Содержание
нахождение в природе, физические и химические свойства. Медь и её сульфид, гидроксид и оксид
Этот химический элемент известен человеку давно и сегодня используется буквально повсеместно. Электрические провода, посуда, монеты, строительные материалы – в наши дни медь и сплавы на её основе применяются в самых разных отраслях промышленности. Начало применения Cu относят к «Бронзовому веку» (3 тыс. лет до н.э.). Уже тогда люди умели добывать этот розово-золотистый металл и даже получать медно-оловяные сплавы. Вместе с тем, нахождение в природе меди совсем невелико: если изучить состав земной коры нашей планеты, то элемента Cu в неё окажется всего около 0,01% (23 место).
Медь: нахождение в природе
В природе медь встречается как в чистом виде (самородки могут достигать общего веса в несколько сотен тонн), так и в составе различных соединений. Обычно приходится иметь дело с сульфидами, сформировавшимися в осадочных горных породах, либо с субстратами. Получить медь из этих соединений легко благодаря низкой температуре плавления, чем и пользовались наши предки при изготовлении самых разных медных изделий.
Что касается названия элемента – Cuprum, то историки соотносят его с наименованием некогда древнегреческого острова Кипр (Cyprus), когда-то являвшегося наиболее крупным в Европе центром выработки материала. Вполне возможно впервые выплавлять медь научились именно на Кипре.
Физические свойства меди
Прежде всего, медь очень пластична, а потому крайне удобна в использовании, в частности, в плавке. Отличает этот металл и такая характеристика, как ярко выраженная окраска, которая делает материал декоративным (+ отжиг меди). Если для большинства известных металлов характерен серебристо-серый цвет, то Cu, наравне с золотом и осмием входит в число трёх с уникальной цветовой окраской.
Еще одно достоинство меди – высокая электропроводность, которая предопределяет использование данного металла в составе самой разной электропроводниковой продукции. Здесь же стоит сказать и о таком свойстве Cu, как отсутствие искры при ударе. Эта уникальная особенность меди делает её отличным материалом для изготовления деталей, работающих в условиях повышенной пожароопасности.
Химические свойства соединений меди
Особого внимания заслуживает взаимодействие Cu с кислотами. Так, этот элемент никак не реагирует на воду, растворы щелочей, соляную или разбавленную серную кислоты. При этом сильные окислители, такие как концентрированная серная или азотная кислота, очень быстро медь растворяют. Cu также называют коррозийностойким металлом, однако влажная атмосфера и углекислые газы, взаимодействуя с медью, способствуют образованию на её поверхности зеленоватого налета (карбонат меди).
Сегодня широкое применение находят оксид (СuО), гидроксид (Си(ОН)2) и сульфид меди (CuS). Уникальное свойство сульфида меди – высокая электропроводность, позволяющая получать сверхпроводники. Химические свойства гидроксида меди позволяют легко получать оксиды (путем разложения гидроксида меди 2 при нагревании).
Химические свойства элементов:медь, нахождение меди в природе, получение меди, свойства меди
Ключевые слова: медь, нахождение меди в природе, получение меди, физические свойства меди, сплавы. меди, химические свойства меди.
Медь (Cuprum), Си — химический элемент побочной подгруппы первой группы периодической системы элементов Д.И. Менделеева. Латинское название происходит от острова Кипр, где древние греки добывали медную руду. Порядковый номер 29, атомная масса меди 63,54. Природная медь состоит из смеси 2-х стабильных изотопов 63Cu (69,1%) и 65Cu (30,9%). Путем бомбардировки никеля протонами или ядрами дейтерия искусственно получают радиоактивные изотопы меди 6lCu и 64Си с периодами полураспада 3,3 и 12,8 часов соответственно. Эти изотопы обладают высокой удельной активностью и используются в качестве меченых атомов. В химическом отношении медь занимает промежуточное положение между элементами главной подгруппы VIII группы и щелочными элементами I группы периодической системы.
НАХОЖДЕНИЕ МЕДИ В ПРИРОДЕ
Содержание меди в земной коре составляет около 0,01%. Она встречается в свободном состоянии в виде самородков, достигающих значительных размеров (до нескольких тонн). Однако руды самородной меди сравнительно мало распространены, и в настоящее время из них добывается не более 5% меди от общей ее мировой добычи. Медь является халькофильным элементом. До 80% ее присутствует в земной коре в виде соединений с серой. Около 15% меди находится в виде карбонатов, силикатов, оксидов, являющихся продуктами выветривания первичных сульфидных медных руд.Медь образует до 240 минералов, однако лишь около 40 имеют промышленное значение .Различают сульфидные и окисленные руды меди. Промышленное значение имеют сульфидные руды, из которых наиболее широко используется медный колчедан (халькопирит) CuFeS2. В природе он встречается главным образом в смеси с железным колчеданом FeS2 и пустой породой, состоящей из оксидов кремния, алюминия, кальция . Часто сульфидные руды содержат примеси благородных металлов (золота, серебра), цветных и редких металлов ( цинка, свинца, никеля, кобальта, молибдена ) и рассеянных элементов (германий).Содержание меди в руде обычно составляет 1—5%, но благодаря технологии флотации, ее можно обогащать, получая концентрат, содержащий 20% меди и более . Наиболее крупные запасы медных руд в России сосредоточены главным образом на Урале, в Казахстане и Средней Азии, за рубежом — в Африке (Катанта, Замбия), Америке (Чили, США, Канада).
ПОЛУЧЕНИЕ МЕДИ
Руды и получаемые из них путем механического обогащения концентраты перерабатывают на медь пирометаллургическим и гидрометаллургическим методами . Первый из них применяется преимущественно для переработки сернистых руд. Вторым методом, получившим небольшое распространение, перерабатывают окисленные и смешанные бедные руды, содержащие около 1% меди.Пирометаллургический метод заключается в обжиге концентратов, плавке полученного огарка на штейн (сплав сульфидов меди и железа), продувке штейна в конвертере с получением черновой меди (содержащей около 5% примесей), рафинировании последних огневым процессом или электролизом для получения чистой меди. Гидрометаллургический метод получения меди заключается в извлечении ее из руд различными растворителями с последующим выделением металла из растворов электролизом или посредством вытеснения его железом в виде цементной меди. Иногда медь выделяют в виде оксида.
ФИЗИЧЕСКИЕ СВОЙСТВА МЕДИ
Техническая медь — металл красного, в изломе розового цвета, при просвечивании в тонких слоях — зеленовато-голубой. Имеет гранецентрированную кубическую решетку, плотность 8,96 кг/м3 (20°С). Медь — вязкий, мягкий и ковкий металл, уступающий только серебру высокими теплопроводностью и электропроводностью. Эти качества, а также пластичность и сопротивление коррозии обусловили широкое применение меди в промышленности.
СПЛАВЫ МЕДИ
Небольшие примеси висмута (0,001%*) и свинца (0,01%) делают медь ломкой, а примесь серы вызывает хрупкость на холоду .С металлами медь образует различные сплавы. В двухкомпонентных медных сплавах с Zn, Sn, Al, Ni, Fe, Mn, Si, Be, Cr, Pb, P и др. легирующий элемент входит в твердый раствор замещения на основе Си, а также может образовывать электронные соединения, характеризующиеся определенной электронной концентрацией. В многокомпонентных сплавах часто присутствуют сложные металлические соединения точно неустановленного состава. Легирующие элементы вводят в медь для повышения прочности и твердости, улучшения антифрикционных свойств и стойкости против коррозии и для получения сплавов с заданными физическими свойствами. Медные сплавы делят на латуни, бронзы и медно-никелевые сплавы .
Латунями называют сплавы меди и цинка. Медь может растворять цинк в любом количестве. При добавлении к меди до 45—47% Zn увеличивается предел прочности сплава при растяжении; дальнейшее увеличение содержания цинка вызывает снижение предела прочности. Вязкость (пластичность) сплава возрастает при добавлении к меди до 30—32% Zn, а затем уменьшается, достигая очень малой величины при содержании 47—50% Zn.
Ковкая латунь (мунц-металл) содержит 60% Си и 40% Zn, томпак — 90—80% Си и 10—20% Zn. Состав специальных латуней: алюминиевая (66—68% Си, ~3% А1, ~30% Zn), марганцовисто-свинцовая (57—60% Си, 1,5—2,5% РЬ; 1,5—2,5% Мп, -38% Zn).
Бронзами называют сплавы меди с оловом. В присутствии олова улучшаются механические свойства меди, бронзы обладают хорошими литейными свойствами. Обычно содержание олова не превышает 10%. Алюминиевая бронза содержит 82—90% Си, 4—10% Al, 1—6% Fe + Si; кремнеоловянная бронза — 99,94% Си, по 0,03% Sn и Si.
Сплавы меди с никелем. Никель сильно повышает твердость меди. Сплав 50% Си и 50% Ni обладает наибольшей твердостью. Кроме высокой твердости, эти сплавы обладают пониженной электропроводностью, вследствие чего употребляются в электротехнике .
Хорошие механические свойства, высокая стойкость против коррозии во многих средах, ценные физические свойства в сочетании с простотой плавки, литья и обработки давлением обусловили широкое применение медных сплавов в многочисленных отраслях техники: в авиа-, авто-, судостроении, химической промышленности, станкостроении, электротехнике, приборостроении, в производстве паровой и водяной арматуры, посуды, художественных и других изделий.
ХИМИЧЕСКИЕ СВОЙСТВА МЕДИ
Медь — электроположительный металл. Медь вытесняется из своих солей более электроотрицательными элементами и не растворяется в кислотах, не являющихся окислителями. Медь растворяется в азотной кислоте с образованием (Си(NOз)2 и оксидов азота, в горячей конц. H2SO4 — с образованием CuSO4 и SO2. В нагретой разбавленной H2SO4 медь растворяется только при продувании через раствор воздуха .Химическая активность меди невелика, при температурах ниже 185°С с сухим воздухом и кислородом не реагирует. В присутствии влаги и СО2 на поверхности меди образуется зеленая пленка основного карбоната. При нагревании меди на воздухе идет поверхностное окисление; ниже 375°С образуется СиО, а в интервале 375—1100°С при неполном окислении меди — двухслойная окалина (СиО + СuО). Влажный хлор взаимодействует с медью уже при комнатной температуре, образуя хлорид меди(II), хорошо растворимый в воде. Медь реагирует и с другими галогенами. Особое сродство проявляет медь к сере: в парах серы она горит. С водородом, азотом, углеродом медь не реагирует даже при высоких температурах. Растворимость водорода в твердой меди незначительна и при 400°С составляет 0,06 г в 100 г меди. Присутствие водорода в меди резко ухудшает ее механические свойства (так называемая «водородная болезнь»). При пропускании аммиака над раскаленной медью образуется Cu2N. Уже при температуре каления медь подвергается воздействию оксидов азота: N2O и NO взаимодействуют с образованием СuО, a NO2 — с образованием СиО. Карбиды Cu2C2 и СuС2 могут быть получены действием ацетилена на аммиачные растворы солей меди. Оксид меди(I) Си2O красного цвета, незначительно растворяется в воде. При взаимодействии сильных щелочей с солями меди(I) выпадает желтый осадок, переходящий при нагревании в осадок красного цвета, по-видимому Сu2О. Гидроксид меди(I) обладает слабыми основными свойствами, он немного растворим в концентрированных растворах щелочей.
Сплавы меди
Реакции с медью(взаимодействие меди)
Оксиды меди
Сульфат меди
Хлорид меди
Нитрат меди
Гидроксид меди
Медь: факты о красноватом металле, который использовался людьми на протяжении 8000 лет
Медь — блестящий металл красновато-коричневого цвета.
(Изображение предоставлено: VvoeVale через Getty Images)
Блестящая, красноватая медь была первым металлом, которым манипулировали люди, и сегодня он остается важным металлом в промышленности.
Самый старый металлический предмет, найденный на Ближнем Востоке, состоит из меди; это было крошечное шило, датируемое 5100 г. до н.э. А американских пенни изначально были сделаны из чистой меди (хотя в наши дни это 9000 пенсов).7,5% цинк с тонкой медной пленкой).
Медь занимает третье место среди наиболее потребляемых промышленных металлов в мире после железа и алюминия , по данным Геологической службы США (USGS). Около трех четвертей этой меди идет на производство электрических проводов, телекоммуникационных кабелей и электроники.
Помимо золота, медь является единственным металлом в таблице Менделеева, цвет которого не серебристый или серый.
Химическое описание меди
Электронная конфигурация и элементарные свойства меди. (Изображение предоставлено: Грег Робсон/Creative Commons, Андрей Маринкас (открывается в новой вкладке) Shutterstock (открывается в новой вкладке))
- Атомный номер (количество протонов в ядре): 29
- Атомный символ (в периодической таблице элементов): Cu
- Атомный вес (средняя масса атомов ): 63,55
- Плотность: 8,92 грамма на кубический сантиметр
- Фаза при комнатной температуре: твердое тело
- Температура плавления: 1 984,32 градуса по Фаренгейту (1 084,62 градуса Цельсия)
- Температура кипения: 5 301 F (2 927 C)
- Количество изотопов (атомы одного и того же элемента с разным числом нейтронов): 35; 2 стабильный
- Наиболее распространенные изотопы: Cu-63 (69,15 % естественного содержания) и Cu-65 (30,85 % естественного содержания)
История меди
Большая часть меди находится в рудах и должна быть выплавлена или извлечена из руда для чистоты, прежде чем ее можно будет использовать. Но естественные химические реакции могут иногда высвобождать самородную медь, согласно сайту химической базы данных 9.0005 Chemicool (открывается в новой вкладке).
Люди изготавливали изделия из меди по крайней мере 8000 лет и научились плавить металл примерно к 4500 г. до н.э. Следующим технологическим скачком стало создание медных сплавов путем добавления в медь олова, что создавало более твердый металл, чем отдельные его части: бронзу. Технологическое развитие положило начало бронзовому веку, периоду, охватывающему приблизительно 3300–1200 лет до н. э. и отличающемуся использованием бронзовых инструментов и оружия, согласно 9.0005 Канал истории (открывается в новой вкладке).
Медные артефакты разбросаны по историческим записям. Крошечное шило или заостренный инструмент, датируемый 5100 г. до н.э. был похоронен с женщиной средних лет в древней деревне в Израиле. Шило представляет собой старейший металлический предмет , когда-либо найденный на Ближнем Востоке. Согласно статье 2014 года, опубликованной в PLOS ONE (откроется в новой вкладке). В древнем Египте люди использовали медные сплавы для изготовления украшений, в том числе колец на пальцах ног. Исследователи также обнаружили массивные медные рудники 10 века до н.э. в Израиле. Медь, возможно, даже была первым загрязнителем , который люди выпустили в окружающую среду около 7000 лет назад.
На протяжении всей истории многие инструменты делались из меди, например, это медное шило с посеребренной ручкой, которое, как полагают, относится к раннему бронзовому веку. Он был найден на археологических раскопках Ла-Альмолойя в Плиего, Мурсия на юго-востоке Испании. (Изображение предоставлено J.A. Soldevilla, любезно предоставлено Исследовательской группой Arqueoecologia Social Mediterrània, Автономный университет Барселоны; Antiquity Publications Ltd)
По данным Геологической службы США, около двух третей меди на Земле находится в изверженных (вулканических) породах, а около четверти — в осадочных породах. Этот металл пластичен и податлив, хорошо проводит тепло и электричество — вот почему медь широко используется в электронике и проводке.
Медь становится зеленой из-за реакции окисления; то есть он теряет электроны, когда подвергается воздействию воды и воздуха. Эта реакция окисления является причиной того, что покрытая медью Статуя Свободы имеет зеленый цвет, а не оранжево-красный. Согласно Ассоциация развития меди , выветрившийся слой оксида меди толщиной всего 0,005 дюйма (0,127 миллиметра) покрывает Lady Liberty, а покрытие весит около 80 тонн (73 метрических тонны). Переход от медного цвета к зеленому происходил постепенно и был завершен к 1920 году, через 34 года после того, как статуя была освящена и открыта, согласно Нью-Йоркского исторического общества .
Краткие факты о меди
Вот несколько интересных фактов о меди:
- Согласно Питеру ван дер Крогу t , голландскому историку, слово «медь» имеет несколько корней, многие из которых происходят от латинского слова cuprum , которое образовано от словосочетания . Cyprium aes , что означает «металл с Кипра», так как большая часть используемой в то время меди добывалась на Кипре.
- Если бы вся медная проводка в среднем автомобиле была проложена, она растянулась бы на 0,9 мили (1,5 км), согласно USGS .
- Электрическая проводимость (насколько легко ток может течь через металл) меди уступает только серебру, согласно Лаборатории Джефферсона .
- Копейки были из чистой меди только с 1783 по 1837 год. С 1837—1857 копейки изготавливались из бронзы (95% меди, остальные 5% составляли олово и цинк). В 1857 году количество меди в пенни упало до 88% (оставшиеся 12% составлял никель). В 1864 году рецепт вернулся к своему прежнему рецепту. В 1962, содержание пенни изменилось до 95% меди и 5% цинка. С 1982 года по сегодняшний день пенни состоят на 97,5% из цинка и на 2,5% из меди.
- Люди нуждаются в меди в своем рационе. Этот металл является важным микроэлементом, который имеет решающее значение для формирования красных кровяных телец, согласно Национальной медицинской библиотеки США . К счастью, медь можно найти в различных продуктах, в том числе в зерне, бобах, картофеле и листовой зелени.
- Слишком много меди (открывается в новой вкладке), однако, это плохо. Проглатывание большого количества металла может вызвать боль в животе, рвоту и желтуху (желтоватый оттенок кожи и белков глаз, что может указывать на то, что печень работает неправильно) в краткосрочной перспективе. Длительное воздействие может привести к таким симптомам, как анемия, судороги и диарея, которая часто бывает кровавой и может быть синего цвета.
- Иногда в водопроводе обнаруживается повышенное содержание меди из-за старых медных труб. Например, в августе 2018 года система государственных школ в Детройте (открывается в новой вкладке) отключила всю питьевую воду в государственных школах в качестве меры предосторожности из-за высокого уровня меди и железа, обнаруженного в воде, по данным Сиэтла. Раз (откроется в новой вкладке).
- Медь обладает антимикробными свойствами, а убивает бактерии, вирусы и дрожжи при контакте, согласно статье 2011 года в журнале Applied and Environmental Microbiology. В результате медь можно даже вплетать в ткани для изготовления антимикробной одежды, например 9.0005 носки против грибка стопы .
- Медь также входит в состав некоторых типов внутриматочных спиралей (ВМС), используемых для контроля над рождаемостью, согласно Mayo Clinic . Медная проводка вызывает воспалительную реакцию, токсичную как для сперматозоидов, так и для яйцеклеток, чтобы предотвратить беременность. При любой медицинской процедуре существует риск побочных эффектов. (Согласно статье 2017 года, опубликованной в Medical Science Monitor 9, токсичность меди, по-видимому, не является таковой.0006 (откроется в новой вкладке) ) .
Врач держит Т-образную внутриматочную спираль (ВМС), изготовленную из пластика и меди. Его помещают внутрь матки, чтобы предотвратить беременность. (Изображение предоставлено New Africa через Shutterstock)
Текущие исследования
Антимикробные свойства меди сделали ее популярным металлом в области медицины. Несколько больниц экспериментировали с покрытием поверхностей, к которым часто прикасаются, таких как поручни кроватей и кнопки вызова, медью или медными сплавами в попытке замедлить распространение внутрибольничных инфекций. Медь убивает микробы, препятствуя электрическому заряду клеточных мембран организмов, говорит Кассандра Сальгадо, профессор инфекционных заболеваний и больничный эпидемиолог Медицинского университета Южной Каролины.
В 2013 году группа исследователей под руководством Сальгадо протестировала поверхности в отделениях интенсивной терапии (ОИТ) в трех больницах, сравнив комнаты, модифицированные медными поверхностями, прикрепленными к шести обычным предметам, которые подвергаются большому количеству рук, с комнатами, не модифицированными медью. Ученые обнаружили, что в традиционных больничных палатах (без медных поверхностей) у 12,3% пациентов развились устойчивые к антибиотикам инфекции, такие как устойчивый к метициллину Staphylococcus aureus (MRSA) и устойчивый к ванкомицину 9. 0088 Энтерококк (ВРЭ). Для сравнения, в палатах, модифицированных медью, только 7,1% пациентов заразились одной из этих потенциально разрушительных инфекций.
«Мы знаем, что если вы поместите медь в палату пациента, вы уменьшите микробную нагрузку», — сказал Сальгадо Live Science. «Я думаю, что это было доказано снова и снова. Наше исследование было первым, кто продемонстрировал, что это может иметь клиническую пользу».
Исследователи ничего не изменили в условиях отделения интенсивной терапии, кроме меди; врачи и медсестры по-прежнему мыли руки, и уборка шла своим чередом. Исследователи опубликовали свои выводы в 2013 году в журнале 9.0005 Инфекционный контроль и госпитальная эпидемиология (открывается в новой вкладке). Сальгадо и ее команда также протестировали медные покрытия стетоскопов, согласно статье 2017 года, опубликованной в Американском журнале инфекционного контроля , где исследователи обнаружили, что на стетоскопах с медным покрытием было значительно меньше бактерий. Фактически, 66% стетоскопов были полностью свободны от бактерий. Дальнейшие исследования продолжаются для проверки идеи меднения в других медицинских отделениях, особенно в тех местах, где пациенты более мобильны, чем в отделении интенсивной терапии. По словам Салдаго, также необходимо провести анализ затрат и результатов, чтобы сопоставить расходы на установку меди и экономию, полученную за счет предотвращения дорогостоящих инфекций.
В 2020 году двойное слепое рандомизированное контролируемое исследование показало, что перевязка ран после кесарева сечения бинтами с высоким содержанием меди может снизить риск инфекции в брюшной полости на 80% по сравнению с традиционными перевязками. Результаты были опубликованы в Европейском журнале акушерства, гинекологии и репродуктивной биологии (открывается в новой вкладке).
Зачищенные медные силовые кабели. (Изображение предоставлено Хосе А. Бернатом Басете через Getty Images)
Медь также играет огромную роль в электронике, и из-за ее изобилия и низкой цены исследователи работают над интеграцией металла во все большее число передовых устройств.
Фактически, медь может помочь в производстве футуристической электронной бумаги, носимых биосенсоров и другой «мягкой» электроники, сказал Венлонг Ченг, профессор химического машиностроения в Университете Монаш в Австралии. Ченг и его коллеги использовали медные нанопроволоки для создания «аэрогелевого монолита», материала с высокой пористостью, очень легкого и достаточно прочного, чтобы стоять самостоятельно, подобно сухой кухонной губке. В прошлом эти монолиты из аэрогеля изготавливались из золота или серебра, но медь является более экономичным вариантом.
Путем смешивания медных нанопроволок с небольшим количеством поливинилового спирта исследователи создали монолиты аэрогеля, которые могут превращаться в своего рода нарезаемую формуемую резину, проводящую электричество. Исследователи сообщили о своих выводах в 2014 году в журнале ACS Nano (откроется в новой вкладке). Конечным результатом может быть робот с мягким телом или медицинский датчик, который идеально сочетается с изогнутой кожей, сказал Ченг в интервью Live Science. В настоящее время он и его команда работают над созданием датчиков артериального давления и температуры тела из монолитов медного аэрогеля — еще один способ, с помощью которого медь может помочь контролировать здоровье человека.
Физики также проводили эксперименты с медью. В эксперименте 2014 года кусок меди стал самым холодным кубическим метром (35,3 кубических фута) на Земле, когда исследователи охладили его до 6 милликельвинов, или шеститысячных градуса выше абсолютного нуля (0 кельвинов). Это самое близкое к абсолютному нулю вещество такой массы и объема.
Исследователи из Итальянского национального института ядерной физики установили 880-фунтовую ракету. (400 кг) медный куб внутри контейнера, называемого криостатом, который специально разработан для того, чтобы предметы оставались очень холодными. Это первый криостат, или устройство для хранения вещей при низких температурах, способное хранить вещества так близко к абсолютному нулю. Эксперимент с ледяной медью был частью исследовательского проекта по изучению субатомных частиц, называемых нейтрино, и тому, почему материи намного больше, чем антивещества во Вселенной.
Истории по теме
Медь также представляет интерес для ученых-аграриев. Исследователи из Корнельского университета изучают последствия дефицита меди в сельскохозяйственных культурах, особенно в пшенице. Пшеница является одним из важнейших продуктов питания в мире, и дефицит меди может привести как к снижению урожайности, так и к снижению плодородия сельскохозяйственных культур.
Исследователи изучали, как растения поглощают и перерабатывают медь. Они обнаружили в пшенице два белка, AtCITF1 и AtSPL7, которые жизненно важны для поглощения и доставки меди в репродуктивные органы пшеницы.0005 Министерство сельского хозяйства США (открывается в новой вкладке).
Ранние испытания показали, что когда медь и другие питательные вещества обогащаются в почве, а затем поглощаются пшеницей, урожайность увеличивается в семь раз. Хотя известно, что знания о меди и других полезных ископаемых полезны для здоровья и плодородия сельскохозяйственных культур, как и почему это происходит, не совсем понятно. Знания о том, почему медь полезна и как она действует в процессе роста и размножения растений, можно в дальнейшем использовать для выращивания таких культур, как рис, ячмень и овес, а также для внесения в эти культуры богатых минералами удобрений, содержащих медь, в почву, которая когда-то был непригоден для земледелия.
Эта статья была обновлена 9 марта 2022 г. участником Live Science Стефани Паппас. Дополнительный отчет автора Live Science Рэйчел Росс.
Дальнейшее чтение
- Американское онкологическое общество (открывается в новой вкладке) изучает исследования о меди и утверждает, что она может играть роль в профилактике или лечении рака.
- Агентство по охране окружающей среды предоставляет информацию о воздействии высоких концентраций меди и последствиях коррозии меди в бытовых трубах.
- Национальный ускоритель Томаса Джефферсона ( Лаборатория Джефферсона ) исследует историю и использование меди.
Библиография
» Медь: информация об элементе, свойства и использование. (открывается в новой вкладке)» Королевское химическое общество. По состоянию на 9 марта 2022 г.
« Польза для здоровья и риски, связанные с медью. (открывается в новой вкладке)» MedicalNewsToday. Обновлено в октябре 2017 г.
» Медь (откроется в новой вкладке)». Национальная медицинская библиотека. По состоянию на 9 марта, 2022.
Стефани Паппас — автор статей для журнала Live Science, освещающего самые разные темы — от геонаук до археологии, человеческого мозга и поведения. Ранее она была старшим автором журнала Live Science, но теперь работает внештатным сотрудником в Денвере, штат Колорадо, и регулярно публикует статьи в журналах Scientific American и The Monitor, ежемесячном журнале Американской психологической ассоциации. Стефани получила степень бакалавра психологии в Университете Южной Каролины и диплом о высшем образовании в области научной коммуникации в Калифорнийском университете в Санта-Круз.
Медь: факты о красноватом металле, который использовался людьми на протяжении 8000 лет
Медь — блестящий металл красновато-коричневого цвета.
(Изображение предоставлено: VvoeVale через Getty Images)
Блестящая, красноватая медь была первым металлом, которым манипулировали люди, и сегодня он остается важным металлом в промышленности.
Самый старый металлический предмет, найденный на Ближнем Востоке, состоит из меди; это было крошечное шило, датируемое 5100 г. до н.э. А американских пенни изначально были сделаны из чистой меди (хотя в наши дни это 9000 пенсов).7,5% цинк с тонкой медной пленкой).
Медь занимает третье место среди наиболее потребляемых промышленных металлов в мире после железа и алюминия , по данным Геологической службы США (USGS). Около трех четвертей этой меди идет на производство электрических проводов, телекоммуникационных кабелей и электроники.
Помимо золота, медь является единственным металлом в таблице Менделеева, цвет которого не серебристый или серый.
Химическое описание меди
Электронная конфигурация и элементарные свойства меди. (Изображение предоставлено: Грег Робсон/Creative Commons, Андрей Маринкас (открывается в новой вкладке) Shutterstock (открывается в новой вкладке))
- Атомный номер (количество протонов в ядре): 29
- Атомный символ (в периодической таблице элементов): Cu
- Атомный вес (средняя масса атомов ): 63,55
- Плотность: 8,92 грамма на кубический сантиметр
- Фаза при комнатной температуре: твердое тело
- Температура плавления: 1 984,32 градуса по Фаренгейту (1 084,62 градуса Цельсия)
- Температура кипения: 5 301 F (2 927 C)
- Количество изотопов (атомы одного и того же элемента с разным числом нейтронов): 35; 2 стабильный
- Наиболее распространенные изотопы: Cu-63 (69,15 % естественного содержания) и Cu-65 (30,85 % естественного содержания)
История меди
Большая часть меди находится в рудах и должна быть выплавлена или извлечена из руда для чистоты, прежде чем ее можно будет использовать. Но естественные химические реакции могут иногда высвобождать самородную медь, согласно сайту химической базы данных 9.0005 Chemicool (открывается в новой вкладке).
Люди изготавливали изделия из меди по крайней мере 8000 лет и научились плавить металл примерно к 4500 г. до н.э. Следующим технологическим скачком стало создание медных сплавов путем добавления в медь олова, что создавало более твердый металл, чем отдельные его части: бронзу. Технологическое развитие положило начало бронзовому веку, периоду, охватывающему приблизительно 3300–1200 лет до н. э. и отличающемуся использованием бронзовых инструментов и оружия, согласно 9.0005 Канал истории (открывается в новой вкладке).
Медные артефакты разбросаны по историческим записям. Крошечное шило или заостренный инструмент, датируемый 5100 г. до н.э. был похоронен с женщиной средних лет в древней деревне в Израиле. Шило представляет собой старейший металлический предмет , когда-либо найденный на Ближнем Востоке. Согласно статье 2014 года, опубликованной в PLOS ONE (откроется в новой вкладке). В древнем Египте люди использовали медные сплавы для изготовления украшений, в том числе колец на пальцах ног. Исследователи также обнаружили массивные медные рудники 10 века до н.э. в Израиле. Медь, возможно, даже была первым загрязнителем , который люди выпустили в окружающую среду около 7000 лет назад.
На протяжении всей истории многие инструменты делались из меди, например, это медное шило с посеребренной ручкой, которое, как полагают, относится к раннему бронзовому веку. Он был найден на археологических раскопках Ла-Альмолойя в Плиего, Мурсия на юго-востоке Испании. (Изображение предоставлено J.A. Soldevilla, любезно предоставлено Исследовательской группой Arqueoecologia Social Mediterrània, Автономный университет Барселоны; Antiquity Publications Ltd)
По данным Геологической службы США, около двух третей меди на Земле находится в изверженных (вулканических) породах, а около четверти — в осадочных породах. Этот металл пластичен и податлив, хорошо проводит тепло и электричество — вот почему медь широко используется в электронике и проводке.
Медь становится зеленой из-за реакции окисления; то есть он теряет электроны, когда подвергается воздействию воды и воздуха. Эта реакция окисления является причиной того, что покрытая медью Статуя Свободы имеет зеленый цвет, а не оранжево-красный. Согласно Ассоциация развития меди , выветрившийся слой оксида меди толщиной всего 0,005 дюйма (0,127 миллиметра) покрывает Lady Liberty, а покрытие весит около 80 тонн (73 метрических тонны). Переход от медного цвета к зеленому происходил постепенно и был завершен к 1920 году, через 34 года после того, как статуя была освящена и открыта, согласно Нью-Йоркского исторического общества .
Краткие факты о меди
Вот несколько интересных фактов о меди:
- Согласно Питеру ван дер Крогу t , голландскому историку, слово «медь» имеет несколько корней, многие из которых происходят от латинского слова cuprum , которое образовано от словосочетания . Cyprium aes , что означает «металл с Кипра», так как большая часть используемой в то время меди добывалась на Кипре.
- Если бы вся медная проводка в среднем автомобиле была проложена, она растянулась бы на 0,9 мили (1,5 км), согласно USGS .
- Электрическая проводимость (насколько легко ток может течь через металл) меди уступает только серебру, согласно Лаборатории Джефферсона .
- Копейки были из чистой меди только с 1783 по 1837 год. С 1837—1857 копейки изготавливались из бронзы (95% меди, остальные 5% составляли олово и цинк). В 1857 году количество меди в пенни упало до 88% (оставшиеся 12% составлял никель). В 1864 году рецепт вернулся к своему прежнему рецепту. В 1962, содержание пенни изменилось до 95% меди и 5% цинка. С 1982 года по сегодняшний день пенни состоят на 97,5% из цинка и на 2,5% из меди.
- Люди нуждаются в меди в своем рационе. Этот металл является важным микроэлементом, который имеет решающее значение для формирования красных кровяных телец, согласно Национальной медицинской библиотеки США . К счастью, медь можно найти в различных продуктах, в том числе в зерне, бобах, картофеле и листовой зелени.
- Слишком много меди (открывается в новой вкладке), однако, это плохо. Проглатывание большого количества металла может вызвать боль в животе, рвоту и желтуху (желтоватый оттенок кожи и белков глаз, что может указывать на то, что печень работает неправильно) в краткосрочной перспективе. Длительное воздействие может привести к таким симптомам, как анемия, судороги и диарея, которая часто бывает кровавой и может быть синего цвета.
- Иногда в водопроводе обнаруживается повышенное содержание меди из-за старых медных труб. Например, в августе 2018 года система государственных школ в Детройте (открывается в новой вкладке) отключила всю питьевую воду в государственных школах в качестве меры предосторожности из-за высокого уровня меди и железа, обнаруженного в воде, по данным Сиэтла. Раз (откроется в новой вкладке).
- Медь обладает антимикробными свойствами, а убивает бактерии, вирусы и дрожжи при контакте, согласно статье 2011 года в журнале Applied and Environmental Microbiology. В результате медь можно даже вплетать в ткани для изготовления антимикробной одежды, например 9.0005 носки против грибка стопы .
- Медь также входит в состав некоторых типов внутриматочных спиралей (ВМС), используемых для контроля над рождаемостью, согласно Mayo Clinic . Медная проводка вызывает воспалительную реакцию, токсичную как для сперматозоидов, так и для яйцеклеток, чтобы предотвратить беременность. При любой медицинской процедуре существует риск побочных эффектов. (Согласно статье 2017 года, опубликованной в Medical Science Monitor 9, токсичность меди, по-видимому, не является таковой.0006 (откроется в новой вкладке) ) .
Врач держит Т-образную внутриматочную спираль (ВМС), изготовленную из пластика и меди. Его помещают внутрь матки, чтобы предотвратить беременность. (Изображение предоставлено New Africa через Shutterstock)
Текущие исследования
Антимикробные свойства меди сделали ее популярным металлом в области медицины. Несколько больниц экспериментировали с покрытием поверхностей, к которым часто прикасаются, таких как поручни кроватей и кнопки вызова, медью или медными сплавами в попытке замедлить распространение внутрибольничных инфекций. Медь убивает микробы, препятствуя электрическому заряду клеточных мембран организмов, говорит Кассандра Сальгадо, профессор инфекционных заболеваний и больничный эпидемиолог Медицинского университета Южной Каролины.
В 2013 году группа исследователей под руководством Сальгадо протестировала поверхности в отделениях интенсивной терапии (ОИТ) в трех больницах, сравнив комнаты, модифицированные медными поверхностями, прикрепленными к шести обычным предметам, которые подвергаются большому количеству рук, с комнатами, не модифицированными медью. Ученые обнаружили, что в традиционных больничных палатах (без медных поверхностей) у 12,3% пациентов развились устойчивые к антибиотикам инфекции, такие как устойчивый к метициллину Staphylococcus aureus (MRSA) и устойчивый к ванкомицину 9. 0088 Энтерококк (ВРЭ). Для сравнения, в палатах, модифицированных медью, только 7,1% пациентов заразились одной из этих потенциально разрушительных инфекций.
«Мы знаем, что если вы поместите медь в палату пациента, вы уменьшите микробную нагрузку», — сказал Сальгадо Live Science. «Я думаю, что это было доказано снова и снова. Наше исследование было первым, кто продемонстрировал, что это может иметь клиническую пользу».
Исследователи ничего не изменили в условиях отделения интенсивной терапии, кроме меди; врачи и медсестры по-прежнему мыли руки, и уборка шла своим чередом. Исследователи опубликовали свои выводы в 2013 году в журнале 9.0005 Инфекционный контроль и госпитальная эпидемиология (открывается в новой вкладке). Сальгадо и ее команда также протестировали медные покрытия стетоскопов, согласно статье 2017 года, опубликованной в Американском журнале инфекционного контроля , где исследователи обнаружили, что на стетоскопах с медным покрытием было значительно меньше бактерий. Фактически, 66% стетоскопов были полностью свободны от бактерий. Дальнейшие исследования продолжаются для проверки идеи меднения в других медицинских отделениях, особенно в тех местах, где пациенты более мобильны, чем в отделении интенсивной терапии. По словам Салдаго, также необходимо провести анализ затрат и результатов, чтобы сопоставить расходы на установку меди и экономию, полученную за счет предотвращения дорогостоящих инфекций.
В 2020 году двойное слепое рандомизированное контролируемое исследование показало, что перевязка ран после кесарева сечения бинтами с высоким содержанием меди может снизить риск инфекции в брюшной полости на 80% по сравнению с традиционными перевязками. Результаты были опубликованы в Европейском журнале акушерства, гинекологии и репродуктивной биологии (открывается в новой вкладке).
Зачищенные медные силовые кабели. (Изображение предоставлено Хосе А. Бернатом Басете через Getty Images)
Медь также играет огромную роль в электронике, и из-за ее изобилия и низкой цены исследователи работают над интеграцией металла во все большее число передовых устройств.
Фактически, медь может помочь в производстве футуристической электронной бумаги, носимых биосенсоров и другой «мягкой» электроники, сказал Венлонг Ченг, профессор химического машиностроения в Университете Монаш в Австралии. Ченг и его коллеги использовали медные нанопроволоки для создания «аэрогелевого монолита», материала с высокой пористостью, очень легкого и достаточно прочного, чтобы стоять самостоятельно, подобно сухой кухонной губке. В прошлом эти монолиты из аэрогеля изготавливались из золота или серебра, но медь является более экономичным вариантом.
Путем смешивания медных нанопроволок с небольшим количеством поливинилового спирта исследователи создали монолиты аэрогеля, которые могут превращаться в своего рода нарезаемую формуемую резину, проводящую электричество. Исследователи сообщили о своих выводах в 2014 году в журнале ACS Nano (откроется в новой вкладке). Конечным результатом может быть робот с мягким телом или медицинский датчик, который идеально сочетается с изогнутой кожей, сказал Ченг в интервью Live Science. В настоящее время он и его команда работают над созданием датчиков артериального давления и температуры тела из монолитов медного аэрогеля — еще один способ, с помощью которого медь может помочь контролировать здоровье человека.
Физики также проводили эксперименты с медью. В эксперименте 2014 года кусок меди стал самым холодным кубическим метром (35,3 кубических фута) на Земле, когда исследователи охладили его до 6 милликельвинов, или шеститысячных градуса выше абсолютного нуля (0 кельвинов). Это самое близкое к абсолютному нулю вещество такой массы и объема.
Исследователи из Итальянского национального института ядерной физики установили 880-фунтовую ракету. (400 кг) медный куб внутри контейнера, называемого криостатом, который специально разработан для того, чтобы предметы оставались очень холодными. Это первый криостат, или устройство для хранения вещей при низких температурах, способное хранить вещества так близко к абсолютному нулю. Эксперимент с ледяной медью был частью исследовательского проекта по изучению субатомных частиц, называемых нейтрино, и тому, почему материи намного больше, чем антивещества во Вселенной.
Истории по теме
Медь также представляет интерес для ученых-аграриев. Исследователи из Корнельского университета изучают последствия дефицита меди в сельскохозяйственных культурах, особенно в пшенице. Пшеница является одним из важнейших продуктов питания в мире, и дефицит меди может привести как к снижению урожайности, так и к снижению плодородия сельскохозяйственных культур.
Исследователи изучали, как растения поглощают и перерабатывают медь. Они обнаружили в пшенице два белка, AtCITF1 и AtSPL7, которые жизненно важны для поглощения и доставки меди в репродуктивные органы пшеницы.0005 Министерство сельского хозяйства США (открывается в новой вкладке).
Ранние испытания показали, что когда медь и другие питательные вещества обогащаются в почве, а затем поглощаются пшеницей, урожайность увеличивается в семь раз. Хотя известно, что знания о меди и других полезных ископаемых полезны для здоровья и плодородия сельскохозяйственных культур, как и почему это происходит, не совсем понятно. Знания о том, почему медь полезна и как она действует в процессе роста и размножения растений, можно в дальнейшем использовать для выращивания таких культур, как рис, ячмень и овес, а также для внесения в эти культуры богатых минералами удобрений, содержащих медь, в почву, которая когда-то был непригоден для земледелия.
Эта статья была обновлена 9 марта 2022 г. участником Live Science Стефани Паппас. Дополнительный отчет автора Live Science Рэйчел Росс.
Дальнейшее чтение
- Американское онкологическое общество (открывается в новой вкладке) изучает исследования о меди и утверждает, что она может играть роль в профилактике или лечении рака.
- Агентство по охране окружающей среды предоставляет информацию о воздействии высоких концентраций меди и последствиях коррозии меди в бытовых трубах.
- Национальный ускоритель Томаса Джефферсона ( Лаборатория Джефферсона ) исследует историю и использование меди.
Библиография
» Медь: информация об элементе, свойства и использование. (открывается в новой вкладке)» Королевское химическое общество. По состоянию на 9 марта 2022 г.
« Польза для здоровья и риски, связанные с медью. (открывается в новой вкладке)» MedicalNewsToday. Обновлено в октябре 2017 г.
» Медь (откроется в новой вкладке)». Национальная медицинская библиотека. По состоянию на 9 марта, 2022.
Стефани Паппас — автор статей для журнала Live Science, освещающего самые разные темы — от геонаук до археологии, человеческого мозга и поведения. Ранее она была старшим автором журнала Live Science, но теперь работает внештатным сотрудником в Денвере, штат Колорадо, и регулярно публикует статьи в журналах Scientific American и The Monitor, ежемесячном журнале Американской психологической ассоциации. Стефани получила степень бакалавра психологии в Университете Южной Каролины и диплом о высшем образовании в области научной коммуникации в Калифорнийском университете в Санта-Круз.