легирующий элемент. Легирующий элемент это


легирование - это... Что такое легирование?

ЛЕГИ́РОВАНИЕ см. Леги́ровать.

(нем. legieren — сплавлять, от лат. ligo — связываю, соединяю), 1) введение в состав металлических сплавов так называемых легирующих элементов (например, в сталь — Cr, Ni, Мо, W, V, Nb, Ti и др.) для придания сплавам определенных физических, химических или механических свойств. 2) Введение примесных атомов в твердое тело (например, в полупроводники для создания требуемой электрической проводимости). Легирование диэлектриков обычно называется активированием.

ЛЕГИ́РОВАНИЕ (нем. legieren — сплавлять, от лат. ligo — связываю, соединяю), введение в состав твердых веществ (металлов (см. МЕТАЛЛЫ), сплавов (см. СПЛАВЫ), полупроводников (см. ПОЛУПРОВОДНИКИ) и диэлектриков (см. ДИЭЛЕКТРИКИ)) легирующих элементов для придания им определенных физических, химических или механических свойств. Введение легирующей примесей может существенным образом изменить свойства твердых тел. От характера взаимодействия атомов легирующих элементов и атомов основного вещества, от типа образованных дефектов структуры, от характера взаимодействия легирующих и фоновых примесей, легирующих примесей и дефектов структуры, от способности легирующей примеси образовывать соединения в матрице вещества и т.д. зависят свойства (электрические, магнитные, тепловые) легируемого вещества. Легирование широко применятся в технологии получения металлов и сплавов, полупроводниковых кристаллов и пленок, а также диэлектрических материалов с заданными свойствами. Легирование металлов и сталей Легирования металлов, сталей и сплавов позволяет получить металлические сплавы с разнообразными свойствами, значительно отличающимися от свойств чистых металлов. Например, коррозионная стойкость циркония (см. ЦИРКОНИЙ) существенно зависит от его чистоты. Сотые доли процента углерода и азота снижают его коррозионную стойкость, но введение ниобия нейтрализует действие углерода, а введение олова — азота. Легирование ряда металлов и сплавов на их основе редкоземельными элементами позволило значительно улучшить прочностные характеристики этих веществ и т. д. При легировании стали можно получить заданные свойства, в том числе отсутствующие у исходных углеродистых сталей. Стали считаются легированными при содержании примесей в них, например, кремния — более 0,8% , марганца — не более 1%. Но при введении легирующих примесей в сталь необходимо учитывать, что все элементы, которые растворяются в железе, влияют на температурный интервал его аллотропических модификаций, оказывая влияние на свойства сталей. Температура полиморфных превращений железа зависит от всех растворенных в нем элементов. В их присутствии изменяется область существования g-железа. Ряд легирующих примесей (Ni, Mn и др.) расширяют область существования g-железа от комнатной температуры до температуры плавления (см. аустенит (см. АУСТЕНИТ)), А такие примеси, как V, Si, Mo и др. делают ферритную фазу устойчивой вплоть до температуры плавления (см. феррит (см. ФЕРРИТ)). Легирующие примеси в промышленных сталях могут преимущественно растворяются именно в основных фазах железоуглеродистых сплавов — феррите, аустените, цементите (см. ЦЕМЕНТИТ)). При наличии в сплаве железа большой концентрации элемента, который сужает g-область, превращение g ¬® a отсутствует, образуются ферритные стали. Класс аустенитных сталей можно получить при легировании элементами, расширяющими g-область. Если легирующие примеси в g-железе находятся в свободном состоянии, то они как правило, являются примесями замещения, занимая позиции атомов железа. Но легирующие примеси могут образовывать химические соединения с железом, между собой, образовывать оксиды или карбиды. В этом случае карбидообразующие элементы (молибден, ванадий, вольфрам, титан) задерживают выделение карбидов железа при отпуске и увеличивают конструкционную прочность стали. Легирующие примеси изменяют свойства феррита. Молибден, вольфрам, марганец и кремний снижают вязкость феррита, а никель — не снижает. Но никель интенсивно снижает порог хладоломкости, уменьшая склонность железа к хрупким разрушениям. Все легирующие элементы (за исключением марганца и бора), уменьшают склонность аустенитного зерна к росту. Никель, кремний, кобальт, медь (элементы, не образующие карбиды), относительно слабо влияют на рост зерна. Легирующие элементы замедляют процесс распада мартенсита. Т. е. в общем случае легирование существенным образом меняет кинетику фазовых превращений (см. ФАЗОВЫЕ ПЕРЕХОДЫ ВТОРОГО РОДА). Для повышения качества сталей некоторые примеси, например, марганец и кремний, добавляют в заданном количестве. При содержании марганца от 0,25 до 0,9% прочность стали повышается без значительного снижения ее пластичности. Кремний, содержание которого в обыкновенных сталях не превышает 0,35%, не оказывает существенного влияния на свойства стали. А такие примеси, как фосфор и сера являются нежелательными загрязняющими примесями. Фосфор делает сталь хрупкой (хладноломкой), а присутствие серы в количестве более 0,07 % вызывает красноломкость стали, снижает ее прочность и коррозионную стойкость. Изменение свойств сплавов в результате легирования обусловлено, кроме того, изменением формы, размеров и распределения структурных составляющих, изменением состава и состояния границ зерен. Легирование стали может тормозить процессы рекристаллизации (см. РЕКРИСТАЛЛИЗАЦИЯ). Легирование полупроводников Под легированием полупроводников подразумевается не только дозированное введение в полупроводники (см. ПОЛУПРОВОДНИКИ) примесей, но и структурных дефектов (см. ДЕФЕКТЫ) с целью изменения их свойств, главным образом электрофизических. Наиболее распространенным методом легирования является легирование различными примесями. Для получения кристаллов n- и p- типа проводимости кристаллы легируют электрически активными примесями (чаще всего – водородоподобными, валентность которых отличается от валентности основных замещаемых атомов на единицу). Электрически активные водородоподобные примеси являются примесями замещения. Например, для элементарных полупроводниковых материалов (см. ЭЛЕМЕНТАРНЫЕ ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ) германия или кремния такими легирующими примесями являются атомы элементов III или V групп таблицы Менделеева. Примеси такого типа создают мелкие (вблизи дна зоны проводимости (см. ПРОВОДИМОСТИ ЗОНА) или вблизи потолка валентной зоны (см. ВАЛЕНТНАЯ ЗОНА)) энергетические уровни: соответственно, примеси III группы (B, Al, In, Ga) будут акцепторами (см. АКЦЕПТОР), а примеси V группы (P, Sb, As) — донорами (см. ДОНОР (в физике)). У полупроводниковых соединений AIIIBV элементы V группы замещаются примесями VI группы (S, Se, Te), которые являются донорами, а элементы II группы (Zn, Cd), замещая, соответственно, атомы III группы в соединении, будут проявлять акцепторные свойства. Такое легирование позволяет управлять типом проводимости и концентрацией носителей заряда в полупроводнике. Некоторые примеси, введенные в кристалл, способны проявлять как донорные, так и акцепторные свойства. Если проявление донорных или акцепторных свойств таких примесей зависит от их размещения в кристаллической матрице, например, от того, находится ли атом легирующей примеси в узле кристаллической решетки или в междоузлии, примеси называются амфотерными. Некоторые примеси, размещаясь в узлах решетки, являются акцепторами, а в междоузлии — донорами. А в случае легирования соединений AIIIBV примесями IV группы, проявление донорных или акцепторных свойств будет зависеть от того, в узлах какой подрешетки расположен атом примеси. При замещении таким атомом катионного узла он будет проявлять донорные свойства, а при замещении анионного узла — акцепторные. В некоторых случаях используют легирование изовалентными примесями, т.е. примесями, принадлежащими той же группе Периодической системы, что и замещаемые им атомы. Такое легирование используется для формирования свойств косвенным путем. Например, легирование кристаллов GaAs изовалентной примесью In способствует проявлению эффекта примесного упрочнения (снижения плотности дислокаций) и формированию в кристалле полуизолирующих свойств. Иногда для легирования используют примеси, образующие глубокие уровни в запрещенной зоне, что позволяет воздействовать на диффузионную длину носителей заряда и регулировать степень компенсации электрически активных центров. Путем введения тех или иных легирующих добавок можно эффективно влиять на состояние ансамбля собственных точечных дефектов (см. ТОЧЕЧНЫЕ ДЕФЕКТЫ) в кристалле, в особенности на поведение в них дислокаций и фоновых примесей и таким образом управлять свойствами полупроводникового материала. Легирование полупроводников обычно осуществляется непосредственно в процессе выращивания монокристаллов и эпитаксиальных структур. Легирующая примесь в элементарной форме или в виде соединения вводится в расплав, раствор или газовую фазу. В связи с особенностями процессов на фронте кристаллизации при выращивания кристаллов и пленок, примесь распределяется неравномерно как по длине, так и в объеме кристалла. Чтобы добиться равномерного распределения, используются различные технологические приемы. Еще одним способом легирования полупроводников является радиационное легирование. В этом случае доноры и акцепторы не вводятся в кристалл, а возникают в его объеме в результате ядерных реакций при его облучении. Наибольший практический интерес представляют реакции, возникающие в результате облучения тепловыми нейтронами, которые обладают большой проникающей способностью. При таком способе легирования распределение электрически активных примесей более равномерно. Но в процессе облучения в кристалле образуются радиационные дефекты, снижающие качество материала. Для создания p-n-переходов может использоваться диффузионный метод введения легирующей примеси. В этом случае примесь в объем вводят либо из газовой фазы, либо из специально нанесенного покрытия, которым может служить, например, в случае кремния, оксидная пленка. Для получения тонких легированных слоев широко используется метод ионной имплантации (см. ИОННАЯ ИМПЛАНТАЦИЯ), позволяющей вводить практически любую примесь и управлять ее концентрацией и профилем ее распределения.

dic.academic.ru

Процесс легирования - Литейное производство

Процесс легирования

Категория:

Литейное производство

Процесс легирования

Легирование — это введение в расплавленные или твердые металлы легирующих материалов для получения сплава заданного химического состава с целью придания ему определенных требуемых свойств.

Общим (объемным) легированием называют введение легирующих материалов в жидкий металл и равномерное распределение их в объеме. Поверхностным легированием называют введение легирующих материалов в поверхностные слои затвердевшей или затвердевающей отливки. Легирующими материалами могут служить технически чистые элементы, преимущественно металлы, их сплавы или химические соединения. Основными легирующими элементами в стали и чугуне являются Cr, Ni, Mn, Si, Mo, W, Ti, Al, Nb, Co, Си, В и др., в алюминиевых сплавах — Si, Си, Mg, Ni, Cr, Со, Zn, в медных — Zn, Sn, Pb, Al, Mn, Fe, Ni, Be, в магниевых — Al, Zn и в свинцовых сплавах — Sn, Zn, Sb.

С развитием различных вариантов легирования появилась разновидность процесса, известная под названием микролегирования. При микролегировании остаточное содержание легирующих элементов не превышает 0,1%.

Легированные сплавы можно получить при использовании шихтовых материалов первичной плавки, содержащих легирующие элементы. Такие материалы называют природнолегированными. Например, природнолегированными являются чугуны, в которые легирующие элементы вносятся из руды при восстановлении железа в доменной печи. Эти элементы могут сохраняться при последующем переделе чугуна в сталь или при переплавке чугуна в других плавильных агрегатах. И в этом случае стали и чугуны называют природнолегированными. Промышленные методы легирования приведены на схеме 1.

Схема 1. Методы легирования

Несмотря на разнообразие сплавов и методов легирования, известны только два принципиально различных случая влияния легирующих элементов на свойства сплавов: первый, когда легирующие элементы остаются в твердом растворе и второй, когда они помимо раствора, образуют включения, имеющие поверхность раздела.

Влияние легирующих элементов на структуру и свойства сплава зависит от соответствия кристаллических решеток легирующего элемента и металла, являющегося основой сплава.

Если атомный объем легирующего элемента, тип и параметры его кристаллической решетки подобны этим же характеристикам

новного элемента сплава, то возможен первый случай, т.е. образование твердых растворов с большой концентрацией легирующего элемента. Многие литейные сплавы (например сталь, чугун, бронзы, латуни, силумины и др.) представляют собой различные твердые растворы легирующего элемента в основном элементе (железе, меди, алюминии).

Легирующие элементы могут образовывать с основой сплава или другими присутствующими в нем элементами особые химические соединения (карбидные, оксидные, нитридные, карбонитридные и т. д.), обладающие многими ценными качествами: большой твердостью, высокой прочностью и пластичностью, хорошей химической стойкостью, магнитными (антимагнитными) свойствами, жаропрочностью и т. п. Равномерно и в достаточной степени распределенные в твердом растворе (или в качестве самостоятельной фазы) эти соединения придают сплавам необходимый для соответствующих условий эксплуатации комплекс свойств.

Если основной элемент сплава, например железо, подвержен в твердом состоянии полиморфным превращениям (а, у, б), то легирующие элементы определяют изменение свойств, получаемых в результате термической обработки соответствующих сплавов.

Легирующие элементы могут расширять или уменьшать те или иные области, представляемые диаграммами состояния. Например, никель и марганец расширяют область твердого раствора в сплавах железо-углерод и после быстрого охлаждения от высокой температуры никелевая или марганцевая сталь при соответствующем содержании указанных элементов обладает вязкой немагнитной аустенитной структурой с высокой температурой рекристаллизации.

Другие легирующие элементы, например хром, кремний, вольфрам, молибден и ванадий, сужают области у-твердого раствора и способствуют получению ферритной структуры с высокими магнитными свойствами и коррозионной стойкостью.

Условия растворения легирующих элементов определяются общими законами растворов и диффузионными, устанавливающими условия проникновения легирующих элементов в затвердевающую или затвердевшую поверхность отливки.

Характерной особенностью элементов, используемых для микролегирования, является их высокая химическая активность, т.е. способность непосредственно в расплаве взаимодействовать с кислородом, азотом, водородом, серой и некоторыми другими нежелательными примесями и таким образом нейтрализовать их вредное влияние.

Читать далее:

Процесс модифицирования

Статьи по теме:

pereosnastka.ru

описание, список и особенности применения

Развитие отождествляется с совершенствованием. Улучшение промышленных и бытовых возможностей осуществляется с помощью использования материалов с прогрессивными характеристиками. Это, в частности, легированные металлы. Их разнообразие определяется возможностями коррекции количественного и качественного состава легирующих элементов.

Природно-легированная сталь

Первое выплавленное железо, которое по своим свойствам отличалось от сородичей, было природно-легированным. В выплавляемом доисторическом метеоритном железе содержалось повышенное количество никеля. Его находили в древнеегипетских захоронениях 4-5 тысячелетий до н. э., из такого же сооружен памятник архитектуры Кутаб Минар в Дели (V век). Японские булатные мечи изготавливались из железа, насыщенного молибденом, а дамасская сталь содержала вольфрам, характерный для современной быстрорежущей. Это были металлы, руда для которых добывалась из определенных мест.

Сплавы современного производства могут содержать природные компоненты металлического и неметаллического происхождения, которые отражаются на их характеристиках и свойствах.

Исторический путь

Фундамент для развития легирования был заложен обоснованием тигельного способа плавления стали в Европе в XVIII веке. В более примитивном варианте тигли использовались еще в древние времена, в том числе для выплавки булатной и дамасской стали. В начале 18 века эта технология получила совершенствование в промышленных масштабах и позволяла корректировать состав и качество исходного материала.

  • Одновременное открытие все новых и новых химических элементов, подталкивало исследователей на экспериментальные опыты выплавки.
  • Установлено негативное влияние меди на качество стали.
  • Открыта латунь, содержащая 6 % железа.

Проводились опыты с точки зрения качественного и количественного влияния на стальной сплав вольфрама, марганца, титана, молибдена, кобальта, хрома, платины, никеля, алюминия и прочих.

Первое промышленное производство стали, легированной марганцем, налажено в начале XIX века. Оно же получило развитие с 1856 года в рамках бессемеровского процесса выплавки.

Особенности легирования

Современные возможности позволяют выплавлять легированные металлы любого состава. Основные принципы рассматриваемой технологии:

  1. Компоненты считаются легирующими только в том случае, если они вводятся целенаправленно и содержание каждого превышает 1 %.
  2. Сера, водород, фосфор считаются примесями. В качестве неметаллических включений используются бор, азот, кремний, редко – фосфор.
  3. Объемное легирование – это введение компонентов в расплавленную субстанцию в рамках металлургического производства. Поверхностное представляет собой способ диффузионного насыщения поверхностного слоя необходимыми химическими элементами под действием высоких температур.
  4. В ходе процесса добавки изменяют кристаллическую структуру «дочернего» материала. Они могут создавать растворы проникновения или исключения, а также размещаться на границах металлической и неметаллической структур, создавая механическую смесь зерен. Большую роль тут играет степень растворимости элементов друг в друге.

Легирующие компоненты

Согласно общей классификации, все металлы делятся на черные и цветные. К черным относятся железо, хром и марганец. Цветные делятся на легкие (алюминий, магний, калий), тяжелые (никель, цинк, медь), благородные (платина, серебро, золото), тугоплавкие (вольфрам, молибден, ванадий, титан), легкие, редкоземельные и радиоактивные. К легирующим металлам относится значительное разнообразие легких, тяжелых, благородных и тугоплавких цветных, а также все черные.

В зависимости от соотношения этих элементов и основной массеы сплава последние делятся на низколегированные (3 %), среднелегированные (3-10 %) и высоколегированные (более 10 %).

Легированные стали

Технологически процесс не вызывает сложностей. Ассортимент очень широк. Основные цели для сталей следующие:

  • Повышение прочности.
  • Улучшение результатов термической обработки.
  • Увеличение коррозионной стойкости, жаростойкости, жаропрочности, теплостойкости, устойчивости к агрессивным условиям работы, срока службы.

Основные составляющие – черные легирующие и тугоплавкие металлы, к которым относятся Cr, Mn, W, V, Ti, Mo, а также цветные Al, Ni, Cu.

Хром и никель – главные компоненты, определяющие нержавеющую сталь (Х18Н9Т), а также жаропрочную, условия работы которой характеризуются высокими температурами и ударными нагрузками (15Х5). В количестве до 1,5% используются для подшипников и деталей трения (15ХФ, ШХ15СГ)

Марганец – основополагающая составляющая износостойких сталей (110Г13Л). В небольших количествах способствует раскислению, снижению концентрации фосфора и серы.

Силиций и ванадий – элементы, которые в определенном количестве повышают упругость и используются для изготовления пружин и рессор (55С2, 50ХФА).

Алюминий применим для железа с большим электрическим сопротивлением (Х13Ю4).

Значительное содержание вольфрама характерно для быстрорежущих устойчивых инструментальных сталей (Р9, Р18К5Ф2). Легированное сверло по металлу из такого материала намного более производительное и стойкое к срабатыванию, чем тот же инструмент из углеродистой стали.

Легированные стали вошли в повседневное использование. Одновременно известны так называемые сплавы с удивительными свойствами, полученные также методами легирования. Так «деревянная сталь» содержит 1 % хрома и 35 % никеля, что определяет ее высокую теплопроводность, характерную для дерева. Алмазная же включает 1,5 % углерода, 0,5 % хрома и 5 % вольфрама, что характеризует ее как особо твердую, сродни алмазу.

Легирование чугуна

Чугуны отличаются от сталей значительным содержанием углерода (от 2,14 до 6,67 %), высокой твердостью и коррозионной стойкостью, однако незначительной прочностью. С целью расширения диапазона показательных свойств и сфер применения, его легируют хромом, марганцем, алюминием, силицием, никелем, медью, вольфрамом, ванадием.

В связи с особыми характеристиками данного железоуглеродистого материала, его легирование – более сложный процесс, чем для стали. Каждый из компонентов влияет на преобразование форм карбона в нем. Так марганец способствует формированию «правильного» графита, что повышает прочность. Введение других же имеет следствием переход углерода в свободное состояние, отбеливание чугуна и снижение его механических свойств.

Технология усложняется невысокой температурой плавления (в среднем, до 1000 ˚С), тогда как для большинства легирующих элементов она значительно превышает этот уровень.

Наиболее эффективно для чугунов комплексное легирование. Одновременно, следует учитывать повышение вероятности ликвации таких отливок, риска трещинообразования, дефектов литья. Осуществлять технологический процесс более рационально в электромагнитных и индукционных печах. Обязательным последовательным этапом является качественная термообработка.

Хромистые чугуны характеризуются высокой износостойкостью, прочностью, жаростойкостью, устойчивостью к старению и коррозии (ЧХ3, ЧХ16). Применяются в химическом машиностроении и в производстве металлургического оборудования.

Чугуны, легированные кремнием, отличаются высокой коррозионной стойкостью и устойчивостью к влиянию агрессивных химических соединений, хотя и удовлетворительными механическими свойствами (ЧС13, ЧС17). Формируют детали химической аппаратуры, трубопроводов и насосов.

Примером высокопродуктивного комплексного легирования являются жаропрочные чугуны. Они содержат в своем составе черные и легирующие металлы, такие как хром, марганец, никель. Для них характерна высокая стойкость к коррозии, износостойкость и устойчивость к высоким нагрузкам в условиях высокотемпературных воздействий – детали турбин, насосов, двигателей, аппаратуры химической промышленности (ЧН15Д3Ш, ЧН19Х3Ш).

Важным компонентом является медь, которая задействована в комплексе с другими металлами, при этом повышает литейные характеристики сплава.

Легированная медь

Используется в чистом виде и в составе медных сплавов, которые имеют широкое разнообразие в зависимости от соотношения основных и легирующих элементов: латуни, бронзы, мельхиоры, нельзийберы и другие.

Чистая латунь – сплав с цинком – не легируется. Если в ее состав входят легирующие цветные металлы в определенном количестве – она считается многокомпонентной. Бронзы – это сплавы с другими металлическими составляющими, могут быть оловянными и не содержащими олова, легируются во всех случаях. Улучшение их качества осуществляется с помощью Mn, Fe, Zn, Ni, Sn, Pb, Be, Al, P, Si.

Содержание кремния в медных соединениях повышает их коррозионную стойкость, прочность и упругость; олово и свинец – определяют антифрикционные качества и позитивные характеристики относительно обрабатываемости резанием; никель и марганец – составляющие, так называемых, деформируемых сплавов, которые также положительно влияют на устойчивость к коррозии; железо улучшает механические свойства, а цинк – технологические.

Применяются в электротехнике, как основное сырье для изготовления разнообразных проводов, материал для изготовления ответственных деталей для химического оборудования, в машиностроении и приборостроении, в трубопроводах и теплообменниках.

Легирование алюминия

Используется в виде деформируемых или литейных сплавов. Легированные металлы его основе представляют собой соединения с медью, марганцем или магнием (дуралюмины и другие), последние – соединения с силицием, так называемые силумины, при этом все их возможные варианты легируются с помощью Cr, Mg, Zn, Co, Cu, Si.

Медь повышает его пластичность; кремний – текучесть и качественные литейные свойства; хром, марганец, магний – улучшают прочность, технологические свойства обрабатываемости давлением и коррозионную стойкость. Также в качестве легирующих компонентов, способствующих устойчивости к старению и к агрессивным условиям работы, могут приниматься B, Pb, Zr, Ti, Bi.

Железо – нежелательный компонент, однако в небольших количествах применяется для производства алюминиевой фольги. Силумины используются для литья ответственных деталей и корпусов в машиностроении. Дуралюмины и штамповочные сплавы на основе алюминия – важное сырье для изготовления корпусных элементов, в том числе силовых конструкций, в авиастроении, судостроении и машиностроении.

Легированные металлы задействованы во всех сферах промышленности как те, которые имеют повышенные механические и технологические характеристики, в сравнении с исходным материалом. Ассортимент легирующих элементов и возможности современных технологий позволяют производить разнообразные модификации, расширяющие возможности в науке и технике.

fb.ru

ЛЕГИРОВАНИЕ - это... Что такое ЛЕГИРОВАНИЕ?

  • ЛЕГИРОВАНИЕ — (нем. legieren сплавлять от лат. ligo связываю, соединяю), 1) Введение в состав металлических сплавов т. н. легирующих элементов (напр., в сталь Cr, Ni, Mo, W, V, Nb, Ti и др.) для придания сплавам определенных физических, химических или… …   Большой Энциклопедический словарь

  • ЛЕГИРОВАНИЕ — (нем. Legirung, от лат. ligare связывать). Сплавливание благородного металла с каким либо другим. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ЛЕГИРОВАНИЕ нем. Legirung, от лат. ligare, связывать. Сплавление… …   Словарь иностранных слов русского языка

  • ЛЕГИРОВАНИЕ — (немецкое legieren сплавлять, от латинского ligo связываю, соединяю), введение в металлический расплав или шихту элементов (например, в сталь хрома, никеля, молибдена, вольфрама, ванадия, ниобия, титана), повышающих механические, физические и… …   Современная энциклопедия

  • легирование — ЛЕГИРОВАТЬ, рую, руешь; анный; сов. и несов., что (спец.). Добавить ( влять) в состав металла другие металлы, сплавы для придания определённых свойств. Легирующие элементы. Легированная сталь. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова.… …   Толковый словарь Ожегова

  • легирование — сущ., кол во синонимов: 1 • микролегирование (1) Словарь синонимов ASIS. В.Н. Тришин. 2013 …   Словарь синонимов

  • легирование — Целенаправл. изменение состава металлич. сплавов введением легир. эл тов для изменения структуры и физ. хим. и механич. св в. Л. применялось еще в глубокой древности. В России первые промышл. опыты были проведены П. П. Аносовым, к рый разработал… …   Справочник технического переводчика

  • Легирование — – введение в состав металлических (в том числе стальных) сплавов т. н. легирующих элементов (хром, никель, молибден и др.) для придании сплавам определенных физико химических или механических свойств. [Терминологический словарь по бетону и… …   Энциклопедия терминов, определений и пояснений строительных материалов

  • Легирование — (немецкое legieren сплавлять, от латинского ligo связываю, соединяю), введение в металлический расплав или шихту элементов (например, в сталь хрома, никеля, молибдена, вольфрама, ванадия, ниобия, титана), повышающих механические, физические и… …   Иллюстрированный энциклопедический словарь

  • ЛЕГИРОВАНИЕ — процесс контролируемого введения примесей (легирующих элементов) в металлы, сплавы и полупроводники с целью получения необходимых физ., хим., а также механических свойств материала или его слоя при бомбардировке поверхности ионами в случае… …   Большая политехническая энциклопедия

  • Легирование — Не следует путать с с лигированием в медицине и биохимии. Легирование (нем. legieren  «сплавлять», от лат. ligare  «связывать»)  добавление в состав материалов примесей для изменения (улучшения) физических и химических… …   Википедия

  • легирование — см. Легировать. * * * легирование (нем. legieren  сплавлять, от лат. ligo  связываю, соединяю), 1) введение в состав металлических сплавов так называемых легирующих элементов (например, в сталь  Cr, Ni, Мо, W, V, Nb, Ti и др.) для придания… …   Энциклопедический словарь

  • dic.academic.ru

    легирующий элемент - это... Что такое легирующий элемент?

     легирующий элемент alloying element

    Большой англо-русский и русско-английский словарь. 2001.

    • легирующий металл
    • легислатура

    Смотреть что такое "легирующий элемент" в других словарях:

    • легирующий элемент — Элемент, добавляемый и остающийся в металле, который изменяет его структуру и химический состав. [http://www.manual steel.ru/eng a.html] Тематики металлургия в целом EN alloy element …   Справочник технического переводчика

    • Легирующий элемент — Alloy element Легирующий элемент. Элемент, добавляемый и остающийся в металле, который изменяет его структуру и химический состав. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт… …   Словарь металлургических терминов

    • легирующий элемент — legiravimo elementas statusas T sritis fizika atitikmenys: angl. alloying element vok. Legierungselement, n rus. легирующий элемент, m pranc. élément de dopage, m …   Fizikos terminų žodynas

    • ЛЕГИРУЮЩИЙ ЭЛЕМЕНТ — элемент или группа элементов, специально вводимых в металл или сплав для придания им определенных физико химических или механических свойств. смотри Легирование …   Металлургический словарь

    • элемент замещения — Легирующий элемент с атомным размером и другими характеристиками атома решетки, подобными замещаемому, который может формировать значительную область твердого раствора в фазовой диаграмме. [http://sl3d.ru/o slovare.html] Тематики машиностроение в …   Справочник технического переводчика

    • Элемент замещения — Substitutional element Элемент замещения. Легирующий элемент с атомным размером и другими характеристиками атома решетки, подобными замещаемому, который может формировать значительную область твердого раствора в фазовой диаграмме. (Источник:… …   Словарь металлургических терминов

    • ЛЕГИРОВАНИЕ — (от лат. ligo связываю, соединяю), введение добавок в металлы, сплавы и полупроводники для придания им определенных физ., хим. или мех. св в. Материалы, подвергнутые Л., наз. легированными. К ним относятся легированные стали и чугуны,… …   Химическая энциклопедия

    • Сталь — (Steel) Определение стали, производство и обработка стали, свойства сталей Информация об определении стали, производство и обработка стали, классификация и свойства сталей Содержание Содержание Классификация Характеристики стали Разновидности… …   Энциклопедия инвестора

    • ЖЕЛЕЗА СПЛАВЫ — металлич. системы, одним из компонентов к рых (как правило, преобладающим) служит железо. Различают сплавы железа с углеродом (нелегир. и легир. чугуны и стали), сплавы с особыми физ. хим. св вами и ферросплавы. Система железо углерод. Наиб.… …   Химическая энциклопедия

    • Жаростойкая сталь — Фазы железоуглеродистых сплавов Феррит (твердый раствор внедрения C в α железе с объемно центрированной кубической решеткой) Аустенит (твердый раствор внедрения C в γ железе с гранецентрированной кубической решеткой) Цементит (карбид железа; Fe3C …   Википедия

    • Конструкционная сталь — Эта статья или раздел описывает ситуацию применительно лишь к одному региону (СССР/Россия). Вы можете помочь Википедии, добавив информацию для других стран и регионов …   Википедия

    dic.academic.ru

    легирующий элемент - это... Что такое легирующий элемент?

     легирующий элемент

    Англо-русский словарь технических терминов. 2005.

    • легирующий компонент
    • легкая авария

    Смотреть что такое "легирующий элемент" в других словарях:

    • легирующий элемент — Элемент, добавляемый и остающийся в металле, который изменяет его структуру и химический состав. [http://www.manual steel.ru/eng a.html] Тематики металлургия в целом EN alloy element …   Справочник технического переводчика

    • Легирующий элемент — Alloy element Легирующий элемент. Элемент, добавляемый и остающийся в металле, который изменяет его структуру и химический состав. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт… …   Словарь металлургических терминов

    • легирующий элемент — legiravimo elementas statusas T sritis fizika atitikmenys: angl. alloying element vok. Legierungselement, n rus. легирующий элемент, m pranc. élément de dopage, m …   Fizikos terminų žodynas

    • ЛЕГИРУЮЩИЙ ЭЛЕМЕНТ — элемент или группа элементов, специально вводимых в металл или сплав для придания им определенных физико химических или механических свойств. смотри Легирование …   Металлургический словарь

    • элемент замещения — Легирующий элемент с атомным размером и другими характеристиками атома решетки, подобными замещаемому, который может формировать значительную область твердого раствора в фазовой диаграмме. [http://sl3d.ru/o slovare.html] Тематики машиностроение в …   Справочник технического переводчика

    • Элемент замещения — Substitutional element Элемент замещения. Легирующий элемент с атомным размером и другими характеристиками атома решетки, подобными замещаемому, который может формировать значительную область твердого раствора в фазовой диаграмме. (Источник:… …   Словарь металлургических терминов

    • ЛЕГИРОВАНИЕ — (от лат. ligo связываю, соединяю), введение добавок в металлы, сплавы и полупроводники для придания им определенных физ., хим. или мех. св в. Материалы, подвергнутые Л., наз. легированными. К ним относятся легированные стали и чугуны,… …   Химическая энциклопедия

    • Сталь — (Steel) Определение стали, производство и обработка стали, свойства сталей Информация об определении стали, производство и обработка стали, классификация и свойства сталей Содержание Содержание Классификация Характеристики стали Разновидности… …   Энциклопедия инвестора

    • ЖЕЛЕЗА СПЛАВЫ — металлич. системы, одним из компонентов к рых (как правило, преобладающим) служит железо. Различают сплавы железа с углеродом (нелегир. и легир. чугуны и стали), сплавы с особыми физ. хим. св вами и ферросплавы. Система железо углерод. Наиб.… …   Химическая энциклопедия

    • Жаростойкая сталь — Фазы железоуглеродистых сплавов Феррит (твердый раствор внедрения C в α железе с объемно центрированной кубической решеткой) Аустенит (твердый раствор внедрения C в γ железе с гранецентрированной кубической решеткой) Цементит (карбид железа; Fe3C …   Википедия

    • Конструкционная сталь — Эта статья или раздел описывает ситуацию применительно лишь к одному региону (СССР/Россия). Вы можете помочь Википедии, добавив информацию для других стран и регионов …   Википедия

    dic.academic.ru

    легирующий элемент - это... Что такое легирующий элемент?

     легирующий элемент

     

    легирующий элементЭлемент, добавляемый и остающийся в металле, который изменяет его структуру и химический состав.[http://www.manual-steel.ru/eng-a.html]

    Тематики

    • металлургия в целом

    Справочник технического переводчика. – Интент. 2009-2013.

    • легирующий металл
    • легитимность (документа)

    Смотреть что такое "легирующий элемент" в других словарях:

    • Легирующий элемент — Alloy element Легирующий элемент. Элемент, добавляемый и остающийся в металле, который изменяет его структуру и химический состав. (Источник: «Металлы и сплавы. Справочник.» Под редакцией Ю.П. Солнцева; НПО Профессионал , НПО Мир и семья ; Санкт… …   Словарь металлургических терминов

    • легирующий элемент — legiravimo elementas statusas T sritis fizika atitikmenys: angl. alloying element vok. Legierungselement, n rus. легирующий элемент, m pranc. élément de dopage, m …   Fizikos terminų žodynas

    • ЛЕГИРУЮЩИЙ ЭЛЕМЕНТ — элемент или группа элементов, специально вводимых в металл или сплав для придания им определенных физико химических или механических свойств. смотри Легирование …   Металлургический словарь

    • элемент замещения — Легирующий элемент с атомным размером и другими характеристиками атома решетки, подобными замещаемому, который может формировать значительную область твердого раствора в фазовой диаграмме. [http://sl3d.ru/o slovare.html] Тематики машиностроение в …   Справочник технического переводчика

    • Элемент замещения — Substitutional element Элемент замещения. Легирующий элемент с атомным размером и другими характеристиками атома решетки, подобными замещаемому, который может формировать значительную область твердого раствора в фазовой диаграмме. (Источник:… …   Словарь металлургических терминов

    • ЛЕГИРОВАНИЕ — (от лат. ligo связываю, соединяю), введение добавок в металлы, сплавы и полупроводники для придания им определенных физ., хим. или мех. св в. Материалы, подвергнутые Л., наз. легированными. К ним относятся легированные стали и чугуны,… …   Химическая энциклопедия

    • Сталь — (Steel) Определение стали, производство и обработка стали, свойства сталей Информация об определении стали, производство и обработка стали, классификация и свойства сталей Содержание Содержание Классификация Характеристики стали Разновидности… …   Энциклопедия инвестора

    • ЖЕЛЕЗА СПЛАВЫ — металлич. системы, одним из компонентов к рых (как правило, преобладающим) служит железо. Различают сплавы железа с углеродом (нелегир. и легир. чугуны и стали), сплавы с особыми физ. хим. св вами и ферросплавы. Система железо углерод. Наиб.… …   Химическая энциклопедия

    • Жаростойкая сталь — Фазы железоуглеродистых сплавов Феррит (твердый раствор внедрения C в α железе с объемно центрированной кубической решеткой) Аустенит (твердый раствор внедрения C в γ железе с гранецентрированной кубической решеткой) Цементит (карбид железа; Fe3C …   Википедия

    • Конструкционная сталь — Эта статья или раздел описывает ситуацию применительно лишь к одному региону (СССР/Россия). Вы можете помочь Википедии, добавив информацию для других стран и регионов …   Википедия

    technical_translator_dictionary.academic.ru