможности преобразования входного сигнала по напряжению и току, согласование его с нагрузкой по входу и выходу, лучше, чем у обычных трансформаторов.

Исследования разнообразных явлений сегнетоэлектричества и пьезоэлектричества продолжаются. Нет сомнений, что в будущем появятся приборы, основанные на новых и удивительных физических эффектах в твердом теле.

Классификация диэлектриков

В зависимости от различных факторов они по-разному проявляют свои свойства изоляции, которые определяют их сферу использования. На приведенной схеме показана структура классификации диэлектриков.

В народном хозяйстве стали популярными диэлектрики, состоящие из неорганических и органических элементов.

Неорганические материалы – это соединения углерода с различными элементами. Углерод обладает высокой способностью к химическим соединениям.

Минеральные диэлектрики

Такой вид диэлектриков появился с развитием электротехнической промышленности. Технология производства минеральных диэлектриков и их видов значительно усовершенствована. Поэтому такие материалы уже вытесняют химические и натуральные диэлектрики.

К минеральным диэлектрическим материалам относятся:
  • Стекло (конденсаторы, лампы) – аморфный материал, состоит из системы сложных окислов: кремния, кальция, алюминия. Они улучшают диэлектрические качества материала.
  • Стеклоэмаль – наносится на металлическую поверхность.
  • Стекловолокно – нити из стекла, из которых получают стеклоткани.
  • Световоды – светопроводящее стекловолокно, жгут из волокон.
  • Ситаллы – кристаллические силикаты.
  • Керамика – фарфор, стеатит.
  • Слюда – микалекс, слюдопласт, миканит.
  • Асбест – минералы с волокнистым строением.

Разнообразные диэлектрики не всегда заменяют друг друга. Их сфера применения зависит от стоимости, удобства применения, свойств. Кроме изоляционных свойств, к диэлектрикам предъявляются тепловые, механические требования.

Жидкие диэлектрики

Нефтяные масла

Трансформаторное масло заливается в силовые виды трансформаторов. Оно наиболее популярно в электротехнике.

Кабельные масла применяются при изготовлении электрических кабелей. Ими пропитывают бумажную изоляцию кабелей. Это повышает электрическую прочность и отводит тепло.

Синтетические жидкие диэлектрики

Для пропитки конденсаторов необходим жидкий диэлектрик для увеличения емкости. Такими веществами являются жидкие диэлектрики на синтетической основе, которые превосходят нефтяные масла.

Хлорированные углеводороды образуются из углеводородов заменой в них молекул атомов водорода атомами хлора. Большую популярность имеют полярные продукты дифенила, в состав которых входит С12 Н10-nC Ln.

Их преимуществом является стойкость к горению. Из недостатков можно отметить их токсичность. Вязкость хлорированных дифенилов имеет высокий показатель, поэтому их приходится разбавлять мене вязкими углеводородами.

Кремнийорганические жидкости обладают низкой гигроскопичностью и высокой температурной стойкостью. Их вязкость очень мало зависит от температуры. Такие жидкости имеют высокую стоимость.

Фторорганические жидкости имеют аналогичные свойства. Некоторые образцы жидкости могут долго работать при 2000 градусов. Такие жидкости в виде октола состоят из смеси полимеров изобутилена, получаемых из продуктов газа крекинга нефти, имеют невысокую стоимость.

Природные смолы

Канифоль – это смола, имеющая повышенную хрупкость, и получаемая из живицы (смола сосны). Канифоль состоит из органических кислот, легко растворяется в нефтяных маслах при нагревании, а также в других углеводородах, спирте и скипидаре.

Температура размягчения канифоли равна 50-700 градусов. На открытом воздухе канифоль окисляется, быстрее размягчается, и хуже растворяется. Растворенная канифоль в нефтяном масле используется для пропитки кабелей.

Растительные масла

Эти масла представляют собой вязкие жидкости, которые получены из различных семян растений. Наиболее важное значение имеют высыхающие масла, которые могут при нагревании отвердевать. Тонкий слой масла на поверхности материала при высыхании образует твердую прочную электроизоляционную пленку.

Скорость высыхания масла повышается при возрастании температуры, освещении, при использовании катализаторов – сиккативов (соединения кобальта, кальция, свинца).

Льняное масло имеет золотисто-желтый цвет. Его получают из семян льна. Температура застывания льняного масла составляет -200 градусов.

Тунговое масло изготавливают из семян тунгового дерева. Такое дерево растет на Дальнем Востоке, а также на Кавказе. Это масло не токсично, но не является пищевым. Тунговое масло застывает при температуре 0-50 градусов. Такие масла используются в электротехнике для производства лаков, лакотканей, пропитки дерева, а также в качестве жидких диэлектриков.

Касторовое масло используется для пропитки конденсаторов с бумажным диэлектриком. Получают такое масло из семян клещевины. Застывает оно при температуре -10 -180 градусов. Касторовое масло легко растворяется в этиловом спирте, но нерастворимо в бензине.

Похожие темы:
  • Изолента. Виды и применение. Свойства и особенности
  • Кабель-канал. Виды и применение. Способы монтажа
  • Гофрированная труба для электропроводки (Гофра). Виды и применения
  • Термоусадки. Виды и применение. Работа и особенности. Изготовители
  • Кабельные муфты. Виды и применение. Особенности и монтаж
  • Электрокартон (прессшпан). Марки и применение. Особенности
  • Средства индивидуальной защиты в электроустановках. Виды
  • Резина. Виды и свойства. Плюсы и минусы. Применение и особенности
  • Эбонит. Свойства и применение. Изготовление и особенности
  • Аэрогель. Виды и применение. Плюсы и минусы. Особенности

Виды, характеристики и где применяются

Все вещества по-разному проводят электрический ток. Это объясняется тем, что у каждого вещества свои свойства, свой набор атомов и соответственно молекул. Это влияет на плотность вещества, количество валентных электронов и энергетических уровней.

Электрические диэлектрики. Какие они?

Как нас учили в школе, некоторые вещества плохо проводят электрический ток, а некоторые хорошо. Например, дерево очень плохо проводит, а вот алюминий проводит в разы лучше. Так вот, если вспомнить терминологию, то вещества, проводящие электричество хорошо, называются проводниками, а те, что его проводят плохо, называются… Ну как же их? Ах да, они называются электрическими диэлектриками.

Конечно мы не говорим о том, что они совсем ток не проводят, нет. Они, конечно же являются проводниками, просто сравнительно довольно плохими. Диэлектрики с другой стороны еще и вещества, которые могут довольно долго хранить в себе электрическое поле, причем на это не нужна будет внешняя энергия.

Что будет, если воздействовать извне?

Если приложить к электрическому диэлектрику внешнее электрическое поле, то свободные заряды диэлектрика начнут постепенно нейтрализовывать его. Причем, это будет происходить до тех пор, пока не закончатся электроны или результирующее поле не станет равным нулю.

Чтобы понять то какие вещества вообще могут взаимодействовать с электрическими полями, нам нужно разобраться в таком термине, как электропроводность. Если говорить простым языком, то для взаимодействия с электрическим полем у вещества должна быть довольно низкая электропроводность.

Если мы будем говорить точнее, то удельное сопротивление должно быть сравнимо с 1010 Q-см или даже сильно превосходило это значение.

А откуда берется низкая электропроводность?

Как мы знаем из базовой программы по физике, все вещества состоят из атомов. И эти атомы очень активно взаимодействуют друг с другом. У каждого из них есть свой заряд, и благодаря зарядам атомы так или иначе взаимодействуют.

Однако, как же создается такая низкая электропроводность? Вроде же есть атомы, они как-то там взаимодействуют и ток по ним мог бы идти, но не все так просто. Залогом того, чтобы проводимость вещества была низкой, выступает очень важный факт.

Если при наложении поля электроны, ионы и другие частицы не смогут свободно перемещаться или будут это делать очень плохо, то и электропроводность будет низкая, ведь все будет стоять на своих местах и свободным электронам будет просто некуда деться.

Кристаллическая решетка поможет разобраться

Сейчас в познании электрических диэлектриков нам поможет разобраться кристаллическая решетка. Для того, чтобы термины не казались нам непонятными, давайте их освежим в своей голове. Кристаллическая решетка — это группа таких точек, которые образуются в веществах (а точнее в кристаллах) под воздействием сдвигов (они, кстати, могут происходить из-за воздействия электрического поля. Отлично, вспомнили. Давайте теперь разбираться.

Как мы помним, в атоме, который в данный момент изолирован, энергия электронов не может принимать какие угодно значения. В таком состоянии энергия будет принимать четко обозначенные значение W1, W2, W3 и т.д. Вот, взгляните на график:

Конечно же, каждый из этих уровней будет немного смещен после того, как атомы войдут в состав твердой кристаллической решетки. В итоге зона, в которой будет концентрировать вся энергия будет общей для всей решетки.

Итак, в кристаллической решетке энергия электронов лежит в пределах четко определенных зон и все значения, которые находятся вне этой зоны, запрещены. Это мы поняли. Двигаемся дальше. По принципу Паули каждая зона может вместить в себя ограниченное количество электронов. Сначала электроны будут заполнять нижние уровни, а когда эти ряды заполняться полностью, они будут заполнять верхние ряды.

И вот теперь ключевая мысль, которую нужно понять, чтобы разобраться в том, почему те или иные вещества проводят электрический ток. Раз электроны постепенно заполняют ряды от нижнего к верхнему, то на самом верхнем ряду они либо заполнят этот ряд полностью, либо только частично.

Так вот, при частичном заполнении ряда электроны смогут свободно по нему перемещаться, а значит и будут проводить ток. Бинго! А вот в случае, если электроны все-таки заполнят верхний уровень, то при воздействии электрического поля никаких сдвигов не произойдет и, соответственно, такое вещество можно назвать диэлектриком.

Очень похожая ситуация происходит и с аморфными твердыми телами (ну например янтарь или полиэтилен). По определению, у таких веществ расположение атомов очень случайно, а зоны, общие для всего кристалла просто не могут существовать, а значит они тоже электрические диэлектрики.

Ионы

Точно, кроме электронов же еще есть ионы, и они тоже могут повлиять на конечную ситуацию. Их тепловое движение состоит в том, что они колеблются где-то около положения равновесия. Однако интересно то, что некоторые из них все же способны вырваться и преодолеть то, что их сдерживает.

Такие ионы можно условно называть свободными. Они перемещаются в места, где потенциальная энергия их будет очень мала. Если мы говорим об электрических диэлектриках (а мы все еще о них говорим), то такие места в плотной кристаллической решетке для них — это узлы.

Так вот, согласно теории Вальтера Шоттки, такое может происходить только тогда, когда некоторое количество узлов в решетке уже занято ионами. В физике часто называют такие узлы “дырками”. Тогда тепловое движение будет сводиться к беспорядочному перескакиванию ионов с одного узла на другой.

Диэлектрик раз и навсегда?

Когда мы называем то или иное вещество диэлектриком, мы должны понимать, что это название довольно-таки условное, ведь при определенном воздействии на вещество оно уже может потерять свойства диэлектрика. Почему так происходит?

Дело в том, что электрический ток воздействует на вещество лишь очень короткий отрезок времени, из-за чего поле в нем тоже возникает ненадолго. Поэтому, даже вещества с очень низким удельным сопротивлением можно тоже считать диэлектриком при определенных условиях.

Хорошим примером будет дистиллированная вода. А вот если напряжение будет очень долго воздействовать на вещество, то его уже можно смело называть проводником. Вот такая магия.

Аморфные диэлектрики. Какие они?

Чем особенны аморфные диэлектрики? Главное, что отличает их от других — это довольно рыхлая структура, а значит очень много пустот внутри и большое пространство, где ионы могут находится в состоянии равновесия. При этом, при переходе от одного равновесного состояния до другого энергия, расходуемая ионом будет всегда разной. В некоторых переходах ион не будет полностью высвобождаться от сдерживающих его сил, поэтому можно его условно охарактеризовать как наполовину связанный этими силами.

Такие переходы будут тратить очень небольшое количество энергии, и перемещаться ион при таких переходах сможет лишь на очень небольшое расстояние. В результате теплового перемещения такие переходы внутри аморфных тел будут встречаться гораздо чаще, ведь они требуют гораздо меньше энергии, чем другие.

Однако, небольшое количество ионов, которые содержат в себе большие запасы энергии, смогут таки преодолевать связывающие их силы и будут перемещаться на сравнительно большие расстояния.

Если провести аналогию с кристаллической решеткой, то как раз эти ионы и можно назвать свободными. Как мы с вами теперь выяснили, в целом такая обстановка при движении ионов в аморфных телах идентична твердым, но с небольшими оговорками.

Помещаем в постоянное поле

Теперь давайте немного отойдем от того, какие вещества могут быть диэлектриками и какие не могут ими быть, тем более что мы уже достаточно хорошо разобрались в этом вопросе.

Давайте попробуем сейчас ответить на такой интересный вопрос: что же будет, если диэлектрик поместить в постоянное электрическое поле? Сначала давайте дадим краткий ответ, а потом уже разберемся в этом вопросе более подробно. Так вот, если поместить диэлектрик в электрическое поле, то заряды диэлектрика, из которых он состоит будут под воздействием некоторых сил, которые будут:

  • смещать связанные заряды (это только электроны и ионы)
  • накладывать на беспорядочное движение тепла поля, которое будет это движение упорядочивать (положительные заряды будут идти в одну сторону с полем, а отрицательные — в обратную)

Что будет давать упорядоченное перемещение

При упорядочивании зарядов диэлектрика есть целых два варианта развития событий:

  • новое равновесное состояние с другим распределением зарядов, причем движение сразу прекращается при достижении равновесия
  • пока поле будет действовать, упорядочивание может длится, пока в нем еще останутся свободные электроны или свободные ионы, о которых мы поговорили выше

Поговорим о поляризации

Следующий важный термин, о котором пришло время узнать — это поляризация диэлектриков. Дело в том, что процессы смещения зарядов диэлектрика протекают с разной скоростью. Как мы уже сказали ранее, для связанных зарядов время смещения гораздо меньше, а вот другие процессы протекают очень медленно.

При смещении зарядов диэлектрика образуется еще одно поле. Оно как раз и делает главное (внешнее) поле слабее. Как раз явление образования нового поля и называется поляризацией диэлектрика. Теперь давайте углубимся в этот процесс, ведь тут очень много интересных подробностей.

Для начала давайте поймем, почему новое поле появляется именно при смещении. Тут как раз все просто, ведь теперь из беспорядочного состояния диэлектрик становится более упорядоченным — отрицательные заряды теперь расположены левее своих положительных зарядов. Как раз это и создает новое поле.

Проницаемость диэлектрика

А как же измерить, насколько внутреннее поле ослабевает внешнее? Что-ж, здесь все очень просто. Такая мера называется электрическая проницаемость или проницаемость диэлектрика (наверняка вы уже слышали такой термин). Обычно говорят, что проницаемость диэлектрика это постоянная, но на самом деле в связи с тем, что поляризация протекает довольно долго, будем говорить, что эта величина зависит от времени действия внешнего поля.

Как на проницаемость диэлектрика влияет температура?

Но только ли время влияет на электрическую проницаемость. Выясняется, что не только. Оказывается, если увеличить температура, то вместе с этим еще и увеличивается интенсивность теплового движения, а это, как вы понимаете, напрямую влияет на проницаемость диэлектрика. Почему? Все просто: переход в устойчивое состояние становится более сложным, а поэтому диэлектрическая проницаемость с увеличением температуры становится все меньше.

Пробой диэлектрика

Помните мы в данной статье уже говорили о том, что у каждого диэлектрика есть свой предел и что нельзя однозначно называть вещество диэлектриком и нужно рассматривать его в динамике. Так вот, давайте вернемся к этой теме и немного углубимся в нее. Знаете ли вы, что происходит при поляризации?

Дело в том, что при этом явлении начинается такое состояние, называемое стационарным или же квазистанционырным, если воздействие напряжения извне переменное. Такое состояние отличается от обычного тем, что значения поляризации могут очень долго держаться на одном уровне. Вместе с ними стабилизируется и электропроводность.

Если сразу же начать увеличивать напряженность в таком поле, то можно будет очень точно определить тот предел, при котором эта самая стабильность будет резко нарушаться. Сразу же увеличиться ток, электропроводность, а это уже прямой путь из диэлектрика в проводники. Действительно, после этого вещество уже нельзя охарактеризовать, как диэлектрик. Такой процесс перехода диэлектрика в проводники называется пробоем диэлектрика.

Когда мы поняли, что такое пробой, давайте теперь поймем, как можно легко определить, в какой момент пробой диэлектрика происходит. Как мы можем понять, временной порог пробоя может зависеть от температуры, агрегатного состояния вещества и многих других факторов, тут важно другое. Давайте разберем основные случаи пробоя, их всего лишь два, поэтому не пугайтесь:

  • тепловые явления, при которых возрастающая электропроводность обуславливается тем, что диэлектрик очень быстро нагревается, из-за чего стационарным тепловое состояние уже быть не может
  • электрические явления, которые происходят из-за увеличения количества свободных электронов и ионов. Это тоже происходит в двух случаях. Либо появление свободных зарядов обусловлено сбитием их другими движущимися зарядами, либо сбитием полем.

Поле в диэлектрике

Как мы уже поняли, поле в диэлектрике направлено ровно против внешнего электрического поля. Но этих знаний нам не хватит, чтобы хорошо разбираться в диэлектриках.

Поэтому давайте немного углубимся в эту тему. Напомним, что поляризация диэлектрика — это когда заряды перенаправляются так, что минусы смотря в одну сторону, а плюсы — в другую. Так вот, давайте же разберемся в видах поляризации.

Деформационная (или же электронная)

Этот вид поляризации интересует нас больше всего. Стоит отметить, что такая поляризация характерна для веществ, состоящих из неполярных молекул, то есть у которых нет дипольных моментов. Что происходит? Все просто — главное, что нужно понять, это то, что смещаются электронные оболочки. При этом, положительно заряженные атомные ядра смещаются по направлению к внешнему полю, а отрицательно заряженные электронные оболочки — против поля.

Дипольная (или же ориентационная)

Это один из наиболее распространенных видов поляризации. Однако здесь все с точностью до наоборот. Здесь уже меняют ориентацию диполи. Здесь все еще просто — когда поле снаружи не воздействует на вещество, порядок у диполей абсолютно хаотичен, но когда внешнее поле начинает воздействовать на вещество, то абсолютно все диполи разворачиваются положительной стороной к полю, которое на него воздействует. Как мы уже разбирались выше, стабильность положения диполей определяется напряженностью поля и температурой вещества.

Ионная

Да, этот вид поляризации мы тоже не забыли. Здесь речь идет о смещении положительной решетки ионов. Они расположатся вдоль поля, а отрицательные — против.

Так почему же в самом начале мы сказали, что нас больше всего будет интересовать именно первый вид поляризации, если мы будет рассматривать положительные заряды? Все просто. Положительные заряды играют какую-то роль только при таком воздействии внешнего поля на вещество. Поэтому можете считать, что вы уже знаете о них все, что нужно.

Плоский диэлектрик

Почему-то многие иногда называют диэлектрик внутри плоского конденсатора. Быть может, так его называть просто удобнее. На самом деле, плоский конденсатор — это очень интересное устройство, поэтому поговорим о нем и о его диэлектрике (плоском диэлектрике раз уж на то пошло).

Раз уж мы говорим о конденсаторе, то давайте сразу же научимся определять его емкость (или же емкость диэлектрика). Для этого воспользуемся этой прекрасной формулой:

Давайте поймем, что здесь означает каждая из букв. S — это, очевидно, площадь обкладок данного плоского конденсатора. Буква d обозначает расстояние между обкладками, а остальные две переменные — это диэлектрическая проницаемость диэлектрика (плоского диэлектрика) и электрическая постоянная (если кто-то из вас подзабыл, 8,854 пФ/м)

Странно, но сейчас плоские конденсаторы встречаются очень редко. Возможно, это связано с пленочными технологии, которые настолько микроскопически, что делать их довольно сложно и дорого.

Почему плоский с конденсатор с диэлектриком не могут друг без друга?

Ответ на этот вопрос не так уж сложен. Все дело в том, что от диэлектрика зависит самый важный и основной элемент в плоском конденсаторе — его емкость. Давайте поговорим о том, как это работает. Как мы знаем, аморфное вещество состоит из диполей, которые, в свою очередь, укреплены на своих местах и хаотично ориентированы.

Когда поле извне воздействует на это самое аморфное вещество, диполи разворачиваются вдоль силовых линий это внешнего поля. При этом, поле ослабевает, а заряд постепенно накапливается, пока поле не перестанет действовать. И так длится цикл за циклом. Именно поэтому плоский конденсатор с диэлектриком можно рассматривать только вместе.

Как не путать проводники и диэлектрики

До этого мы с вами очень подробно рассмотрели диэлектрики, узнали, как они работают, как устроены внутри. Теперь же давайте узнаем, как они используются в реальной жизни и как не спутать их с проводниками.

Где применяются диэлектрики

Диэлектрики применяются во многих сферах жизни, а именно в тех, где нужен электрический ток.

Особенно активно их используют в сельском хозяйстве, промышленности и приборостроении.

Твердые диэлектрики

Диэлектрики бывают разные. Например, твердые диэлектрики могут обеспечивать безопасность приборов, работающий на электричестве. Они являются хорошими изоляторами тока, а значит очень сильно влияют на долговечность этих приборов. Одним из примеров можно назвать диэлектрические перчатки.

Жидкие диэлектрики

А вот диэлектрики жидкие нужны немного для другого. Они то используются в конденсаторах, кабелях, системах охлаждения с циркуляцией воздуха и во многих других приборах.

Газообразные диэлектрики

Также существуют и газообразные диэлектрики, хоть они и не так популярны в наши дни. Эти диэлектрики создала сама природа. Например, водород используется для мощных генераторов, у которых просто запредельная теплоемкость, а вот азот помогает по максимуму сократить окислительные процессы. Самым же простым примером газообразного диэлектрика мы считаем воздух. Да-да, это тоже диэлектрик, причем еще и тепло может отводить.

Что такое диэлектрический материал и как он работает?

По

  • Рахул Авати

Что такое диэлектрический материал?

Диэлектрический материал плохо проводит электричество, но эффективно поддерживает электростатические поля. Он может накапливать электрические заряды, иметь высокое удельное сопротивление и отрицательный температурный коэффициент сопротивления.

Подробнее о диэлектрических материалах

Диэлектрические материалы являются плохими проводниками электричества, поскольку в них нет слабо связанных или свободных электронов, которые могут дрейфовать через материал. Электроны необходимы для поддержания потока электрического тока. Ток течет от положительного вывода к отрицательному и в обратном направлении в виде свободных электронов, которые текут от отрицательного вывода к положительному.

Диэлектрические материалы поддерживают диэлектрическую поляризацию, что позволяет им действовать как диэлектрики, а не как проводники. Это явление возникает, когда диэлектрик помещается в электрическое поле и положительные заряды смещаются в направлении электрического поля, а отрицательные заряды смещаются в противоположном направлении. Такая поляризация создает сильное внутреннее поле, которое уменьшает общее электрическое поле внутри материала.

Важные сведения о диэлектрических материалах

Важным фактором для диэлектрического материала является его способность поддерживать электростатическое поле при минимальном рассеивании энергии в виде тепла. Это рассеянное тепло или потеря энергии известны как диэлектрические потери . Чем меньше диэлектрические потери, тем эффективнее вещество как диэлектрический материал.

Еще одним соображением является диэлектрическая проницаемость , , который представляет собой степень, в которой вещество концентрирует электростатические линии потока. К веществам с низкой диэлектрической проницаемостью относятся идеальный вакуум, сухой воздух и самые чистые, сухие газы, такие как гелий и азот. К материалам с умеренными диэлектрическими постоянными относятся керамика, дистиллированная вода, бумага, слюда, полиэтилен и стекло. Оксиды металлов, как правило, имеют высокие диэлектрические постоянные.

Свойства диэлектрических материалов

Это наиболее важные свойства диэлектрических материалов.

Электрическая восприимчивость

Относится к относительной мере того, насколько легко диэлектрический материал может быть поляризован под воздействием электрического поля. Это также относится к электрической проницаемости материала.

Диэлектрическая поляризация

Это количество электрической энергии, хранящейся в электрическом поле, когда к нему приложено напряжение. Поскольку это заставляет положительные заряды и отрицательные заряды течь в противоположных направлениях, это может свести на нет общее электрическое поле.

Электрический дипольный момент

Степень разделения отрицательных и положительных зарядов в системе относится к электрическому дипольному моменту. Атомы содержат как положительно, так и отрицательно заряженные частицы и расположены в материале в виде диполей. Приложение электрического заряда создает дипольный момент. Связь между дипольным моментом и электрическим полем придает материалу его диэлектрические свойства.

Электронная поляризация

Электронная поляризация возникает, когда диэлектрические молекулы, образующие дипольный момент, состоят из нейтральных частиц.

Время релаксации

После снятия приложенного электрического поля атомы в диэлектрическом материале возвращаются в исходное состояние после некоторой задержки. Это время задержки называется временем релаксации .

Пробой диэлектрика

Если напряжение на диэлектрическом материале становится слишком большим, а электростатическое поле становится слишком интенсивным, материал начинает проводить ток. Это явление называется пробоем диэлектрика .

В компонентах, в которых в качестве диэлектрической среды используются газы или жидкости, это условие меняется на противоположное, если напряжение падает ниже критической точки. Но в компонентах, содержащих твердые диэлектрики, пробой диэлектрика обычно приводит к необратимому повреждению.

Диэлектрическая дисперсия

Этот термин относится к максимальной поляризации, достигаемой диэлектрическим материалом. На это влияет время релаксации.

Типы диэлектрических материалов

Диэлектрические материалы основаны на типе молекул, присутствующих в материале.

Полярный диэлектрик

В полярном диэлектрике центры масс положительных и отрицательных частиц не совпадают. Молекулы имеют асимметричную форму, и в материале существует дипольный момент. Когда к материалу прикладывается электрическое поле, молекулы выравниваются с электрическим полем. Когда поле снимается, суммарный дипольный момент в молекулах становится равным нулю.

Примеры: вода и соляная кислота

Неполярный диэлектрик

В неполярных диэлектрических материалах центр масс положительных и отрицательных частиц совпадает. Молекулы имеют симметричную форму, а диэлектрический материал не имеет дипольного момента.

Примеры: водород, кислород и азот

Большинство диэлектрических материалов твердые. Примеры следующие:

  • фарфор (керамика)
  • слюда
  • стекло
  • пластик
  • многие оксиды металлов

Некоторые жидкости и газы также являются хорошими диэлектрическими материалами. Сухой воздух является отличным диэлектриком и используется в конденсаторах переменной емкости и некоторых типах линий передачи. Азот и гелий являются хорошими диэлектрическими газами. Дистиллированная вода является хорошим диэлектриком. Вакуум является исключительно эффективным диэлектриком.

Различия между диэлектриками и изоляторами

Диэлектрики часто путают с изоляторами, хотя между этими типами материалов есть различия. Например, все диэлектрики являются изоляторами, но не все изоляторы являются диэлектриками. Некоторые различия выделены на этом рисунке.

Диэлектрики часто путают с изоляторами. Однако между этими типами материалов есть различия.

Применение диэлектрических материалов

Диэлектрические материалы используются во многих областях. Из-за их способности накапливать заряды они чаще всего используются для хранения энергии в конденсаторах и для строительства линий радиопередачи.

Диэлектрические материалы с высокой диэлектрической проницаемостью часто используются для улучшения характеристик полупроводников. В трансформаторах, реостатах, шунтирующих и заземляющих реакторах диэлектрические материалы, такие как минеральные масла, действуют как хладагенты и изоляторы.

Диэлектрики также используются в жидкокристаллических дисплеях, резонаторных генераторах и перестраиваемых микроволновых устройствах. В некоторых приложениях специально обработанные диэлектрики служат электростатическим эквивалентом магнитов. Совсем недавно для отвода тепла от технологической инфраструктуры для поддержания желаемой температуры окружающей среды использовалось погружение оборудования центра обработки данных в диэлектрический жидкий охлаждающий агент.

См. также: конденсатор , picofarad per meter , flash storage , resistive RAM , floating gate transistor , inductor , ultracapacitor , transducer and жидкостное иммерсионное охлаждение .

Последнее обновление: июнь 2022 г.


Продолжить чтение О диэлектрическом материале

  • Масштабирование новых технологий памяти, используемых для постоянной памяти
  • Выберите схему центра обработки данных: фальшполы или подвесные кабели
  • Составьте план обеспечения непрерывности бизнеса при отключении электроэнергии с помощью этих советов
  • Как использовать Интернет вещей для повышения энергоэффективности и устойчивого развития
  • Системы и технологии охлаждения центров обработки данных и принципы их работы
СБОМ

Спецификация программного обеспечения (SBOM) — это список всех составляющих компонентов и программных зависимостей, участвующих в разработке и поставке приложения.

ПоискСеть


  • беспроводная ячеистая сеть (WMN)

    Беспроводная ячеистая сеть (WMN) — это ячеистая сеть, созданная путем соединения узлов беспроводной точки доступа (WAP), установленных в . ..


  • Wi-Fi 7

    Wi-Fi 7 — это ожидаемый стандарт 802.11be, разрабатываемый IEEE.


  • сетевая безопасность

    Сетевая безопасность охватывает все шаги, предпринятые для защиты целостности компьютерной сети и данных в ней.

ПоискБезопасность


  • Что такое модель безопасности с нулевым доверием?

    Модель безопасности с нулевым доверием — это подход к кибербезопасности, который по умолчанию запрещает доступ к цифровым ресурсам предприятия и …


  • RAT (троянец удаленного доступа)

    RAT (троян удаленного доступа) — это вредоносное ПО, которое злоумышленник использует для получения полных административных привилегий и удаленного управления целью …


  • атака на цепочку поставок

    Атака на цепочку поставок — это тип кибератаки, нацеленной на организации путем сосредоточения внимания на более слабых звеньях в организации . ..

ПоискCIO


  • пространственные вычисления

    Пространственные вычисления широко характеризуют процессы и инструменты, используемые для захвата, обработки и взаимодействия с трехмерными данными.


  • Пользовательский опыт

    Дизайн взаимодействия с пользователем (UX) — это процесс и практика, используемые для разработки и внедрения продукта, который обеспечит положительные и …


  • соблюдение конфиденциальности

    Соблюдение конфиденциальности — это соблюдение компанией установленных правил защиты личной информации, спецификаций или …

SearchHRSoftware


  • Поиск талантов

    Привлечение талантов — это стратегический процесс, который работодатели используют для анализа своих долгосрочных потребностей в талантах в контексте бизнеса …


  • удержание сотрудников

    Удержание сотрудников — организационная цель сохранения продуктивных и талантливых работников и снижения текучести кадров за счет стимулирования . ..


  • гибридная рабочая модель

    Гибридная модель работы — это структура рабочей силы, включающая сотрудников, работающих удаленно, и тех, кто работает на месте, в офисе компании…

SearchCustomerExperience


  • CRM (управление взаимоотношениями с клиентами) аналитика

    Аналитика CRM (управление взаимоотношениями с клиентами) включает в себя все программные средства, которые анализируют данные о клиентах и ​​представляют…


  • разговорный маркетинг

    Диалоговый маркетинг — это маркетинг, который привлекает клиентов посредством диалога.


  • цифровой маркетинг

    Цифровой маркетинг — это общий термин для любых усилий компании по установлению связи с клиентами с помощью электронных технологий.

Диэлектрики — Гиперучебник по физике

[закрыть]

основная идея

Диэлектрики — это простые изоляторы. Эти два слова относятся к одному и тому же классу материалов, но имеют разное происхождение и преимущественно используются в разных контекстах.

  • Поскольку заряды обычно не могут легко перемещаться в неметаллических твердых телах, в стекле, керамике и пластике могут образовываться «островки» заряда. Латинское слово для острова островковая доля , от которой произошло слово изолятор . Напротив, заряды в твердых металлических телах имеют тенденцию легко двигаться — как будто их кто-то или что-то ведет. Латинская приставка con или com означает «с». Человек, с которым вы едите хлеб, является компаньоном. (На латыни хлеб — panis .) Взять что-то с собой в дорогу — значит передать это. (Латинское слово «дорога» — через .) Человек, с которым вы путешествуете и который ведет вас вперед или обеспечивает безопасный проход, является проводником. (латинское слово «лидер» — ductor .) Материалом, обеспечивающим безопасное прохождение электрических зарядов, является проводник .
  • Вставка твердого неметаллического слоя между пластинами конденсатора увеличивает его емкость. Греческая приставка di или dia означает «поперек». Линия, проведенная через углы прямоугольника, является диагональю. (Греческое слово для обозначения угла — gonia — γωνία.) Измерение поперек круга — это диаметр. (Греческое слово «мера» — «метрон» — μέτρον.)0037 диэлектрик .

Пластиковое покрытие на электрическом шнуре является изолятором. Стеклянные или керамические пластины, используемые для поддержки линий электропередач и предотвращения их короткого замыкания на землю, являются изоляторами. Почти каждый раз, когда неметаллическое твердое вещество используется в электрическом устройстве, оно называется изолятором. Возможно, слово «диэлектрик» используется только в отношении непроводящего слоя конденсатора.

Диэлектрики в конденсаторах служат трем целям:

  1. , чтобы предотвратить контакт проводящих пластин, что позволяет уменьшить расстояние между пластинами и, следовательно, повысить емкость;
  2. для увеличения эффективной емкости за счет уменьшения напряженности электрического поля, а значит, вы получаете тот же заряд при более низком напряжении; и
  3. , чтобы уменьшить вероятность короткого замыкания из-за искрения (более формально известного как пробой диэлектрика) во время работы при высоком напряжении.

что здесь происходит

Когда металл помещается в электрическое поле, свободные электроны текут против поля до тех пор, пока у них не закончится проводящий материал. Совсем скоро у нас будет избыток электронов с одной стороны и дефицит с другой. Одна сторона проводника заряжена отрицательно, а другая положительно. Отпустите поле, и электроны на отрицательно заряженной стороне теперь окажутся слишком близко для комфорта. Одинаковые заряды отталкиваются, а электроны убегают друг от друга так быстро, как только могут, пока не распределятся равномерно по всему телу; в среднем один электрон на каждый протон в пространстве, окружающем каждый атом. Проводящий электрон в металле подобен беговой собаке, отгороженной на пастбище. Они вольны бродить сколько угодно и могут по своей прихоти бегать по всей длине, ширине и глубине металла.

Жизнь электрона в изоляторе гораздо более ограничена. По определению заряды в изоляторе не могут свободно перемещаться. Это не то же самое, что сказать, что они не могут двигаться. Электрон в изоляторе подобен сторожевой собаке, привязанной к дереву: он может свободно передвигаться, но в определенных пределах. Поместить электроны изолятора в электрическое поле — все равно, что поместить привязанную собаку в присутствии почтальона. Электроны будут напрягаться против поля, насколько это возможно, почти так же, как наша гипотетическая собака будет напрягаться на своем поводке, насколько это возможно. Однако электроны в атомном масштабе больше похожи на облака, чем на собак. Электрон эффективно распределен по всему объему атома и не концентрируется в каком-то одном месте. Я полагаю, хорошую атомную собаку не назвали бы Спот.

Когда атомы или молекулы диэлектрика помещаются во внешнее электрическое поле, ядра толкаются полем, что приводит к увеличению положительного заряда с одной стороны, в то время как электронные облака притягиваются к нему, что приводит к увеличению отрицательного заряда с другой стороны. сторона. Этот процесс известен как поляризация , а диэлектрический материал в таком состоянии называется поляризованным . Существует два основных метода поляризации диэлектрика: растяжение и вращение.

Растяжение атома или молекулы приводит к индуцированному дипольному моменту , добавляемому к каждому атому или молекуле.

Увеличить

Вращение происходит только в полярных молекулах — с постоянным дипольным моментом , как у молекулы воды, показанной на диаграмме ниже.

Увеличить

Полярные молекулы обычно поляризуются сильнее, чем неполярные. Вода (полярная молекула) имеет диэлектрическую прочность в 80 раз больше, чем азот (неполярная молекула, которая является основным компонентом воздуха). Это происходит по двум причинам, одна из которых обычно тривиальна. Во-первых, все молекулы растягиваются в электрическом поле независимо от того, вращаются они или нет. Неполярные молекулы и атомы растягиваются, а полярные молекулы растягиваются и вращаются. Однако эта комбинация действий оказывает лишь незначительное влияние на общую степень поляризации вещества. Важнее то, что полярные молекулы уже сильно растянуты — естественно. То, как атомы водорода сидят на плечах электронных облаков атома кислорода, искажает молекулу в диполь. Все это происходит на межатомном или молекулярном уровне. При таких крошечных расстояниях напряженность электрического поля относительно велика для того, что в противном случае было бы ничем не примечательным напряжением (например, 13,6 В для электрона в атоме водорода).

Растяжка и вращение — это еще не все, что касается поляризации. Это всего лишь методы, которые проще всего описать случайному наблюдателю. В общем, поляризация диэлектрического материала представляет собой микроскопическую электростатическую деформацию в ответ на макроскопическую электростатическую нагрузку. Внешнее поле, приложенное к диэлектрику, не может заставить заряды двигаться макроскопически, но может растянуть и исказить их микроскопически. Он может толкнуть их в неудобное положение, а при отпускании позволить им вернуться в расслабленное состояние. То, что отличает поляризацию в изоляторе от растяжения упругого тела, подобного пружине, заключается в том, что устранение напряжения не обязательно снимает напряжение. Некоторые изоляторы остаются в своем поляризованном состоянии часами, днями, годами и даже веками. Самые длинные характерные времена должны быть экстраполированы из неполных наблюдений более разумной продолжительности. Никто не собирается сидеть и ждать две тысячи лет, пока поляризация куска пластика не сократится до нуля. Это не стоит ждать.

Наконец, важно помнить, что заряды, «хранящиеся» в диэлектрическом слое, не доступны в виде пула свободных зарядов. Для их извлечения вам еще понадобятся металлические пластины. Важно помнить, что единственная причина, по которой кого-то волнует это явление, заключается в том, что оно помогает нам делать более качественные конденсаторы. Думаю, на этом дискуссия должна завершиться.

конденсаторы с диэлектриками

Поместите слой диэлектрика между двумя параллельными заряженными металлическими пластинами с направлением электрического поля справа налево. (Почему не слева направо? Ну, я читаю справа налево, поэтому мне легче «читать» диаграммы.) Положительные ядра диэлектрика будут двигаться на с полем вправо, а отрицательные электроны будут двигаться против поля влево. Силовые линии начинаются на положительных зарядах и заканчиваются на отрицательных зарядах, поэтому электрическое поле внутри каждого находящегося под напряжением атома или молекулы диэлектрика указывает на нашей диаграмме слева направо — противоположно внешнему полю двух металлических пластин. Электрическое поле является векторной величиной, и когда два вектора указывают в противоположных направлениях, вы вычитаете их величины, чтобы получить равнодействующую. Два поля в диэлектрике не полностью нейтрализуются, как в металле, поэтому общий результат — более слабое электрическое поле между двумя пластинами.

Увеличить

Позвольте мне повторить это — общий результат — более слабое электрическое поле между двумя пластинами. Давайте займемся математикой.

Электрическое поле — это градиент электрического потенциала (более известный как напряжение).

E x  = —  В    
x
E y  = −  В ⇒  Е  = — ∇ В
г
E z  = —  В    
z

Емкость – это отношение заряда к напряжению.

С  =  Q
В

Введение диэлектрика в конденсатор уменьшает электрическое поле, что снижает напряжение, что увеличивает емкость.

С  ∝  1  ( Q  константа) ⇒  С    ( d , Q  константа)
В 1
В ∝  Е  ( d  константа) Е
 

Конденсатор с диэлектриком сохраняет тот же заряд, что и конденсатор без диэлектрика, но при более низком напряжении. Поэтому конденсатор с диэлектриком более эффективен.

ЭТА МАЛЕНЬКАЯ ЧАСТЬ НУЖНА ПОРАБОТЫ.

О первых открытиях лейденской банки. Удаление стержня снижает емкость. (Диэлектрическая проницаемость воздуха ниже, чем у воды.) Напряжение и емкость обратно пропорциональны, когда заряд постоянен. Уменьшение емкости увеличивает напряжение.

восприимчивость, диэлектрическая проницаемость, диэлектрическая проницаемость

Электрический дипольный момент чего-либо — будь то атом, растянутый во внешнем электрическом поле, полярная молекула или две противоположно заряженные металлические сферы — определяется как произведение заряда и разделения.

р  =  q   r

с единицей СИ кулон-метр , который не имеет специального названия.

[см = см]

Поляризация области определяется как дипольный момент на единицу объема

Р  =  р
В

с единицей СИ кулонов на квадратный метр .



См  =  С

м 3 м 2

Вычисление поляризации из первых принципов — сложная процедура, которую лучше оставить экспертам. Не беспокойтесь о деталях того, почему поляризация имеет такое значение, просто примите, что она существует и является функцией некоторых переменных. И что это за переменные? Почему они материалы и напряженность поля, конечно. Различные материалы поляризуются в разной степени — мы будем использовать греческую букву χ e [хи-суб-е] для обозначения этой величины, известной как электрическая восприимчивость, — но для большинства материалов чем сильнее поле ( E ), тем больше поляризация ( P ). Добавьте константу пропорциональности ε 0 , и все готово.

P  = ε 0 χ e E

Электрическая восприимчивость — это безразмерный параметр, который зависит от материала. Его значение варьируется от 0 для пустого места до любого. Бьюсь об заклад, есть даже некоторые причудливые материалы, для которых этот коэффициент отрицательный (хотя я точно не знаю). Константа пропорциональности ε 0 [эпсилон ноль] известно как диэлектрическая проницаемость свободного пространства и будет обсуждаться чуть позже. Пока это просто устройство для того, чтобы заставить единицы работать.



С  =  С 2   Н

м 2 Н·м 2 С

НАПИШИТЕ ОСТАЛЬНОЕ.

Величина κ [каппа] безразмерна.

Диэлектрическая проницаемость для выбранных материалов (~300 К, если не указано иное)

материал к
воздух 1.005364
уксусная кислота 6,2
спирт этиловый (зерновой) 24,55
спирт метиловый (древесный) 32,70
янтарный 2,8
асбест 4,0
асфальт 2,6
бакелит 4,8
кальцит 8,0
карбонат кальция 8,7
целлюлоза 3,7–7,5
цемент ~2
кокаин 3.1
хлопок 1,3
алмаз, тип I 5,87
алмаз, тип IIa 5,66
эбонит 2,7
эпоксидная смола 3,6
мука 3 — 5
фреон 12, −150 °C (жидкий) 3,5
фреон 12, +20 °C (пар) 2,4
германий 16
стекло 4–7
стекло, пирекс 7740 5,0
гуттаперча 2,6
топливо для реактивных двигателей (реактивное) 1,7
оксид свинца 25,9
ниобат магния свинца 10 000
сульфид свинца (галенит) 200
титанат свинца 200
дейтерид лития 14,0
люцит 2,8
слюда, мусковит 5,4
слюда канадская 6,9
нейлон 3,5
масло льняное 3,4
масло минеральное 2. 1
масло оливковое 3.1
нефть, нефть 2,0–2,2
масло, силикон 2,5
масло, сперма 3,2
масло, трансформатор 2,2
материал к
бумага 3,3, 3,5
оргстекло 3.1
полиэстер 3,2–4,3
полиэтилен 2,26
полипропилен 2,2–2,3
полистирол 2,55
поливинилхлорид (ПВХ) 4,5
фарфор 6–8
ниобат калия 700
КТН, 0 °C 34 000
КТН, 20 °C 6000
кварц кристаллический (∥) 4,60
кварц кристаллический (⊥) 4,51
кварц, плавленый 3,8
каучук, бутил 2,4
резина, неопрен 6,6
резина, силикон 3,2
каучук, вулканизированный 2,9
соль 5,9
селен 6,0
кремний 11,8
карбид кремния (αSiC) 10,2
диоксид кремния 4,5
силиконовое масло 2,7–2,8
почва 10–20
титанат стронция, +25 °C 332
титанат стронция, −195 °C 2080
сера 3,7
пентаоксид тантала 27
тефлон 2. 1
антимонид олова 147
теллурид олова 1770
титана диоксид (рутил) 114
табак 1,6–1,7
диоксид урана 24
вакуум 1 (точно)
вода, лед, минус 30 °С 99
вода жидкая, 0°C 87,9
вода жидкая, 20 °C 80,2
вода жидкая, 40 °C 73,2
вода жидкая, 60 °C 66,7
вода жидкая, 80 °C 60,9
вода жидкая, 100 °C 55,5
воск, пчелиный воск 2,7–3,0
воск карнаубский 2,9
воск, парафин 2,1–2,5
вощеная бумага 3,7
ткани человека к
кость губчатая 26
кость кортикальная 14,5
головной мозг, серое вещество 56
головной мозг, белое вещество 43
головной мозг, мозговые оболочки 58
хрящ общий 22
хрящ уха 47
ткани человека к
глаз, водянистая влага 67
глаз, роговица 61
глаз, склера 67
жир 16
мышцы, гладкие 56
мышцы поперечно-полосатые 58
кожа 33–44
язык 38

пробой диэлектрика

Любой изолятор можно заставить проводить электричество. Это явление известно как пробой диэлектрика .

Пробой диэлектрика в некоторых материалах

материал поле (МВ/м)
воздух 3
янтарный 90
бакелит 12, 24
алмаз, тип IIa 10
стекло, пирекс 7740 13, 14
слюда, мусковит 160
нейлон 14
масло, силикон 15
масло, трансформатор 12, 27
материал поле (МВ/м)
бумага 14, 16
полиэтилен 50, 500–700, 18
полистирол 24, 25, 400–600
поливинилхлорид (ПВХ) 40
фарфор 4, 12
кварц, плавленый 8
резина, неопрен 12, 12
титанат стронция 8
тефлон 60
титана диоксид (рутил) 6

пьезоэлектрический эффект

Произнесите все гласные. Пьезоэлектричество — это эффект преобразования энергии между механической и электрической формами.

  • Пьезо по-гречески означает давление (πιεζω).
  • Открыт в 1880-х годах братьями Кюри.
  • Дешевые пьезоэлектрические микрофоны. Когда поляризованный кристалл испытывает напряжение, это напряжение создает разность потенциалов. Эта разность потенциалов пропорциональна напряжению, которое пропорционально акустическому давлению.
  • Обратный пьезоэлектрический микрофон представляет собой пьезоэлектрический динамик: зуммер будильника, наручных часов, всевозможные электронные биперы. Когда к поляризованному кристаллу прикладывается электрический потенциал, кристалл подвергается механической деформации, которая, в свою очередь, может создавать акустическое давление.
  • Коллаген является пьезоэлектрическим. «Когда к [костному] коллагену прикладывается сила, генерируется небольшой постоянный электрический потенциал. Коллаген проводит ток в основном за счет отрицательных зарядов.