Простая электрическая цепь: Простейшая электрическая цепь | Электрикам

Содержание

Простейшая электрическая цепь | Электрикам

Что такое электрическая цепь?

Под электрической цепью понимают совокупность взаимосвязанных элементов, образующих путь для протекания электрического тока. Все процессы в электрической цепи подчинятся законам электротехники. Входящие в состав электрической цепи элементы можно условно разделить на 3 группы: генерирующие устройства, приемные устройства и вспомогательные элементы.

Простейшая электрическая цепь включает в себя следующие основные компоненты (рисунок 1):

  1. Источник электрической энергии (Источник тока).
  2. Приемник электрической энергии.
  3. Соединительные провода.

Также в состав простейшей электрической цепи может входить вспомогательное оборудование, например, замыкающее устройство, измерительные приборы (амперметр, вольтметр и пр.), защитные аппараты (предохранители и пр.).

Рис.1 Простейшая электрическая цепь

Источник электрической энергии, потребители, соединительные провода.

Источник электрической энергии — это устройство преобразующее различные виды энергии в электрическую энергию.

Источником электрической энергии может быть гальванический элемент, аккумулятор, электромеханический или термоэлектрический генератор, фотоэлемент и пр. Все источники электрического тока имеют внутренне сопротивление, но как правило оно мало по сравнению с сопротивлением других элементов цепи. Протекающий в цепи ток может быть как переменным, так и постоянным; его род определяется источником (например, гальванический элемент дает постоянное напряжение, обмотки трансформаторов и генераторов – переменное).

В зависимости от рода тока электрической цепи подразделяют:

  • цепи постоянного тока;
  • цепи переменного тока.

Потребителями в электрической цепи являются элементы, преобразующие электрическую энергию в механическую энергию, тепло, световое излучение и пр.

Примерами потребителей электроэнергии являются лампы накаливания, электронагревательные приборы, электродвигатели и другие элементы, требующие для работы потребление электрического тока.

Соединяющие элементы провода как правило выполняются из алюминия или меди. Это связано с низким удельным сопротивлением этих металлов – это значит, что потери напряжения в них будут незначительным. К недостаткам медных и алюминиевых проводов относят их существенное нагревание при превышении установленных предельных (максимально допустимых) значений тока и напряжения.

В состав любого электротехнического устройства (телефона, компьютера, телевизора и пр.) входят электрические цепи по которым, при наличии источника, может протекать электрический ток. В зависимости от  элементов используемых в электрической цепи, можно подразделить на:

  • линейные или нелинейные цепи;
  • пассивные или активные цепи.

Для удобства расчетов и наглядного представления электрических цепей используют электрические схемы. На них все элементы электрической цепи отображены при помощи условных знаков (графических обозначений). Каждый электрический элемент имеет графическое представление, регламентированное ГОСТом, поэтому составленная одним человеком схема, может быть понятна и корректно интерпретирована другим. Иногда представление на электрической схеме одного реального элемента, может быть выполнено совокупностью нескольких стандартных элементов.  Схема электрической цепи, представленной на рисунке 1, приведена на рисунке 2.

Рис.2 Схема простейшей электрической цепи

Протекание электрического тока возможно только в замкнутой электрической цепи.

Основными параметрами работы любого элемента, а также всей электроцепи в целом, являются значения тока, мощности и напряжения. Они определяют так называемый режим работы устройства. Для большинства электрических цепей значения тока и напряжения могут непрерывно меняться в широком диапазоне, следовательно режимов работы может быть бесконечное множество.

#1. Что представлено на изображении?

Схема электрической цепи

Электрическая цепь

Монтажная схема

#2. В чем измеряется удельное сопротивление?

Ом*мм

Ом

Ом*м

#3.

Как называется устройство преобразующее различные виды энергии в электрическую энергию?

Соединительные провода

Приёмник электрической энергии

Источник электрической энергии

Завершить

Отлично!

Попытайтесь снова(

18.09.2020

ТОЭ,Основы тоэ

Электрические цепи постоянного тока

Простейшая электрическая цепь постоянного тока






Простейшая электрическая цепь постоянного тока

Категория:

Сварка металлов

Простейшая электрическая цепь постоянного тока

Для возникновения электрического тока необходимо создать электрическую цепь. Простейшая электрическая цепь постоянного тока состоит из следующих основных элементов: источника электрической энергии, приемника (потребителя) электрической энергии, соединительных проводов. Вспомогательными элементами электрической цепи являются выключатель и электроизмерительные приборы.

В качестве источника электрической энергии использована аккумуляторная батарея, развивающая электродвижущую силу Е и имеющая собственное внутреннее сопротивление г. Потребителем, имеющим сопротивление R, может служить электродвигатель, лампочка, нагревательное устройство и др. Для измерения силы тока и напряжения в цепи имеются амперметр и вольтметр.

Источник электроэнергии, преобразуя другие виды энергии в электрическую, поддерживает электрический ток в цепи. В различных приемниках (потребителях) электроэнергия преобразуется в другие виды энергии — механическую, тепловую, лучистую и др. Соединительные провода служат для передачи электроэнергии от источника к потребителю.

Рис. 1. Участок электрической цепи

В замкнутой электрической цепи сила тока пропорциональна электродвижущей силе источника тока и обратно пропорциональна полному сопротивлению цепи.

Под полным сопротивлением цепи понимается сумма сопротивлений внешнего R и внутреннего г участков цепи. Сопротивление соединительных проводов, как правило, величина небольшая, и ее можно не учитывать. Закон Ома является одним из основных в электротехнике. Пользуясь им и выводами, которые из него следует, можно производить простейшие расчеты электрических цепей.

Закон Ома справедлив не только для полной замкнутое электрической цепи, но и для любого ее участка (рис. 2). Простейшим примером участка цепи является электроутюг, включенный в розетку. В этом случае закон Ома выражает зависимость между силой тока на участке, напряжением (разностью электрических потенциалов) на зажимах (концах) участка и его сопротивлением:

Сила тока пропорциональна напряжению на концах участка цепи и обратно пропорциональна его сопротивлению.

Из закона Ома для участка цепи следует:
1) U, напряжение на концах участка цепи численно равно произведению силы тока на сопротивление участка;
2) R, сопротивление, участка цепи численно равно падению напряжения на этом участие, деленному на силу тока в нем.

Реклама:

Читать далее:

Энергия и мощность электрического тока

Статьи по теме:

  • Устройства для отсоса вредных газов
  • Размещение сварочного оборудования
  • Требования по технике безопасности, предъявляемые к сварочному оборудованию
  • Установки для специальной газопламенной обработки
  • Резаки для газовой разделительной резки






Главная → Справочник → Статьи → Блог → Форум







10 простых электрических цепей со схемами

Повседневная жизнь на Земле практически невозможна без электричества. От домов до крупных промышленных предприятий, мы все зависим от электричества. Мы знаем, что электрический ток течет по замкнутой цепи. Электрическая цепь представляет собой замкнутый контур, в котором непрерывный электрический ток идет от источника к нагрузке. Если вы пытаетесь описать электрическую цепь своему другу или соседу, скорее всего, вам придется нарисовать соединение. Например, если вы хотите объяснить схему освещения, может потребоваться больше времени, чтобы нарисовать лампочку, аккумулятор и провода, потому что разные люди рисуют различные компоненты схемы по-разному, и объяснение может занять много времени. Поэтому лучше научиться изображать простые электрические схемы. В этой статье мы приводим чертежи некоторых простых электрических цепей: цепь освещения переменного тока, цепь зарядки аккумулятора, счетчик энергии, цепь выключателя, цепь кондиционера, цепь термопары, цепь освещения постоянного тока, цепь мультиметра, цепь трансформатора тока и цепь однофазного двигателя. .

Цепь переменного тока для лампы

Для лампы нам понадобится два провода; один — нейтральный провод, а другой — провод под напряжением. Эти два провода подключаются от лампы к главному щиту питания. Желательно использовать разные цвета для проводов под напряжением и нейтральных проводов. Общепринятой практикой является использование красного цвета для проводов под напряжением и черного цвета для нейтрального провода. Для включения и выключения лампы нам нужен элемент управления, называемый выключателем, который находится в проводе под напряжением между основным питанием и лампой. Если переключатель включен, электрическая цепь замкнута и лампа светится, а если переключатель выключен, он отключит питание лампы. Для безопасной работы эта проводка помещается в коробку, называемую распределительной коробкой. Провод переключателя и провод под напряжением представляют собой один провод; это просто разрез между ними, чтобы подключить переключатель. Если вы хотите заменить лампу, не забудьте выключить лампу и, если возможно, отключить питание цепи.

Цепь зарядки аккумулятора

Зарядка аккумулятора осуществляется с помощью выпрямителя. Основная функция выпрямителя заключается в преобразовании переменного тока (переменного тока) в постоянный (постоянный ток). Выпрямитель, показанный на схеме, представляет собой мостовой выпрямитель, в котором четыре диода соединены в виде моста. В цепи добавлено сопротивление, чтобы ограничить протекание тока. Когда питание подается на выпрямитель через понижающий трансформатор, он преобразует питание переменного тока в питание постоянного тока, которое поступает в аккумулятор, тем самым заряжая его. Обычно эта цепь заключена в зарядное устройство или инвертор, и только клеммы выходят из зарядного устройства для подключения к аккумулятору для зарядки.

Электрическая цепь кондиционирования воздуха

Кондиционирование воздуха — это процесс, который нагревает, охлаждает, очищает и обеспечивает циркуляцию воздуха вместе с контролем его влажности. Электрическая часть переменного тока включает силовое оборудование для двигателей и стартеры для вентиляторов компрессора и конденсатора. Сопутствующее электрическое оборудование включает в себя электромагнитные клапаны, реле высокого и низкого давления, реле высокой и низкой температуры, а также предохранительные выключатели при перегрузке по току, пониженном напряжении и т. д.

Вентиляторы компрессора и конденсатора приводятся в действие простым трехфазным асинхронным двигателем переменного тока с фиксированной скоростью, каждый из которых имеет собственный пускатель и питается от распределительного щита. Текущее техническое обслуживание электрооборудования и поиск неисправностей двигателя и стартеров включает очистку, проверку соединений, проверку изоляции и т. д.

Цепь выключателя

Мы используем выключатели для освещения, вентиляторов и т. д. много раз в день, но обычно мы не пытаемся см. соединение, сделанное внутри переключателя. Функция переключателя заключается в подключении или замыкании цепи, идущей к нагрузке от источника питания. Он имеет подвижные контакты, которые обычно разомкнуты.

Как показано на схеме, подача питания на нагрузку осуществляется через схему переключения, поэтому подачу питания можно отключить, оставив переключатель разомкнутым.

Цепь освещения постоянного тока

Для небольшой светодиодной лампы обычно используется источник постоянного тока (батарея). Эта схема очень проста. Батарея имеет две точки, анод и катод. Анод положительный, а катод отрицательный. Лампа имеет две клеммы — одна плюсовая, а другая минусовая. Положительный вывод лампы подключается к аноду, а отрицательный вывод лампы подключается к катоду батареи. После подключения лампа загорится. Чтобы разрешить включение или выключение, подключите переключатель (схема выше) между любым проводом, который отключит или подаст напряжение постоянного тока на светодиодную лампу.

Более простые электрические схемы и простые электрические устройства обсуждаются на следующей странице.

Цепь термопары

Предыдущая страница была посвящена работе с несколькими простыми электрическими цепями, здесь мы продолжим тему и изучим еще несколько простых электрических устройств и их назначение.

Когда переходы, образованные из двух разнородных однородных материалов, подвергаются воздействию разницы температур, генерируется ЭДС. Это называется эффектом Зеебека. На рисунке показана термопара, состоящая из двух проводов, один из которых железный, а другой из константана, с вольтметром. Этот вольтметр будет измерять генерируемую ЭДС, и его можно откалибровать для измерения температуры. Разница температур между горячим и холодным спаем создаст пропорциональную ей ЭДС. Если температура холодного спая поддерживается постоянной, то ЭДС пропорциональна температуре горячего спая.

Счетчик энергии или мотор-счетчик

Энергия – это общая мощность, потребляемая за определенный интервал времени. Мощность, потребляемая за определенный период времени, может быть измерена электросчетчиком или электросчетчиком. Счетчики энергии используются во всех линиях электроснабжения каждого дома для измерения мощности, потребляемой как в цепях постоянного, так и переменного тока. Измеряется в ватт-часах или киловатт-часах. Для цепей постоянного тока счетчик может быть ампер-часом или ватт-часом.

Алюминиевый диск, который непрерывно вращается при потреблении энергии. Скорость вращения пропорциональна мощности, потребляемой (в ватт-часах) нагрузкой. Счетчики энергии имеют катушку давления и катушку тока. Когда напряжение подается на катушку давления, ток протекает через катушку и создает поток, который создает крутящий момент на диске. Ток нагрузки протекает через катушку тока и создает другой поток, который оказывает противоположное крутящее усилие на алюминиевый диск. Результирующий крутящий момент воздействует на диск и приводит к вращению диска, которое пропорционально используемой энергии и регистрируется в измерителе энергии.

Схема мультиметра

Мультиметр, вероятно, является одним из самых простых электрических устройств, которые могут измерять сопротивление, ток и напряжение. Это незаменимый прибор, который можно использовать для измерения постоянного и переменного напряжения и тока. Применяется для проверки целостности цепи (по шкале омметра, для измерения протекания постоянного тока, постоянного напряжения в цепи, а также для измерения переменного напряжения на силовом трансформаторе. Состоит из гальванометра, последовательно соединенного с сопротивлением .Ток, протекающий в цепи, то есть напряжение в цепи, можно измерить, подключив клеммы мультиметра к цепи.Он в основном используется для проверки непрерывности обмоток в двигателе.

Цепь трансформатора тока

Трансформатор тока используется для измерения силы тока в цепи с помощью амперметра низкого диапазона. Фактически, он понижает ток до уровня диапазона амперметра. Он имеет первичную обмотку и вторичную обмотку. Первичная обмотка подключается к силовой цепи так, что через нее проходит измеряемый ток. Вторичная обмотка трансформатора подключена к амперметру. Трансформатор понизит ток до значения, которое может быть измерено подключенным амперметром.

Однофазные двигатели предназначены для работы от однофазного источника питания и могут выполнять широкий спектр полезных функций в домах, офисах, фабриках и мастерских, а также в других коммерческих учреждениях.

Однофазный двигатель имеет две клеммы в клеммной коробке внешнего корпуса. Одна из этих клемм связана с токоведущим проводом силовой цепи, а другая — с нейтральным проводом. Когда электропитание подается на двигатель, двигатель будет работать до тех пор, пока не будет отключено электропитание.

На этом однофазном двигателе работает даже вентилятор. Иногда вентилятор не запускается, когда мы его включаем. Причина в том, что конденсатор, используемый для запуска однофазного двигателя, не работает. Лучший способ решить эту проблему — заменить конденсатор.

Электрические цепи

Эта основная идея исследуется через:

  • Противопоставление студенческих и научных взглядов
  • Критические идеи обучения
  • Педагогическая деятельность

Противопоставление студенческого и научного взглядов

Студенческий повседневный опыт

Студенты имеют большой опыт использования повседневных бытовых приборов, работа которых зависит от электрических цепей (фонарики, мобильные телефоны, iPod). Скорее всего, у них сложилось ощущение, что вам нужна батарея или выключатель питания, чтобы они «работали», и что батареи могут «разряжаться». Они склонны думать об электрических цепях как о чем-то, что они называют «током», или «энергией», или «электричеством», или «напряжением» — названиями, которые они часто используют взаимозаменяемо. Это неудивительно, учитывая, что все эти ярлыки часто используются в повседневном языке с неясным значением. Какой бы ярлык ни использовали учащиеся, они, скорее всего, увидят электрические цепи как связанные с «потоком» и чем-то, что «сохраняется», «используется» или и тем, и другим. Некоторая повседневная лексика, например о «зарядке аккумуляторов», также может быть источником концептуальной путаницы для учащихся.

В частности, учащиеся часто рассматривают ток как то же самое, что и напряжение, и думают, что ток можно хранить в батарее, и этот ток можно израсходовать или преобразовать в форму энергии, такую ​​как свет или тепло.

Студенты обычно используют четыре модели для объяснения поведения простой схемы, содержащей батарею и лампочку. Они были описаны исследователями как:

В частности, учащиеся часто рассматривают ток как то же самое, что и напряжение, и думают, что ток может храниться в батарее, и этот ток может быть использован или преобразован в форму энергии, такую ​​как свет или тепла.

Студенты обычно используют четыре модели для объяснения поведения простой схемы, содержащей батарею и лампочку. Они были описаны исследователями как:

  • «однополярная модель» — точка зрения, что на самом деле нужен только один провод между батареей и лампочкой, чтобы в цепи был ток.
  • «Модель сталкивающихся токов» – представление о том, что ток «течет» с обеих клемм батареи и «сталкивается» в лампочке.
  • «модель потребляемого тока» – представление о том, что ток «расходуется» по мере того, как он «обходит» цепь, поэтому ток, «текущий к» лампочке, больше, чем ток, «утекающий» от нее обратно к батарея.
  • «научная модель» — представление о том, что ток в обоих проводах одинаков.

Повседневный опыт учащихся с электрическими цепями часто приводит к запутанному мышлению. Учащиеся, которые знают, что можно получить удар током, если дотронуться до клемм пустой бытовой розетки, если выключатель включен, поэтому иногда считают, что в розетке есть ток, независимо от того, касаются они ее или нет. (Точно так же они могут полагать, что в любых проводах, подключенных к батарее или розетке, есть ток, независимо от того, замкнут ли выключатель.)

Некоторые студенты считают, что пластиковая изоляция проводов, используемых в электрических цепях, удерживает и направляет электрический ток так же, как водопроводные трубы удерживают и контролируют поток воды.

Исследования: Osborne (1980), Osborne & Freyberg (1985), Shipstone (1985), Shipstone & Gunstone (1985), White & Gunstone (1980) ) относится к области науки.

Модели играют важную роль, помогая нам понять вещи, которых мы не видим, и поэтому они особенно полезны при попытке разобраться в электрических цепях. Модели ценятся как за их объяснительную способность, так и за их предсказательную способность. Однако модели также имеют ограничения.

Модель, используемая сегодня учеными для электрических цепей, использует идею о том, что все вещества содержат электрически заряженные частицы (см.
Макроскопические и микроскопические свойства). Согласно этой модели, электрические проводники, такие как металлы, содержат заряженные частицы, которые могут относительно легко перемещаться от атома к атому, тогда как в плохих проводниках, таких как керамика, заряженные частицы перемещаются гораздо труднее.

В научной модели электрический ток представляет собой общее движение заряженных частиц в одном направлении. Причиной этого движения является источник энергии наподобие батареи, которая толкает заряженные частицы. Заряженные частицы могут двигаться только тогда, когда существует полный проводящий путь (называемый «контуром» или «петлей») от одного вывода батареи к другому.

Простая электрическая цепь может состоять из батареи (или другого источника энергии), лампочки (или другого устройства, использующего энергию) и проводников, соединяющих две клеммы батареи с двумя концами лампочки. В научной модели такой простой цепи движущиеся заряженные частицы, которые уже присутствуют в проводах и в нити накала лампочки, — это электроны.

Электроны заряжены отрицательно. Батарея отталкивает электроны в цепи от своей отрицательной клеммы и притягивает их к положительной клемме (см.
Электростатика – бесконтактная сила). Любой отдельный электрон перемещается только на короткое расстояние. (Эти идеи получили дальнейшее развитие в основной идее «Понятие напряжения»). В то время как фактическое направление движения электронов — от отрицательного к положительному выводу батареи, по историческим причинам обычно направление тока описывается как направление от положительного к отрицательному выводу (так называемый «условный ток»). ‘).

Энергия батареи сохраняется в виде химической энергии (см. основную идею «Преобразование энергии»). Когда он подключен к полной цепи, электроны движутся, и энергия передается от батареи к компонентам цепи. Большая часть энергии передается световому шару (или другому потребителю энергии), где она преобразуется в тепло и свет или в какую-либо другую форму энергии (например, звук в iPod). Очень небольшое количество преобразуется в тепло в соединительных проводах.

Напряжение батареи говорит нам, сколько энергии она обеспечивает компонентам схемы. Это также говорит нам кое-что о том, насколько сильно батарея выталкивает электроны в цепи: чем больше напряжение, тем сильнее толчок (см.
Использование энергии).

Важные обучающие идеи

  • Электрический ток представляет собой общее движение заряженных частиц в одном направлении.
  • Для получения электрического тока необходима непрерывная цепь от одной клеммы батареи к другой.
  • Электрический ток в цепи передает энергию от батареи к компонентам цепи. В этом процессе ток не «расходуется».
  • В большинстве цепей движущимися заряженными частицами являются отрицательно заряженные электроны, которые всегда присутствуют в проводах и других компонентах цепи.
  • Батарея толкает электроны по цепи.

Исследование: Loughran, Berry & Mulhall (2006)

Количественные подходы к обучению (например, с использованием закона Ома) могут препятствовать развитию концептуального понимания, и их лучше избегать на этом уровне.

Язык, используемый учителями, важен. Использование слова «электричество» следует ограничить, поскольку его значение неоднозначно. Говоря о «течении» тока вместо движения заряженных частиц, можно усилить неверное представление о том, что ток — это то же самое, что и электрический заряд; поскольку «заряд» является свойством веществ, подобно массе, лучше говорить о «заряженных частицах», чем о «зарядах».

Идея фокуса
В разделе «Введение в научный язык» содержится дополнительная информация о развитии научного языка у учащихся.

Использование моделей, метафор и аналогий крайне важно для развития понимания учащимися электрических цепей, потому что объяснение того, что мы наблюдаем в цепи (например, зажигание лампочки), включает в себя использование научных идей о вещах, которые мы не можем видеть, таких как энергия и электроны. Поскольку все модели/метафоры/аналогии имеют свои ограничения, важно использовать их множество. Не менее важно четко понимать сходства и различия между любой используемой моделью/метафорой/аналогией и рассматриваемым явлением. Общее ограничение физических моделей (в том числе приведенных ниже) заключается в том, что они подразумевают, что любой данный электрон движется по всей цепи.

Исследуйте взаимосвязь между идеями об электричестве и преимуществами и ограничениями моделей в
Карты развития концепции – электричество и магнетизм и модели

Некоторые полезные модели и аналогии для использования:

  • аналогия с велосипедной цепью — это полезно для развития идеи потока энергии, для отличия этого потока энергии от тока и для демонстрации постоянства тока в данной цепи. Движение велосипедной цепи аналогично току в полной цепи. Движущаяся цепь передает энергию от педали (то есть «батареи») к заднему колесу (то есть «компонентам цепи»), где энергия преобразуется. Эта модель имеет ограниченную полезность и требует, чтобы учащийся осознал, что заднее колесо является компонентом, выполняющим преобразование энергии.
  • модель желейных бобов — это полезно для развития идеи о том, что движение электронов в цепи сопровождается передачей энергии. Учащиеся разыгрывают «электроны» в электрической цепи. Каждый из них собирает фиксированное количество желейных бобов, представляющих энергию, когда они проходят через «батарейку», и отдают эту «энергию», когда они достигают/проходят через «лампочку». Эти студенческие «электроны» затем возвращаются к «батарее» для получения дополнительной «энергии», что включает в себя получение большего количества мармеладок.

Другое описание этого вида деятельности представлено в виньетке PEEL
Ролевая игра «Жемейные бобы». Эта модель может быть очень мощной, но важным ограничением является то, что она представляет энергию как субстанцию, а не как изобретенную человеком конструкцию.

  • модель веревки — эта модель помогает объяснить, почему в электрической цепи происходит нагрев. Учащиеся образуют круг и свободно держат непрерывную петлю из тонкой веревки горизонтально. Один ученик действует как «батарейка» и тянет веревку так, чтобы она скользила по рукам других учеников, «компонентов схемы». Студенты могут чувствовать, как их пальцы нагреваются, поскольку энергия трансформируется, когда студенческая батарея тянет веревку

Для получения дополнительной информации о разработке идей об энергии см. основную идею
Использование энергии.

  • модель водяного контура — часто используется в учебниках, и на первый взгляд кажется, что это модель, с которой учащиеся могут легко разобраться; однако важно, чтобы учителя знали о его ограничениях.

В этой модели насос изображает аккумулятор, турбина — лампочку, а водопроводные трубы — соединительные провода. Важно указать учащимся, что этот водяной контур на самом деле отличается от бытового водоснабжения, потому что в противном случае они могут опираться на свой повседневный опыт и ошибочно заключить, например, что электрический ток может просачиваться из проводов контура таким же образом, как вода может вытекать из труб.

Исследование: Loughran, Berry & Mulhall ​(2006)

Преподавательская деятельность

Открытое обсуждение через обмен опытом

Упражнение POE (Предсказать-Наблюдать-Объяснить) — полезный способ начать обсуждение. Дайте учащимся батарейку, лампочку для фонарика (или другую лампочку с нитью накаливания) и соединительный провод. Попросите их предсказать, как должна быть подключена цепь, чтобы лампочка загорелась. Примечание: НЕ предоставляйте держатель лампы. Это должно вызвать дискуссию о необходимости полной петли для тока и о пути тока в лампочке. Эту деятельность можно расширить, поощряя учащихся использовать другие материалы вместо проволоки.

Оспорить некоторые существующие идеи

Ряд POE (Предсказать-Наблюдать-Объяснить) можно построить, изменив элементы существующей схемы и попросив учащихся сделать прогноз и их обоснование этого прогноза. Например, попросите учащихся предсказать изменения, которые могут произойти в яркости лампочки, когда она подключена к батареям с разным напряжением.

Прояснить и закрепить идеи для/посредством общения с другими

Попросите учащихся изучить модели и аналогии электрических цепей, представленные выше. Учащиеся должны оценить каждую модель на предмет ее полезности для разъяснения представлений об электрических цепях. Студентов также следует поощрять к выявлению ограничений моделей.

Обратите внимание учащихся на упущенную из виду деталь

Попросите учащихся изучить работу горелки и нарисовать рисунок, показывающий путь тока при замкнутом выключателе.