Медь — свойства меди, сплавы и применение. Свойства меди


§3. Физические свойства меди.

Tплавления

Tкипения

Ρ

Rудельное

1083 0C

2877 0C

8,96 г/cм3

1,63*10-8 ом*м

а) Плотность и твердость.

Металлы подгруппы меди, как и щелочные металлы, имеют по одному свободному электрону на один ион-атом металла. Казалось бы, эти металлы не должны особенно сильно отличатся от щелочных. Но они, в отличие от щелочных металлов, обладают довольно высокими температурами плавления. Большое различие в температурах плавления между металлами этих подгрупп объясняется тем, что между ион-атомами металлов подгруппы меди почти нет свободного пространства, и они расположены более близко. Вследствие этого количество свободных электронов в единице объема, электронная плотность, у них больше. Следовательно, и прочность химической связи у них больше. Поэтому металлы подгруппы меди плавятся и кипят при более высоких температурах.

Металлы подгруппы меди обладают, по сравнению с щелочными металлами, обладают большей твердостью. Объясняется это увеличением электронной плотностью и более плотной компоновкой атомов в кристаллической решетке. Необходимо отметить, что твердость и прочность металлов зависят от правильности расположения ион-атомов в кристаллической решетке. В металлах, с которыми мы практически сталкиваемся, имеются различного рода нарушения правильного расположения ион-атомов, например, пустоты в узлах кристаллической решетки. К тому же металл состоит из мелких кристалликов (кристаллитов), между которыми связь ослаблена. В Академии Наук СССР была получена медь без нарушения в кристаллической решетке. Для этого очень чистую медь возгоняли при высокой температуре в глубоком вакууме на глубокую подложку. Медь получалась в виде небольших ниточек – “усов”. Как оказалось, такая медь в сто раз прочнее, чем обычная.

б) Цвет меди и её соединений.

Чистая медь обладает и другой интересной особенностью. Красный цвет обусловлен следами растворенного в ней кислорода. Оказалось, что медь, многократно возогнанная в вакууме (при отсутствии кислорода), имеет желтоватый цвет. Медь в полированном состоянии обладает сильным блеском.

При повышении валентности окраска меди и ее соединений темнеет, например, CuCl – белый, Cu2O – красный, CuCl + h3O – голубой, CuО - черный. Карбонаты характеризуются синим и зеленым цветом при условии содержания воды, чем обусловлен интересный практический признак для поисков.

в) Электропроводимость.

Медь обладает наибольшей (после серебра) электропроводимостью, чем и обусловлено её обширное применение в электронике.

г) Кристаллическая решетка.

Медь кристаллизируется по типу централизованного куба (рис 1).

Рисунок 1. Кристаллическая решетка меди.

д) Изотопы.

Природная медь состоит из двух стабильных изотопов — 63Cu и 65Cu с распространённостью 69,1 и 30,9 атомных процентов соответственно. Известны более двух десятков нестабильных изотопов, самый долгоживущий из которых 67Cu с периодом полураспада 62 часа.

§4. Сплавы меди.

Медные сплавы — первые металлические сплавы, созданные человеком. Примерно до середины XXв. по мировому производству медные сплавы занимали 1-е место среди сплавов цветных металлов, уступив его затем алюминиевым сплавам. Со многими элементами медь образует широкие области твёрдых растворов замещения, в которых атомы добавки занимают места атомов меди в гранецентрированной кубической решётке. Медь в твёрдом состоянии растворяет до 39 % Zn, 15,8 % Sn, 9,4 % Al, a Ni — неограниченно. При образовании твёрдого раствора на основе меди растут её прочность и электросопротивление, снижается температурный коэффициент электросопротивления, может значительно повыситься коррозионная стойкость, а пластичность сохраняется на достаточно высоком уровне.

В настоящее время существуют бесчисленные сплавы на основе меди, здесь я приведу три самые основные и распространенные в технике и быту сплавы:

а) Латунь

Латунь – это медный сплав с добавлением цинка. Цинк, содержание которого в составе может доходить до 40%, повышает прочность и пластичность сплава. Наиболее пластична латунь, с долей цинка около 30%. Она применяется для производства проволоки и тонких листов. В состав также могут входить железо, олово, свинец, никель, марганец и другие компоненты. Они повышаю коррозийную устойчивость и механические свойства сплава. Латунь хорошо подвергается обработке: сварке и прокатке, отлично полируется. Широкий диапазон свойств, низкая себестоимость, легкость в обработке и красивый желтый цвет делают латунь наиболее распространенным медным сплавом с большой областью применения.

б) Бронза

Бро́нзы — сплав меди, обычно с оловом в качестве основного легирующего компонента, но к бронзам также относят медные сплавы с алюминием, кремнием, бериллием, свинцом и другими элементами, за исключением цинка (это латунь) и никеля. Как правило в любой бронзе в незначительных количествах присутствуют добавки: цинк, свинец, фосфор и др.

Традиционную оловянную бронзу человек научился выплавлять ещё в начале Бронзового века и очень длительное время она широко использовалась; даже с приходом века железа бронза не утрачивала своей важности (в частности вплоть до XIX века пушки изготавливались из пушечной бронзы)

Самые широко применимые бронзы это: кремниевые бронзы, бериллиевые бронзы, кремниевые бронзы, хромовые бронзы, но, безусловно, самой известной и наиболее применимой является оловянная бронза.

в) Медно-никелевые сплавы

Сплавы на основе меди, содержащие никель в качестве главного легирующего элемента - Мельхиор, Нейзильбер (сплав меди с 5—35% Ni и 13—45% Zn). Никель образует с медью непрерывный ряд твёрдых растворов. При добавлении никеля к меди возрастают её прочность и электросопротивление, снижается температурный коэффициент электросопротивления, сильно повышается стойкость против коррозии. Медно-никелевые сплавы хорошо обрабатываются давлением в горячем и холодном состоянии.

studfiles.net

Физические и механические свойства меди

<< Назад

Медь - один из первых металлов, которые человек начал применять для технических целей. Вместе с золотом, серебром, железом, оловом, свинцом и ртутью, медь известна людям с древнейших времен и сохраняет свое важное техническое значение до наших дней.

Медь или Сu(29)

Медь - металл розово-красного цвета, относится к группе тяжелых металлов, является отличным проводником тепла и электрического тока. Электропроводность меди в 1,7 раза выше, чем у алюминия, и в 6 раз выше, чем у железа.

Латинское название меди Cuprum произошло от названия острова Кипр, где уже в III в. до н. э. существовали медные рудники и выплавлялась медь. Около II - III в. выплавка меди производилась в широком масштабе в Египте, в Месопотамии, на Кавказе, в других странах древнего мира. Но, тем не менее, медь - далеко не самый распространенный в природе элемент: содержание меди в земной коре составляет 0,01%, а это лишь 23-е место среди всех встречающихся элементов.

Получение меди

В природе медь присутствует в виде сернистых соединений, оксидов, гидрокарбонатов, углекислых соединений, в составе сульфидных руд и самородной металлической меди. 

Наиболее распространенные руды - медный колчедан и медный блеск, содержащие 1-2 % меди.

90 % первичной меди получают пирометаллургическим способом, 10 % - гидрометаллургическим. Гидрометаллургический способ - это получение меди путём её выщелачивания слабым раствором серной кислоты и последующего выделения металлической меди из раствора. Пирометаллургический способ состоит из нескольких этапов: обогащения, обжига, плавки на штейн, продувки в конвертере, рафинирования.

Для обогащения медных руд используется метод флотации (основан на использовании различной смачиваемости медьсодержащих частиц и пустой породы), который позволяет получать медный концентрат, содержащий от 10 до 35 % меди. 

Медные руды и концентраты с большим содержанием серы подвергаются окислительному обжигу. В процессе нагрева концентрата или руды до 700-800°C в присутствии кислорода воздуха, сульфиды окисляются и содержание серы снижается почти вдвое от первоначального. Обжигают только бедные (с содержанием меди от 8 до 25 %) концентраты, а богатые (от 25 до 35 % меди) плавят без обжига.

После обжига руда и медный концентрат подвергаются плавке на штейн, представляющий собой сплав, содержащий сульфиды меди и железа . Штейн содержит от 30 до 50 % меди, 20-40 % железа, 22-25 % серы, кроме того, штейн содержит примеси никеля, цинка, свинца, золота, серебра. Чаще всего плавка производится в пламенных отражательных печах. Температура в зоне плавки 1450°C. 

С целью окисления сульфидов и железа, полученный медный штейн подвергают продувке сжатым воздухом в горизонтальных конвертерах с боковым дутьём. Образующиеся окислы переводят в шлак. Температура в конвертере составляет 1200-1300°C. Интересно, что тепло в конвертере выделяется за счёт протекания химических реакций, без подачи топлива. Таким образом, в конвертере получают черновую медь, содержащую 98,4 - 99,4 % меди, 0,01 - 0,04 % железа, 0,02 - 0,1 % серы и небольшое количество никеля, олова, сурьмы, серебра, золота. Эту медь сливают в ковш и разливают в стальные изложницы или на разливочной машине.

Далее, для удаления вредных примесей, черновую медь рафинируют (проводят огневое, а затем электролитическое рафинирование). Сущность огневого рафинирования черновой меди заключается в окислении примесей, удалении их с газами и переводе в шлак. После огневого рафинирования получают медь чистотой 99,0 - 99,7%. Её разливают в изложницы и получают чушки для дальнейшей выплавки сплавов (бронзы и латуни) или слитки для электролитического рафинирования.

Электролитическое рафинирование проводят для получения чистой меди (99,95% ). Электролиз проводят в ваннах, где анод - из меди огневого рафинирования, а катод - из тонких листов чистой меди. Электролитом служит водный раствор. При пропускании постоянного тока анод растворяется, медь переходит в раствор, и, очищенная от примесей, осаждается на катодах. Примеси оседают на дно ванны в виде шлака, который идёт на переработку с целью извлечения ценных металлов. Катоды выгружают через 5-12 дней, когда их масса достигнет от 60 до 90 кг. Их тщательно промывают, а затем переплавляют в электропечах.

Кроме этого, существуют технологии получения меди из лома. В частности, путем огневого рафинирования из лома получают рафинированную медь.По чистоте медь делится на марки: М0 (99,95% Cu), М1 (99,9%), М2(99,7%), М3 (99,5%), М4 (99%).

Химические свойства меди

Медь - малоактивный металл, который не взаимодействует с водой, растворами щелочей, соляной и разбавленной серной кислотой. Однако, медь растворяется в сильных окислителях (например, азотной и концентрированной серной).

Медь обладает достаточно высокой стойкостью к коррозии. Однако, во влажной атмосфере, содержащей углекислый газ, поверхность металла покрывается зеленоватым налетом (патиной).

Основные физические свойства меди

Температура плавления °C 1084
Температура кипения °C 2560
Плотность, γ при 20°C, кг/м³ 8890
Удельная теплоемкость при постоянном давлении, Ср при 20°C, кДж/(кг•Дж) 385
Температурный коэфициент линейного разширения, а•106 от 20 до 100°C, К-1 16,8
Удельное електрическое сопротивление, р при 20°C, мкОм•м 0,01724
Теплопроводность λ при 20°C, Вт/(м•К) 390
Удельная электрическая проводимость, ω при 20°C, МОм/м 58

Механические свойства меди

Свойства Состояние
Деформированное Отожженное 
Предел прочности на разрыв, σ МПа 340 - 450 220 - 245
Относительное удлинение после разрыва, δ ψ% 4 - 6 45 - 55
Относительное сужение, после разрыва, % 40 - 60 65 - 80
Твердость по Бринеллю, НВ 90 - 110 35 - 55

При отрицательных температурах медь имеет более высокие прочностные свойства и более высокую пластичность, чем при температуре 20°С. Признаков холодноломкости техническая медь не имеет. С понижением температуры увеличивается предел текучести меди и резко возрастает сопротивление пластической деформации.

Применение меди 

Такие свойства меди, как электропроводность и теплопроводность, обусло- вили основную область применения меди - электротехническая промыш- ленность, в частности, для изготовления проводов, электродов и т. д. Для этой цели применяется чистый металл (99,98-99,999%), прошедший электролитическое рафинирование. 

Медь обладает многочисленными уникальными свойствами: устойчивостью к коррозии, хорошей технологичностью, достаточно долгим сроком службы, прекрасно сочетается с деревом, природным камнем, кирпичом и стеклом. Благодаря своим уникальным свойствам, с древнейших времен этот металл используется в строительстве: для кровли, украшения фасадов зданий и т. д. Срок службы медных строительных конструкций исчисляется сотнями лет. Кроме этого, из меди изготовлены детали химической аппаратуры и инструмент для работы с взрывоопасными или легковоспламеняющимися веществами. 

Очень важная область применения меди - производство сплавов. Один из самых полезных и наиболее употребляемых сплавов - латунь (или желтая медь). Ее главные составные части: медь и цинк. Добавки других элементов позволяют получать латуни с самыми разнообразными свойствами. Латунь тверже меди, она ковкая и вязкая, потому легко прокатывается в тонкие листы или выштамповывается в самые разнообразные формы. Одна беда: она со временем чернеет. 

С древнейших времен известна бронза. Интересно, что бронза более легкоплавка по сравнению с медью, но по своей твердости превосходит отдельно взятые чистые медь и олово. Если еще 30-40 лет назад бронзой называли только сплавы меди с оловом, то сегодня уже известны алюминиевые, свинцовые, кремниевые, марганцевые, бериллиевые, кадмиевые, хромовые, циркониевые бронзы.

Медные сплавы, так же как и чистая медь, с давних пор используются для производства различных орудий, посуды, применяются в архитектуре и искусстве. 

Медные чеканки и бронзовые статуи украшали жилище людей с древних времен. До наших дней сохранились изделия из бронзы мастеров Древнего Египта, Греции, Китая. Большими мастерами в области бронзового литья были японцы. Гигантская фигура Будды в храме Тодайдзи, созданная в VIII веке, весит более 400 тонн. Чтобы отлить такую статую, требовалось поистине выдающееся мастерство.

Интересное о меди

Среди товаров, которыми торговали в далекие времена александрийские купцы, большой популярностью пользовалась "медная зелень". С помощью этой краски модницы подводили зеленые круги под глазами - в те времена это считалось проявлением хорошего вкуса. 

С древних времен люди верили в чудодейственные свойства меди и исполь- зовали этот металл при лечении многих недугов. Считалось, что медный браслет, одетый на руку, приносит своему владельцу удачу и здоровье, нормализует давление, препятствует отложению солей. 

Многие народы и в настоящее время приписывают меди целебные свойст- ва. Жители Непала, например, считают медь священным металлом, который способствует сосредоточению мыслей, улучшает пищеварение и лечит желудочно-кишечные заболевания (больным дают пить воду из стакана, в котором лежат несколько медных монет). Один из самых больших и красивых храмов в Непале носит название "Медный".

Был случай, когда медная руда стала... виновником аварии, которую потер- пело норвежское грузовое судно "Анатина". Трюмы теплохода, направляв- шегося к берегам Японии, были заполнены медным концентратом. Внезапно прозвучал сигнал тревоги: судно дало течь.

Оказалось, что медь, содержащаяся в концентрате, образовала со сталь- ным корпусом "Анатины" гальваническую пару, а испарения морской воды послужили электролитом. Возникший гальванический ток разъел обшивку судна до такой степени, что в ней появились дыры, куда и хлынула океан- ская вода.

<< Назад

melita.com.ua

Медь. Сплавы меди. Свойства и применение.

Знакомство человека с медью исчисляется тысячелетиями, где ее прямым конкурентом может выступать только золото, успевшее приобрести статус благородного металла.

Свойства меди и место в жизни человека

В чистом состоянии, элемент таблицы Менделеева, именуемый Cu, встречается крайне редко. Это – пластичный металл с легким розовым оттенком. Человеку же он знаком под другим цветом: желто-красным, чаще коричнево-красным. Это связано с высокой окислительной способностью вещества. Попадая на воздух, медь покрывается тонкой оксидной пленкой, что и делает цвет металла ближе к красному.

медь в чистом виде

Первобытная тяга человека к меди основывалась на свойстве пластичности, позволяющей придавать этому металлу требуемую форму путем несложной обработки. Медь легко поддается гравировке, нанесению резьбы, оставаясь при этом достаточно прочным. Современная ценность меди, как металла – высокие показатели проводимости: электрической и тепловой. Подобная информация позволяет выделить основные направления поиска этого цветного металла в виде отходов и лома.

Удельный вес меди, составляющий округленно 8.9 г/см3, также полезен сборщику металлолома. Зная объем собранного лома, в частности проводов, жил, легко рассчитать его оценочный вес.

Сплавы меди

Помимо относительно чистой формы, характеризуемой ничтожным содержанием примесей, медь – составляющий элемент многих сплавов, среди которых наиболее известны:

Латунь — сплав меди

Бронза

Мельхиор — больше относится к серебру, нежели к меди

Отдельно стоит выделить медный сплав с никелем, именуемый мельхиор. Он известен широкой аудитории по разменным монетам советских времен, начиная с 10 копеек а также подарочные наборы столовых приборов, но существенно уступает первым двум в степени востребованности.

Наиболее перспективными для нужд человека остаются: латунь и бронза. Желтая медь, так иначе называют латунь, на бытовом уровне широко востребована в сантехнике. Те, кто сталкивался с подбором крана или смесителя, хорошо знают это. По химическому составу различают:

  • двойные латуни – сплав меди с цинком;
  • многокомпонентные, в которых Zn остается основным легирующим элементом.

Процентное содержание цинка, даже в двойной латуни, широко варьируется. Сплавы, где доля Zn составляет не более 20%, именуют томпаком.

Пули из томпака

Определить состав латуни можно исходя из маркировки: для двойных сплавов после буквы «Л» указывается процентное содержание меди, например Л60. Маркировка многокомпонентных сплавов строится аналогично, только за «Л» следуют легирующие примеси с их концентрациями. Таким образом, многокомпонентная латунь марки ЛМц58- 2, использования при изготовлении деталей машин, гаек, болтом, арматуры, подразумевает содержание меди – 58%, цинка – 40%, марганца – 2%.

Бронза – в стандартном понимании, представляет медный сплав с оловом, однако на практике также обладает весьма вариативным составом. Фактически под бронзой принято понимать любой медный сплав, где никель и цинк не являются основными легирующими элементами. Стоит отметить, что найти оловянную бронзу достаточно сложно. Большее распространение получили ее безоловянные сорта.

Медь и ее сплавы, как источник цветного вторичного металла

Взвешивая «чистый» металл и его сплавы на весах прибыльности при сдаче металлолома, можно сказать, что стоимость первого в полтора – два раза выше. Однако весовое содержание меди в металлических конструкциях часто уступает на выходе ее сплавам.

Так, медные сплавы можно обнаружить среди пришедших в негодность изделий сантехники: водопроводные краны, вентили, душевые шланги и трубки. Многие старые светильники, дверная фурнитура также изготовлены из медных сплавов, однако верх пьедестала, по весовому содержанию, занимают радиаторы отопления.

Непосредственно медь стоит искать среди бытовых приборов, желательно уже выработавших свой эксплуатационный ресурс:

  • ламповый телевизор — 1,5 кг;

Ламповый телевизор с медью

  • полупроводниковый ТВ приемник – 0,5 кг;
  • компрессионный холодильник – около килограмма в двигателе, еще столько же могут содержать трубки радиатора;

Незаслуженно обходят вниманием магнитные пускатели, хотя оборудование помимо обмотки содержит медь в шинах. Небольшое содержание металла, менее килограмма принесут автомобильные стартеры и генераторы, дроссели люминесцентных ламп, трансформаторы, реле, компрессоры холодильников.

Смотрите статью — Где искать металлолом меди?

Первичная медь, получение и применение

В зависимости от чистоты металла, различают следующие марки:

Катодная медь М0

Одним из источников сырья для получения металла выступает медный лом, перерабатываемый согласно технологии огневого рафинирования.

Природные ресурсы металла составляет самородная медь и сульфидные руды, в частности медные колчедан и блеск. Существует два металлургических способа получения металла из руды. На основной метод – пирометаллургический, приходится 90% первичного металла, оставшиеся 10% – результат гидрометаллургической технологии.

Медная руда

Физические свойства меди не могли остаться незамеченными в промышленности. Ее высокая электропроводность позволяет использовать металл при изготовлении электродов, проводов, особенно силовых кабелей (марка М0). Относительная химическая инертность меди нашла применение металлу в узлах аппаратуры для работы с огнеопасными веществами.

Высокая теплопроводность металла, наряду с устойчивостью к коррозии, используются  при изготовлении сантехнических конструкций, узлов, а также кровельных покрытий. В настоящее время, медь вытеснили тут другие, более дешевые материалы.

Достаточно широкий рынок применения меди — производство сплавов. Латунь и бронза, где Cu является основным компонентом, уже были рассмотренные ранее. Широко используется другой сплав дюралюминий, где содержание меди доходит до 5%.

xlom.ru

Свойства меди

Насколько важна медь для нормального функционирования человеческого организма можно оценить, зная что её количество в оном на третьем месте среди микроэлементов, больше только железа и цинка. Хотя медь обнаруживается во всех тканях, преимущественное её расположение находится в печени. Не смотря на то что человеку требуется лишь небольшое количество меди ежедневно, дефицит её в организме не редкость и связанно это с частым игнорированием в рационе продуктов богатых этим микроэлементом.

В человеческом теле всего навсего 100-500 мг меди, но значимость её высочайшая. Медь используется организмом для синтеза всевозможных ферментов, некоторые из них являются антиоксидантами. Эти ферменты являются компонентами гемоглобина и коллагена, самого распространенного и значимого белка, в организме человека. В тандеме с железом, медь участвует в сотворении красных кровяных телец и является главной составляющей внешней оболочки нервных волокон и коллагена, а еще она нужна для генерации антиоксиданта супероксиддисмутазы.

НЕМНОГО ИСТОРИЧЕСКИХ ФАКТОВ

Еще до открытия микроорганизмов, во времена ранней римской империи, изделия из меди использовались для обеззараживания и улучшения санитарно-гигиенических условий быта. Было замечено, что водой отстоявшей в медных ёмкостях практически невозможно отравится. Таким образом с помощью меди предотвращали распространение множества заболеваний, передаваемых посредством воды. Позднее, когда микроорганизмы были открыты и исследованы, медь стали применять более целенаправленно, для борьбы с бактериями и вирусами. Сейчас медь активно используется в производстве пестицидов, фунгицидов, противомикробной медицине, противогрибковых покрытиях (красках), антисептиках и медицинском оборудовании.

СЪЕДОБНЫЕ ИСТОЧНИКИ МЕДИ

При нормальном сбалансированном питании человек не должен испытывать дефицита меди. Она присутствует в широком ассортименте доступных и недорогих продуктов: всевозможные зерновые каши, фрукты, бобовые, куриное мясо, орехи, ливер.

СКОЛЬКО МЕДИ НУЖНО В ДЕНЬ?

Конечно каждый человек и его образ жизни индивидуальны, а соответственно и потребность в различных элементах разнится. Но, все таки определенные рамки есть: минимум — 0,9 мг, максимум - 1,3 мг, для взрослого человека.

В рубрике «Состав продуктов», в таблицах, мной указана норма в размере 1,8 мг. К такому значению я пришел изучив несколько десятков источников (достоверных и не очень), сложив все данные и разделив на количественное значение источников. Так что с точки зрения среднеарифметического 1,8 мг — более доверительное и компромиссное значение.

ПОЛЬЗА И СВОЙСТВА МЕДИ

Хотя медь и относится к микроэлементам (фактическое содержание и потребность организма очень малы), значимость очень велика и многогранна, так как этот метал требуется для синтеза и жирных кислот, и аминокислот и принимает непосредственное участие в обменных процессах организма. Не смотря на доступность продуктов содержащих медь, недостаток её в организме — не редкость и причины этого: игнорирование медьсодержащих продуктов и невозможность синтеза меди самим организмом. Вот какие функции осуществляет медь и в чем заключается их важность и польза:

• Надлежащее и правильное развитие. Медь нужна для нормального роста и развития организма. Без меди белки не могут использоваться организмом, так как это должно быть. Организм неспособен синтезировать медь, поэтому при её дефиците возможны проблемы с развитием и реновацией организма.

• Помогает организму усваивать железо. Медь помогает организму поглощать и усваивать железо. Поэтому дефицит железа в организме обычно связан с недостатком меди.

• Применяется в лечении артрита и остеопороза. Значительное количество меди находится в костях и мышечной ткани, поэтому сбалансированное её содержание очень важно для здоровья соединительных тканей и суставов. Медь способствует ослаблению интенсивности симптомов при артрите и остеопорозе.

• Отвечает за пигментацию. Фактически в организме медь присутствует в двух формах: сульфате и глюконате, эти соединения можно найти буквально в любой клетке организма. Они, в свою очередь, способствуют выработке меланина, а он то и отвечает за пигментацию кожи, волос и глаз.

• Применяется для лечения анемии. Наравне с железом, медь важна в процессе дыхания и насыщения крови кислородом. Медь способствует правильному усвоению и высвобождению железа, а оно в свою очередь, непосредственно участвует в процессе создания гемоглобина (красных кровяных телец). По этой причине добавки меди иногда используют для лечения анемии.

• Важна для щитовидной железы. Медь участвует в процессах создания и нормализации гормонов щитовидной железы и играет важнейшую роль в обеспечении нормальной её функции.

• Стимулирует работу мозга. Медь участвует в процессах насыщения крови кислородом, а значит и головного мозга, активируя его деятельность. Поэтому медь широко известна как стимулятор умственной деятельности, «пищи для мозга». В тоже время не нужно забывать что переизбыток меди плохо влияет на мозговую деятельность.

• Снижает уровень холестерина. Медь обладает некоторыми свойствами снижающими уровень «плохого» холестерина и повышает уровень «хорошего» холестерина. Тем самым медь косвенно отвечает за снижение риска заболеваний сердца и кровеносной системы.

• Элемент ферментативных реакций. Медь входит в состав более чем 50-ти ферментов в человеческом организме, большинство из которых работают как антиоксиданты.

• Антибактериальные свойства. Множественные исследования доказали антибактериальные свойства меди. Они активно используются в фармакологии, медицине и быту.

• Важна для развивающихся плодов, младенцев и детей. Медь — жизненно необходимый элемент для развития и роста человека. Недостаток меди в организме беременной матери чреват различными проблемами со здоровьем у ребенка связанными, в первую очередь, с нервной и мышечной системами.

МЕДЬ ДЛЯ КОЖИ

Окромя вышеперечисленных свойств меди, полезных и важных для организма в целом, она также играет важную роль в косметическом уходе за кожей и волосами. Пептиды (связанные между собой «кусочки» аминокислот) меди играют значимую роль в оздоровлении и восстановлении кожи, а сульфат и глюконат меди берут непосредственное участие в создании коллагена, то есть обновлении кожного покрова и улучшении действия антиоксидантов.

Пожалуй найдётся немного людей знакомых с термином пептиды меди, не смотря на то, что они являются важнейшими элементами в деле регенерации кожи. Пептиды — фрагменты белков (аминокислот) которые очень важны для кожи, в частности для заживления поврежденных её участков и создания новых тканей. Медь является связующим звеном между элементами белков, своеобразным замочком скрепляющим два разрозненных кусочка белка. Связанные посредством меди кусочки белков и есть пептиды меди. Вот как важны пептиды для здоровья кожи:

• Способствует регенерации кожи, что очень важно при повреждениях кожных покровов.

• Противовоспалительные свойства пептидов позволяют лечить различные виды раздражений возникающих на коже.

• Регенерируют кожные покровы путём создания новых элементов коллагена и эластина, тем самым делая кожу более упругой, эластичной и молодой.

• Достаточное производство коллагена препятствует образованию мелких морщин, а эластина — препятствует провисанию кожи, которое является причиной образования глубоких морщин.

• Способствует заживлению повреждений кожи, удалению царапин и рубцов, обеспечивает здоровый и ухоженный вид.

Не секрет что здоровье кожи непосредственно отражается и на волосах, поэтому пептиды меди не менее важны для здоровья волос. Они применяются как и в повседневных средствах по уходу за волосами, так и в медицинских укрепляя и заживляя волосяные фолликулы поврежденные химиотерапией или пересадкой волос. Пептиды помогают восстановлению и питанию волосяных фолликулов, замедляют процессы проявления седины и облысения.

СИМПТОМЫ ДЕФИЦИТА МЕДИ

Как правило дефицит меди проявляется в следующих симптомах: анемия, кожные проблемы, депрессия, преждевременное поседение и выпадение волос, слабость кровеносных сосудов, аритмия, анорексия, хрупкость костей, остеопороз, повышенный уровень холестерина.

✎ Здесь продолжение этой рубрики: Состав и польза различных продуктов →

Домашняя диета | 2011 - 2018 | © Пожалуйста при использовании материалов этого сайта укажите источник гиперссылкой. | Карта сайта

dieta-doma.com

Свойства меди

С древних времён люди использовал медь как средство от многих недугов, как физических, так и эмоциональных. Например, медный браслет, надетый на руку, приносил своему владельцу удачу и здоровье; воины, носившие медные доспехи, быстрее справлялись с усталостью, их раны меньше гноились и быстрее заживали.

Известно, что медь обладает мощными бактерицидными свойствами. Раньше во многих больницах и поликлиниках дверные ручки были медными. Исследования полезных свойств меди еще не закончены, но уже сейчас можно говорить о ее великолепных противовоспалительных свойствах. Доказана ее способность нейтрализовать разрушительное действие свободных радикалов, повышать насыщение клеток кислородом, защищать хрящи суставных поверхностей. Медь обеспечивает прочность костных тканей, влияя на внутри- и межмолекулярные связи: регулирует и перераспределяет энергию при физических нагрузках.

Еще медь способствует понижению температуры, снимает боль, останавливает кровотечения, нормализует артериальное давление, активизирует обмен веществ, успокаивает нервную систему и улучшает сон. Медь притягивает к себе микробы, и парализует их активность в организме человека. В древности, например, во время эпидемий чумы и холеры не болели люди, которые работали с медью или носили медные украшения. А кочующие цыгане всегда носили на голове обруч из меди, и поэтому среди них почти не было паралитиков и инфекционных больных.

Медь - могучий минерал. Она не только совершенно необходима, чтобы помогать сердцу правильно функционировать, но также контролирует уровни холестерина, сахара и мочевой кислоты. Вдобавок она укрепляет кости, усиливает выработку красных и белых клеток крови, поддерживает иммунную функцию, способствует росту маленьких детей и является главным средством лечения ревматоидного артрита.

Медь необходима для поддержания способности сердца перекачивать кровь, для предотвращения аневризм и обеспечения роста прочной артериальной соединительной ткани, устойчивой к разрывам. Соединительная ткань самой сердечной мышцы тоже нуждается в меди для предотвращения кардиомиопатии, связанной с неадекватным питанием.

Поскольку медь необходима для выработки коллагена в костях, ее добавки играют ключевую роль в исцелении. Применение меди для лечения ревматоидного артрита может служить одним из лучших примеров того, как питательная добавка может превосходить медикаментозные методы лечения традиционной медицины. Медь помогает организму вырабатывать пероксид-дисмутазу - самый целебный из его внутриклеточных противовоспалительных ферментов. Поскольку соединения меди также помогают исцелению пептических язв желудка и двенадцатиперстной кишки, то они представляют собой прямую противоположность обычно используемых при артрите нестероидных противовоспалительных препаратов провоцирующих образование таких язв.

Медь важна для поддержания баланса микрофлоры, сдерживающего рост дрожжевых микроорганизмов, однако ее избыточное количество, напротив, усиливает собственную патогенную природу дрожжей. Медные комплексы обладают непосредственным антибактериальным и противогрибковым действием.

Последствия дефицита меди

Многие американцы, например, более склонны к дефициту, чем к избытку меди. Недавние опросы показывают, что лишь 25% американцев потребляют достаточно меди; большинство получают только 50-60% рекомендуемого ежедневного количества, которое составляет всего 2 мг. Вегетарианцы тоже могут испытывать нехватку этого минерала, а наше растущее потребление кукурузных подсластителей с высоким содержанием фруктозы усиливает дефицит. Наконец, низкое содержание меди в организме широко распространено среди обитателей домов престарелых.

При ограничении потребления меди мы теряем фермент, именуемый церулоплазмином - жизненно важный антиоксидант, который защищает нас от угрозы свободного железа.

Существуют подозрения, что дефицит меди, возможно, вносит основной вклад в развитие коронарной болезни сердца. Дефицит этого минерала часто встречается у пожилых женщин, подверженных переломам и трещинам костей ног. Использование пищевых добавок с медью может снижать частоту этих травм.

Известно, что дефицит меди ослабляет иммунную систему. Значит, восстановление оптимального уровня минерала должно ее укреплять.

 

 

 

www.project-aqua.ru

Что такое медь? Свойства, история и происхождение меди

История меди

Добрый день, уважаемый читатель, в данной статье хочу рассказать о меди и её свойствах. Что такое медь? Ответ на этот вопрос знают почти все. Она имеет обозначение Cu (произносится купрум) в таблице В. И. Менделеева находится под атомным номером 29. Медь  – химический элемент, представляет собой металл. Название меди Cuprum является латинским и происходит от названия острова Кипр.

Данный металл  широко применяется человеком уже долгие годы. Имеются достоверные факты о том, что индейцы, жившие в Эквадоре уже в XV веке умели добывать и использовать медь. Из неё они изготовляли монеты в виде топориков.

Данная  монета очень продолжительное время являлась единственным денежным знаком, который существовал  на побережье Южной Америки. Эта монета даже использовалась в торговле с инками. На острове Кипр, в III веке до нашей эры уже были открыты медные рудники. Известен интересный факт, что древние алхимики называли медь — венера (Venus).

Происхождение меди

Медь в природе встречается либо в самородках, либо в соединениях. Особое значение в промышленности имеют халькозин, борнит и медный колчедан. Однако и такие популярные в ювелирном деле  поделочные самоцветы, как лазурит и малахит практически на сто процентов состоят из меди.

Медь имеет золотисто – розовую окраску. На воздухе этот металл очень быстро окисляется и покрывается оксидной плёнкой, которая называется патина. Именно из-за патины медь приобретает желтовато – красный цвет. Этот металл входит в состав очень многих сплавов, которые широко используются в промышленности.

Распространённые сплавы меди

Самым известным сплавом является дюралюминий, который состоит из сплава меди и алюминия. Медь в дюралюминии играет главную роль. Мельхиор также содержит медь в соединении с никелем, бронза – соединение олова и меди, латунь – сплав меди с цинком.

Медь обладает довольно  высокой тепло и электропроводностью. По сравнению с другими металлами, она  занимает второе место после серебра по электропроводности. В ювелирном производстве часто используют сплавы золота с медью. Медь в данном сплаве  нужна для увеличения прочности ювелирных украшений к деформациям и истиранию.

В давние времена был известен сплав меди с оловом и цинком, который назывался пушечный металл. Как вы уже, наверно, догадались, что из данного сплава изготавливали пушечные ядра, но с развитием новых технологий, пушки перестали использовать и выпускать, однако данный сплав по сей день используется в производстве оружейных гильз.

Медь имеет  бактерицидные свойства и поэтому она широко применяется в медицине,  которые очень часто применяются в медицине. Данный  факт доказан научными экспериментами и исследованиями. Особенно хорошо медь  противостоит  золотистому стафилококку.  Этот  микроб вызывает большое количество гнойных заболеваний кожи.

Токсичность меди

В тоже время известны факты того, что медь бывает очень токсичной. На планете Земля существует озеро Беркли Пит, оно находится в США в штате Монтана. Так вот это озеро считается самым токсичным в мире. Причиной тому является медный рудник, на месте которого образовалось озеро.

Вода в озере очень токсична, в ней почти нет живых организмов, а глубина озера составляет более 0,5 километра. Сильную токсичность воды  доказывает один пример, который произошёл однажды на озере. Стая диких гусей, состоявшая из 35 взрослых особей, опустилась на водную гладь озера, а через 2,5 часа все птицы были найдены погибшими.

Однако, совсем недавно, на дне озера были обнаружены совсем новые микроорганизмы и водоросли, которые не встречались ранее в природе. В результате мутаций, данные жители хорошо себя чувствуют в токсичной воде озера.

tvoi-uvelirr.ru

  С

Свойства меди зависят от ее атомной структуры. Такие свойства, как термодинамические, магнитные, упругость определяются строением кристаллической решетки и не зависят, или очень мало зависят от ее дефектов и наличия в ней чужеродных атомов. В то же время такие свойства, как электро- и теплопроводность, механические, усталостные, оптические, коррозионные и другие сильно зависят от дефектов кристаллической решетки и наличия в ней чужеродных атомов.

Атомный номер меди 29. Электронная конфигурация свободного атома меди в нормальном состоянии (0 К) IS2 2S2 2р6 3S2 Зр6 3d10 4S1, основной терм - 2S 1/2.

Медь, встречающаяся в природе, состоит из стабильных изотопов 63Cu (69,1%) и 65Си (30,9%).

Медь изоморфна и кристаллизуется с образованием гранецентрированной кубической ре- шепси со структурой типа Al Период кристаллической решетки меди, равный 0,36074 нм при температуре 18С, практически не зависит от чистоты меди..

Медь является уникальным электро- и теплопроводящим металлом и уступает по этим характеристикам только серебру.

Высокая электропроводность элементов подгруппы меди (Си, Ag, Au) по сравнению с другими элементами объясняется большим числом свободных электронов, способных переносить электрический заряд. Электропроводность металлов согласно квантовой теории зависит не от общего числа электронов, свободно движущихся в единице объема, а от числа таких электронов, для которых имеются еще незаполненные энергетические уровни, образующие зону проводимости. Это число называется эффективным электронным числом (nэфф).

За эталон электросопротивления принята отожженная проволока из электролитической меди чистотой 99,9% с плотностью 8,89 г/см , длиной 1 м и массой 1 г. Электросопротивление такой проволоки при температуре 20С - 0,15328 0м, удельное электросопротивление при этой температуре, составляющее 0,017241 мк*Ом*м, принято за эталон 100% электропроводности по IACS.

Удельная электропроводность такой проволоки составляет 58 МСм/м.

Для бескислородной меди высокой чистоты, содержащей примеси, %: Fe - 0,0005; Sb - 0,0001; Pb - 0,00005; Sn - 0,00005; Ni - 0,0001; Bi - 0,0001; Ag - 0,00003; As - 0,0001; Те - 0,0001; Se - 0,0001; S - 0,0001; С - 0,0008, получены следующие характеристики:

Удельное электросопротивление при 20С, мк*Ом*м                              0,0167

Удельная электропроводность, МСм/м                          59,88

Электропроводность при 20С (IACS), %:

объемная                                                                                                               103,6

по массе                                                                                                                 102,3

Наиболее отрицательное влияние на электропроводность меди оказывают элементы с резким отличием химических свойств.

Электросопротивление меди изменяется пропорционально содержанию примесей, если они в определенных пределах образуют с медью твердые растворы. Растворимые в меди примеси в большей степени снижают ее электропроводность по сравнению с примесями, образующими с медью гетерогенные сплавы. В гетерогенных сплавах электросопротивление меди зависит не только от содержания примесей, но и от формы расположения и распределения гетерогенной фазы.

Влияние примесей на электропроводность кислородсодержащей меди отличается от влияния их на бескислородную медь. Многие элементы-примеси образуют с кислородом оксиды, которые оказывают меньшее влияние на электропроводность меди, чем соответствующие металлы.

Серебро, мышьяк, висмут, селен, сера и теллур при содержании их в меди < 0,05% каждого не образуют стабильных оксидов, поэтому влияние кислорода на их поведение невелико.

. .

 

, , . !

 

 

libmetal.ru