Что происходит с двигателем во время горения газа? Температура горения пропан


Температура горения пропана

Температура горения пропана

Добрый день дорогие читатели и посетители нашего сайта. В данной статье мы рассмотрим основные технические характеристики пропан-бутана, его предназначение, химические и физические свойства.

Сфера применения газа

Пропан-бутан представляет собой уникальное вещество на газовой основе, которое имеет в своем составе одноименные молекулы.

 

Общепризнанная химическая формула пропана состоит из молекул и атомов двух основных составляющих – пропана (С3Н8) и бутана (С4Н10).

 

Широко используемый в бытовых целях, этот газ применяется практически везде – начиная с приготовления еды на сковороде, и заканчивая резкой толстого слоя металла, активным использованием его на различных производствах вообще.

Также им все чаще заправляют свои автомобили люди, отказавшиеся от топлива на бензиновой основе.      

Химические и физические свойства

Пропан-бутан обладает уникальнейшими химическими, физическим свойствами, что буквально и сделало его столь популярным среди потребителей всего мира.

 

Во-первых, этот представитель сжиженных углеродных газов остается в жидкой форме исключительно при большом давлении, которое равно 16-ти атмосферам. Поэтому при транспортировке вещество перевозят только в газовых баллонах с соответствующим давлением.

 

Температура горения пропана не равна какому-то определенному числу и колеблется в пределах между 800-1970 градусов по Цельсию. Столь высокие показатели полностью оправдывают ту пользу, которую он приносит в быту человека, ведь горение этой смеси имеет большой КПД при исполнении любых задач, связанных с использованием данного газа.

 

Температура кипения пропана составляет -42 градуса по Цельсию, что свидетельствует о гарантии безопасности эксплуатации в нормальных условиях.  

 

Но так как мы рассматриваем смесь пропана с бутаном, то эта цифра может подняться до отметки -25 градусов и даже выше, в зависимости от процентного соотношения составляющих в веществе. Стоит учесть, что пропан замерзает при температуре -188 градусов.     

 

При перевозке вещества не стоит забывать о температуре пропана в баллоне, которая не должна превышать отметку выше 15 градусов по Цельсию.

 

Такой подход считается наиболее безопасным, поскольку при транспортировке с высшей температурой газовых баллонов, существенно возрастает риск возгорания.  

 

Кстати, что касается температуры воспламенения пропана-бутана, то и здесь они отличаются – у первого она составляет 504 градуса по Цельсию, а у второго – 430. Но, не смотря на столь большое количество отличий между своими составляющими, этот представитель сжиженных углеродных газов вполне конкурентный с бензиновыми горючими смесями.

Технические характеристики

На вопрос: «Каким образом химические и физические свойства связаны с техническими особенностями этой смеси?», стоит рассматривать все возможные варианты ответов.

 

  • Во-первых, благодаря своему высокому давлению «удержания» в жидком состоянии, этот газ слишком инертный. То есть легко поддается переходу из жидкого состояния в газообразное.Это очень полезная особенность на производствах, где это является крайней необходимостью.
  • Во-вторых, низкая температура кипения и замерзания делает пропан-бутановую смесь стойкой к «столкновениям» с веществами азотного происхождения. Следовательно, гарантирует ей безопасность от замерзания и кипения.
  • Ну и, конечно же, стоит отметить высокую температуру горения пропана, без которой его польза была бы не столь существенной для достижения определенных бытовых или производственных целей.     

www.gazekoset.ru

Пропан, температура пламени - Справочник химика 21

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбулпламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]     Горючим может служить любой газ с высокой температурой горения наиболее часто используются ацетилен, пропан, бутан, водород, природный или каменноугольный газ. Сжигая эти газы в воздухе или кислороде, получают пламя с температурой от 1700 до 3200 °С. Более высокие температуры достигаются при сжигании циана. Чем выше температура пламени, тем больше число возбужденных элементов. Кроме того, повышение температуры приводит к повышению чувствительности анализа. Вид используемого пламени в некоторой степени зависит от устройства горелки. [c.85]

    Пропан — воздушное пламя в настоящее время применяют крайне редко, лишь для определения щелочных металлов. Это связано с низкой температурой пламени, в котором не происходит полная атомизация большинства элементов. Но для определения щелочных элементов пропан и природный бытовой газ предпочтительней, так как они позволяют получить более ста- [c.34]

    В качестве горючих газов применяют ацетилен, пропан-бутано-вую смесь или природный газ. Предпочтение следует отдать ацетилену, который, сгорая, создает пламя более высокой температуры при сжигании ацетилена образуется относительно меньше воды, являющейся активным окислителем В случае использования пропан-бутановой смеси и природного газа применяют специальные сопла и мундштуки. [c.84]

    Большое значение в этом методе имеет температура пламени. При сжигании смесей воздуха с пропаном или бутаном достигается температура 1700—1900° С и возбуждаются только атомы щелочных металлов. Для определения щелочно-земельных металлов необходимо пламя смеси воздуха с ацетиленом, дающее температуру около 2300°С. Уни- [c.373]

    Состав газовой смеси определяет температуру пламени, которая влияет не только на степень диссоциации молекул, но и на концентрацию возбужденных атомов определяемых элементов. В настоящее время наряду с традиционными низкотемпературными пламенами (например, ацетилен — воздух, пропан — воздух с Г 2100—2600°К), в которых возбуждаются только легкоионизуемые элементы, применяют пламена с температурой 5000° К и выше (дициан — кислород, дициан — озон, закись азота — водород и др.). Последние позволяют возбуждать аналитические линии большого числа элементов как с низким, так и средним потенциалом ионизации [94, 95, 1013, 1150, 1196]. [c.209]

    ДЛЯ определения щелочных и щелочноземельных металлов, а также некоторых других элементов (1п, Т1, РЬ, Мп, Си и др.)- Возбуждение атомов щелочных металлов происходит при 1200—1400° С, такую температуру дает пламя смесей воздуха с пропаном, бутаном, светильным газом. Для возбуждения атомов щелочноземельных металлов необходима температура 2300°С (смесь воздуха с ацетиленом). [c.243]

    Устройство и настройка паечного поста были описаны выше, здесь приводится информация о строении паечного пламени. При сгорании в струе кислорода пропан-бутано-вой смеси образуется пламя, состоящее из трех зон. Ядро — зона с температурой около 1000 С, здесь пропан-бутановая смесь, выходя из сопла горелки, нагревается и частично распадается, при этом раскаленные твердые частицы углерода ярко светятся, оболочка ядра — наиболее яркая часть пламени. Средняя — восстановительная зона — наиболее высокотемпературная часть пламени (до 2200 С), здесь происходит первая стадия сгорания пропан-бутановой смеси за счет первичного кислорода, поступающего из ба шона. В результате этого получается смесь, состоящая из окиси углерода и водорода, смесь активна по отношению к кислороду и способна восстанавливать металлы из окислов, отчего зона и называется восстановительной. Факел - третья зона пламени с температурой 2000-1500 °С, в факеле происходит вторая стадия горения пропан-бутановой смеси за счет поступления кислорода воздуха. Разлагающиеся двуокись углерода и вода выделяют кислород, который совместно с СО и парами воды окисляет паяемый металл. Для образования нормального пламени необходимо, чтобы соотношение кислорода и пропан-бутана составляло 3,4- 3,8. [c.96]

    Источники пламени. Применяют пламя, для получения которого в качестве горючего используют ацетилен, пропан или водород, а в качестве окислителя — воздух, кислород или оксид азота (I), Выбранная газовая смесь определяет температуру пламени. ВоЗ душно-ацетиленовое пламя и воздушно-пропановое имеют низкую температуру (2200—2400 °С). Такое пламя используют для определения элементов, соединения которых легко разлагаются при этих температурах. Таких элементов большинство, и потому в дальней шем тексте, если нет специальных указаний, предполагается использование воздушно-ацетиленового пламени. Воздушно-пропановое пламя используют тогда, когда имеются затруднения в получе НИИ ацетилена такая замена осложняет работу, поскольку в техническом пропане имеются примеси, загрязняющие пламя. Прй определении элементов, образующих трудно диссоциирующие соа- [c.20]

    В заключение представляется целесообразным сравнить величины энергий диссоциации Оо окислов элементов с экспериментальными данными о наличии или отсутствии свободных атомов в пламенах. На рис. 14 представлены данные для тех элементов, для которых они имеются 20. Из рисунка видно, что элементы, имеющие окислы с /)обыть определены в пламенах смесей пропан —воздух или ацетилен — воздух по эмиссионным или абсорбционным атомным спектрам, т. е. они образуют свободные атомы. Исключение составляет бериллий, который, вероятно, не поступает в пламя ввиду высокой температуры кипения его окисла. Элементы, у которых Оо около 5 эв (Мо, Mg), с большей чувствительностью определяются в слабовосстановительном пламени. При Оо, равном 5—6 эв (Ва, 8п), свободные атомы элементов еще существуют в пламени в не- [c.40]

    Пламя используют в качестве источника света в методе фотометрии пламени, атакже как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. раздел 2). В зависимости от состава горючей смеси (воздух-пропан, воздух—ацетилен, воздух—водород и др.) температура пламени может поддерживаться в интервале 2000—3000 К, что обеспечивает достаточно низкий С обнаружения элементов (0,001—1 мг/л). [c.219]

    Пламя в атомной абсорбции выполняет роль температурной ячейки, применяемой для атомизации пробы. Возможность определения с достаточной чувствительностью того или иного элемента методом атомно-абсорбционной спектрофотометрии зависит от температуры пламени, а также от соотношения горючего газа и газа, поддерживающего горение. В основном при этом методе применяются пламена смесей пропан — воздух, ацетилен — воздух, ацетилен — закись азота. Низкотемпературное пламя (пропан — воздух, температура 1925° С) применяется с успехом для определения элементов, соединения которых легко диссоциируют при этой температуре. Сюда относятся цинк, медь, магний. [c.208]

    Сварка и резка. При сварке и резке металлов применяется 98,5—99,5%-ный кислород. Для газовой сварки кислород смешивают с горючим газом, например с ацетиленом, пропаном, чтобы интенсифицировать процесс сгорания газа и получить пламя с высокой температурой, требующееся для быстрой плавки металла в месте сварки. [c.20]

    Для закалочного пламени применяются пропан, природный газ и городской газ в смеси с кислородом, но наиболее распространенным источником нагрева является кислородно-ацетиленовое пламя. Преимущества ацетилена обусловлены хорошими теплофизическими свойствами его пламени, сочетанием высоких температуры пламени и скорости сгорания, уже упоминавшимися выше в других случаях, когда ацетилен конкурирует с другими, значительно более дешевыми горючими газами. [c.638]

    Самостоятельная группа процессов газопламенной обработки связана с термической резкой металлов, которая объединяет способы кислородной, плазменнодуговой и лазерной резки. Преимущественное распространение в настоящее время имеет кислородная резка, при которой используется подогревающее пламя для нагрева кромки реза до температуры его воспламенения в кислороде. Наиболее эффективным горючим газом для подогревающего пламени является ацетилен. Однако в связи с его дефицитностью часто применяют другие пропан-бутан, природный газ и керосин. Ежегодно выпускается несколько сот тысяч ручных ацетиленокислородных резаков для резки и свыше трех тысяч машинных резаков [c.11]

    Анализируемый раствор распыляется пульверизатором и образующийся туман вводится в пламя горелки, питаемой ацетиленом, пропан-бутаном или природным газом. В пламени сначала происходит поглощение энергии атомами в связи с переходом некоторых электронов на более удаленные от ядра орбиты. Затем совершается обратный процесс — переход электронов на более близкие к ядру орбиты, идущий с выделением энергии в виде лучей с определенной длиной волны. Вследствие того, что температура пламени невысока, на более удаленные орбиты переходят лишь некоторые электроны. Поэтому [c.74]

    Для создания аналитических пламен может быть использован ряд газовых смесей. Наиболее часто используют пламена пропан-воздух, ацетилен-воздух и ацетилен-кислород, которые обеспечивают температуры 2200, 2500 и 3300 К соответственно. Увеличение температуры пламени ацетилен-кислород по сравнению с пламенем ацетилен-воздух достигается благодаря отсутствию азота, поглощающего энергию. Могут быть использованы как стехиометрические, так и обогащенные, т. е. с избытком горючего, пламена, чтобы уменьшить образование оксидов определяемого элемента. Интересной особенностью пламени является то, что процесс этот самоподцерживающийся, до тех пор пока поступают горючее и окислитель. Другими словами, нет необходимости в подведении внешней энергии. Проба в жидком виде может быть введена в пламя, где она десольватируется, испаряется, диссоциирует и затем атомизуется, прежде чем будет возбуждена. [c.17]

    Навеску пробы 2 г помещают в платиновый тигель и отгоняют Ge l4 при температуре 70° С в токе неона или аргона. Остаток растворяют в 6 М НС1, высушивают и растворяют в воде. Для определения натрия используют атомно-абсорб-ционный метод, спектрофотометр на основе монохроматора ЗМР-3, источник света — безэлектродные ВЧ-лампы ВСБ-2, пламя пропан—воздух. Предел обнаружения натриц 5-10 %. При содержании натрия 0,0002 мг/мл относительное стандартное отклонение 0,05. [c.170]

    При повышении температуры углеводородо-воздушной смеси состав кажущегося бедного предела зажигания изменяется на 6—8% на каждые 100 температуры [19, 20]. Эджертон и Табет [16] изучали влияние температуры на предел воспламенения системы пропан — воздух в области бедных смесей и установили, что предел (выраженный процентным содержанием пропана в смеси) почти линейно изменяется с температурой. Они получили значения, изменяющиеся от 1,82% пропана при 148° до 1,38% пропана при 380°. В данной работе самый бедный предел оказался равным 1,83% пропана на трубке диаметром 6,3 мм при Ир/и., я= 3 и скоростях основного потока 15—30 м/сек. Эти результаты согласуются с данными Эджертона и Табета [16], если учесть предварительный нагрев смеси вспомогательным пламенем. В частности, тепла вспомогательного пламени вполне достаточно для повышения средней температуры ядра основного потока диаметром 20 мм от начальной температуры 15° до температуры предварительного нагрева 140°. Тот факт, что вспомогательным пламенем практически нагревается сравнительно небольшое ядро из всего сечения основного потока, подтверждается температурными кривыми, снятыми по сечению потока на выходе из горелки. Как только пламя устанавливается в таком [c.84]

    Низкотемпературные пламена. В низкотемпературных пламенах наблюдается увеличение чувствительности определения тех металлов, соединения которых диссоциируют при низких температурах. Кроме того, для легко ионизируемых элементов в этих пламенах степень ионизации уменьшается. Поэтому использование для определения рубидия пламен с температурой более низкой, чем температура пламени воздух — ацетилен, по-видимому, создает определенные аналитические преимущества. Как и ожидалось, в пламени пропан —бутан — воздух чувствительность определения рубидия составила 0,12 лгкг/лл, в то время как в пламени воздух — ацетилен — 0,25 мкг мл (в обоих случаях исследуемые растворы содержали только рубидий). Однако величина шума в низкотемпературных пламенах была в 10 раз больше, очевидно, вследствие механической нестабильности пламени. Поэтому не удавалось воспользоваться преимуществами метода расширения шкалы, так что предел обнаружения в пламени воздух — ацетилен имел более низкое значение. В пламени пропан — бутан — воздух по мере его обогащения абсорбция уменьшалась. Максимальное ее значение наблюдалось в ближайших к поверхности горелки областях. При использовании пламени воздух — ацетилен величина отношения топливо — воздух не оказывала заметного влияния на абсорбцию рубидия. [c.124]

    Некоторые исследователи считают и подтверждают экспериментально, что воспламеняемая газовоздутаная смесь существует в зоне действия видимого облака. Однако известны случаи, когда взрывоопасную концентрацию газовоздушной смеси обнар)Ж1вали при проведении экспериментов на расстоянии до 6 м от кромки видимого облака газа с подветренной стороны. При воспламенении газовоздушной смеси пламя распространяется в направлении к месту испарения газа. Однако благодаря карманам , возникающим в газовом облаке и создающим его неоднородную концентрацию, пламя может и не распространяться к месту испарения СПГ. Температуры воспламенения паров СПГ и сжиженных углеводородных газов (этан, этилен, пропан) практически совпадают. Однако скорость выгорания СПГ выше, чем у других углеводородов. В зависимости от условий выгорания (из резервуара, с поверхности земли) линейная скорость выгорания изменяется от 12 до 25 мм/мин. [c.628]

    ИЛИ кислорода со светильным газом, пропаном, ацетиленом или водородом. В специальных случаях, однако, применимы и другие смеси. Для возбуждения большого числа элементов Б. Л. Валли и А. Ф. Бартоломей [27] применили кислородно-циановое пламя. В табл. 11 приведены температуры пламен различных газовых смесей. [c.188]

    После распыления проба (теперь уже в виде тумана) разлагается на атомы или молекулы, способные излучать или поглощать свет. В качестве испарителя в обоих методах чаще всего применяют пламя. Роль пламени для получения возбужденных атомов достаточно подробно рассмотрена Дином [2], Германном и Алькемаде [3]. Светильный газ, пропан, бутан, водород и дициан в смеси с воздухом или кислородом успешно применяют для получения требуемых температур пламени. Как было отмечено выпге, в эмиссионном методе анализа температура пламени имеет гораздо большее значение, чем в абсорбционном. Влияние пламени на чувствительность анализа будет рассмотрено в дальнейшем. [c.188]

chem21.info

Краткие сведения о кислороде, пропан-бутане и ацетилене

Кислород - это газ без вкуса, запаха и цвета, не горючий, но активно поддерживает горение, немного тяжелее воздуха. При нормальном атмосферном давлении (760 мм ртутного столба) при температуре 0° С масса 1 м куб. кислорода равна 1.43 кг, а при нормальном атмосферном давлении и температуре 20° С, масса 1 м куб. кислорода равна 1.33 кг, масса 1 м куб воздуха равна 1.29 кг.

Кислород - это газ без вкуса, запаха и цвета, не горючий, но активно поддерживает горение, немного тяжелее воздуха. При нормальном атмосферном давлении (760 мм ртутного столба) при температуре 0° С масса 1 м куб. кислорода равна 1.43 кг, а при нормальном атмосферном давлении и температуре 20° С, масса 1 м куб. кислорода равна 1.33 кг, масса 1 м куб воздуха равна 1.29 кг.

В промышленности кислород получают из атмосферного воздуха методом глубокого охлаждения и ректификации.

Технический кислород для газопламенных работ получают в специальных установках из атмосферного воздуха в жидком состоянии. Жидкий кислород - это легко подвижная, голубоватая жидкость. Температура кипения (начало испарения) жидкого кислорода минус 183° С.

При нормальных условиях и температуре минус 183° С. легко испаряется, превращаясь в газообразное состояние. При повышении температуры интенсивность испарении увеличивается. Из 1 литра жидкого кислорода, образуется около 860 литров газообразного.

Кислород обладает большой химической активностью. Реакция соединения его с маслами, жирами, угольной пылью, ворсинками ткани и т.д., приводит их к мгновенному окислению, самовоспламенению и взрыву при обычных температурах.

Кислород в смеси с горючими газами и парами горючих жидкостей образует в широких пределах взрывчатые смеси.

«Кислород газообразный технический» согласно ГОСТ 5583- 78 выпускается для сварки и резки трех сортов: 1-й - чистотой не менее 99,7%, 2-й - не менее 99,5%, 3-й - не менее 99,2% по объёму. Чем меньше в кислороде газовых примесей, тем выше скорость реза, чище кромки и меньше расход кислорода. На предприятие поставляется в газообразном состоянии, в стальных кислородных баллонах «голубого» цвета ёмкостью 40 дм. куб. и давлением 150 кгс/см2. Сжатый кислород хранят и транспортируют в баллонах по ГОСТ 949-73.

Пропан - технический, бесцветный газ с резким запахом, состоящий из пропана С3Н8 или из пропана и пропилена С3Н6, суммарное содержание которых должно быть не менее 93%. Получают пропан при переработке нефтепродуктов. Пропанобутановая смесь – это смесь газов главным образом технического пропана и бутана. Эти газы относятся к группе тяжёлых углеводородов. Сырьём для их получения являются природные нефтяные газы, отходящие газы нефтеперерабатывающих заводов. Эти газы в чистом виде или в виде смесей при нормальной температуре и на большом повышении давления могут быть переведены из газообразного состояния в жидкое состояние.Хранится и транспортируется пропанобутановая смесь в жидком состоянии, а используется в газообразном.

Газообразная пропанобутановая смесь - это горючий газ без вкуса, запаха и цвета, тяжелее воздуха в 2 раза, поэтому при утечке газа он не рассеивается в атмосфере, а опускается вниз и заполняет углубления пола или местности.

При содержании газа пропан-бутана в воздухе или кислороде до нижнего предела взрываемости и внесении открытого огня происходит горение газа вокруг источника открытого огня.

При содержании газа пропан-бутана в воздухе или кислороде свыше нижнего предела взрываемости и внесении открытого огня или искры происходит пожар, т.е. интенсивное горение газа.

Газообразная пропанобутановая смесь при атмосферном давлении не обладает токсичным (отравляющим) воздействием на организм человека, так как мало растворяется в крови. Но, попадая в воздух, смешивается с ним, вытесняет и уменьшает содержание кислорода в воздухе. Человек, находящийся, а такой атмосфере испытывает кислородное голодание, а при значительных концентрациях газа в воздухе может погибнуть от удушья.

Предельно допустимая концентрация пропан-бутана в воздухе рабочей зоны должна быть не более 300 мг/м3(в пересчёте на углерод).При попадании жидкого пропан-бутана на кожные покровы тела, нормальная температура которого 36,6 град. С, происходит быстрое его испарение и интенсивный отбор тепла с поверхности тела, затем наступает обморожение.

По ГОСТ 20448-80 промышленность выпускает пропанобутановую смесь 3 марок:

  • пропан технический, с содержанием пропана более 93%, бутана - менее 3 процентов;
  • бутан технический, с содержанием бутана менее 93%, пропана не более 4 процентов;
  • пропанобутановая смесь, 2-х типов: зимняя и летняя.

На предприятия для газопламенной обработки металлов поставляется пропанобутановая смесь в стальных баллонах зимняя и летняя.

Зимняя пропанобутановая смесь содержит 15% пропана, 25% бутана и прочих компонентов.

Летняя пропанобутановая смесь содержит 60% бутана, 40% пропана и прочих компонентов.

Для сжигания I куб. м газообразной пропано-бутановой смеси требуется 25-27 куб. м воздуха или 3,58 - 3,63 кг кислорода.

Температура воспламенения с воздухом:

  • пропана - 510 град. С;
  • бутана - 540 град. С

Температура воспламенения пропанобутановой смеси:

  • с воздухом 490-510 град. С;
  • с кислородом - 465-480 град. С.

Температура пламени пропанобутановой смеси с кислородом зависит от её состава и равна 2200-2680 град. С. При окислительном пламени (избыток кислорода) температура повышается.

Теплотворная способность пропанобутановой смеси равна 93000 Дж/м куб. (22000 ккал/м куб.).

Скорость горения пропанобутановой смеси:

  • при обычном горении 0,8 – 1,5 м/сек.;
  • при дистанционном (со взрывом) 1,5 - 3,5 км/сек.

Пределы взрывоопасности пропан-бутана при нормальном давлении составляют:

    • в смеси с воздухом:
  • нижний – 1,5%;
  • верхний – 9,5%.нижний – 2%;
    • в смеси с кислородом:
  • верхний – 46%.

Пропанобутановые смеси в жидком виде разрушают резину, поэтому необходимо тщательно следить за резиновыми изделиями, применяемыми в газопламенной аппаратуре, и в случае необходимости производить их своевременную замену.

Наибольшая опасность разрушения резины существует зимой, вследствие большей вероятности попадания жидкой фазы пропанобутановой смеси в рукава.

Ацетилен - это горючий газ, без цвета, вкуса, с резким специфическим чесночным запахом, он легче воздуха. Его плотность по отношению к воздуху 0,9.

При нормальном атмосферном давлении (760 мм ртутного столба) и температуре плюс 20 град. С 1 м куб. имеет массу 1,09 кг, воздух 1,20 кг.

При нормальном атмосферном давлении и температуре от - 82,4 градуса до - 84 градусов С ацетилен переходит из газообразного в жидкое состояние, а при температуре минус 85 град. С затвердевает.

Ацетилен - единственный широко применяемый в промышленности газ, горение и взрыв которого возможны в отсутствии кислорода или других окислителей.

При газопламенной обработке металлов ацетилен используют либо в газообразном состоянии, получая его в передвижных или стационарных ацетиленовых генераторах, либо растворённым в ацетиленовых баллонах. Растворенный ацетилен по ГОСТ 5457-75 представляет собой раствор газообразного ацетилена в ацетоне, распределённый в пористом наполнителе под давлением до 1,9 МПА (19 кгс/см2). В качестве пористых наполнителей используются насыпные – берёзовый активированный уголь (БАЦ) и литые пористые массы.

Основным сырьём для получения ацетилена является карбид кальция. Это твёрдое вещество тёмно-серого или коричневатого цвета. Ацетилен получается в результате разложения (гидролиза) кусков, карбида кальция водой. Выход ацетилена на 1 кг карбида кальция составляет 250 дм куб. Для разложения 1 кг карбида кальция требуется от 5 до 20 дм куб. воды. Карбид кальция транспортируется в герметически закрытых барабанах. Масса карбида в одном барабане от 50 до 130 кг.

При нормальном атмосферном давлении ацетилен с воздухом и кислородом образуют взрывоопасные смеси. Пределы взрывоопасности ацетилена с воздухом:

  • нижний – 2,2%;
  • верхний – 81%.

Пределы взрывоопасности ацетилена с кислородом:

  • нижний – 2,3%;
  • верхний – 93%.

Наиболее взрывоопасные концентрации ацетилена с воздухом и кислородом составляют:

  • нижний – 7%;
  • верхний – 13%.

gazresyrs.ru

Свойства и характеристики горючих газов

Наименование газов и жидкостей Температура пламени при сгорании в кислороде, °С Плотность, кг/м3 Низшая теплота сгорания Коэффициент замены ацетилена Соотношение между кислородом и горючим газом в смеси горелки Пределы взрываемости смеси, % Область применения
МДж/м3 ккал/м3 с воздухом с кислородом
Газы
Ацетилен 3150-3620 1,173 52,6 12600 1 1,0-1,3 2,2-81,0 2,3-93,0 Все виды газопламенной обработки
Бутан 2118-2500 2,54 116 27800 0,6 4,0 1,5-8,5 2-45,0 Кислородная резка, сварка и пайка цветных металлов, сварка стали толщиной до 6 мм, металлизация, правка, гибка, огневая зачистка
Водород 2000-2235 0,09 10,6 2400 5,2 0,3-0,4 3,3-81,5 2,6-95,0 Сварка стали толщиной до 2 мм, латуни, свинца, алюминия, чугуна, пайка, кислородная резка
Городской газ 2000-2300 0,84-1,05 18,8-21 4400-6500 2,5 1,5-1,6 3,8-24,6 10,0-73,6 Сварка легкоплавких металлов, пайка, кислородная и кислородно-флюсовая резка
Коксовый газ 2100-2300 0,4-0,55 14,7-17,6 3520-4215 3,2 0,6-0,8 7,0-21,0 Сварка легкоплавких металлов, пайка, кислородная резка
Метан 2043-2200 0,67 33,4 8000 1,6 1,5 4,8-16,7 5,0-59,2 Сварка легкоплавких металлов, пайка, кислородная и кислородно-флюсовая резка
Нефтяной газ 2300 0,65-1,45 40,9-56,4 9800-13500 1,2 1,5-1,6 3,5-16,3 Сварка легкоплавких металлов, пайка, кислородная и кислородно-флюсовая резка
Пиролизный газ 2300 0,65-0,85 31,3-33,4 7500-8000 1,6 1,2-1,5 Сварка стали толщиной до 2 мм, сварка латуни, свинца, алюминия, пайка, кислородная резка
Природный газ 2100-2200 0,5-0,7 35,4-40 8500-9500 1,6-1,8 1,5-1,6 4,8-14,0 5,0-59,2 Сварка стали толщиной до 4,5 мм, легкоплавких металлов, пайка, кислородная и кислородно-флюсовая резка
Пропан 2110-2500 1,88 89 21200 0,6 3,5 2,0-9,5 2,0-48,0 Кислородная резка, сварка и пайка цветных металлов, сварка стали толщиной до 6 мм, металлизация, правка, гибка, огневая зачистка
Пропан-бутановая смесь 2400-2700 1,92 89 21200 0,6 3,0-3,5 Кислородная резка, сварка и пайка цветных металлов, сварка стали толщиной до 6 мм, металлизация, правка, гибка, огневая зачистка
Сланцевый газ 2000 0,7-0,9 12,6-14,3 3000-3400 4,0 0,7 Сварка легкоплавких металлов, пайка, кислородная резка
Пары
Бензин 2500-2600 0,7-0,76 42-44,5 10000-10600 1,4 1,1-1,4 0,7-6,0 2,1-28,4 Кислородная резка стали, сварка, пайка легкоплавких металлов, подводная резка
Керосин 2400-2450 0,8-0,84 42-42,8 10000-10200 1,0-1,3 1,7-2,4 1,4-5,5 2,0-28,0 Кислородная резка стали, сварка, пайка легкоплавких металлов, подводная резка

www.svarpost.ru

Пропан-бутановые смеси | Мир сварки

 Введение

Пропан-бутановая смесь – бесцветный газ с резким запахом – является побочным продуктом переработки нефти и относятся к группе тяжелых углеводородов. Состоит из пропана (C3H8) с примесью бутана (C4h20) в количестве от 5 до 30 %, а суммарное количество должно быть не менее 93 %. Кроме того, в его состав входит не более 4 % этана (C2H5) и этилена (C2h5), а также не более 3 % бутана (C4h20) и бутилена (C4H8). Эти смеси также называют техническим пропаном, а иногда сжиженными нефтяными газами.

В нормальных условиях смеси находятся в газообразном состоянии, а при пониже-нии температуры или повышении давления становятся жидким (таблица 4).

Сжиженные газы хранят только в закрытых емкостях, так как испарение жидкости происходит даже при 0 °С. Пропан-бутан тяжелее воздуха, поэтому необходимо тщательно следить за герметичностью аппаратуры и коммуникаций во избежание образования взрывоопасной смеси газа с воздухом.

Сжиженные газы, обеспечивающие достаточно высокую температуру газокислородного пламени, относительно дешевые, недефицитные, удобные для транспортирования и хранения, широко применяются в качестве заменителей ацетилена. Пропан, бутан и их смеси можно использовать при сварке стали толщиной до 6 мм (в отдельных случаях – до 12 мм), сварке и пайке чугуна, цветных металлов и сплавов, кислородной и кислородно-флюсовой резке (разделительной и поверхностной) сталей, наплавке, поверхностной закалке, металлизации, нагреве при гибке, правке, формовке и других подобных процессах.

При разделительной резке, сварке цветных металлов, пламенной закалке и пайке 0,3 т сжиженного газа заменяют 1 т карбида кальция (что эквивалентно примерно 235 м3 ацетилена).

Углеводородные сжиженные газы должны изготовляться в соответствии с требованиями ГОСТ 20448-90.

В зависимости от содержания основного компонента марки сжиженных газов приведены в таблице 1.

Таблица 1 — Марки сжиженных газовМарка Наименование
ПТ Пропан технический
ССБТ Смесь пропана и бутана технических
БТ Бутан технический

 Свойства

Основные свойства сжиженных газов приведены в таблице 2.

Таблица 2 — Основные свойства сжиженных газовПоказатель Данные показателя
Плотность пропана, кг/м3 1,88
Плотность бутана, кг/м3 2,52
Плотность пропан-бутановой смеси, кг/м3 1,92
Температура самовоспламенения пропана, °С 466
Температура самовоспламенения бутана, °С 405
Температура пламени пропан-бутановой смеси, °С 2400-2700
Низная теплота сгорания пропана, МДж/м3 87
Низная теплота сгорания бутана, МДж/м3 116

По физико-химическим показателям сжиженные газы должны соответствовать требованиям и нормам, приведенным в таблице 3.

Таблица 3 — Физико-химические показатели сжиженных газовНаименование показателя Норма для марки ПТ ССБТ BТ
Массовая доля пропана и пропилена, %, не менее 75 Не нормируется
Массовая доля бутанов и бутиленов, %, не менее Не нормируется не более 60 не менее 60
Объемная доля жидкого остатка при 20 °С, %, не более 0,7 1,6 1,8
Давление насыщенных паров, избыточное, МПа, при +45 °С, не более 1,6 1,6 1,6
Давление насыщенных паров, избыточное, МПа, при -20 °С, не менее 0,16
Массовая доля сероводорода и меркаптановой серы, %, не более 0,013 0,013 0,013
Содержание свободной воды и щелочи Отсутствие
Интенсивность запаха, баллы, не менее 3 3 3
Примечания:

1. По согласованию изготовителя с потребителем допускается вырабатывать газ марки СПБТ с массовой долей пропана и пропилена не менее 60 %.

2. При массовой доле меркаптановой серы в сжиженном газе 0,002 % и более допускается не определять интенсивность запаха. При массовой доле меркаптановой серы менее 0,002 % или интенсивности запаха менее 3 баллов сжиженные газы должны быть одорированы по методике, утвержденной в установленном порядке.

3. При выработке газа марки ПТ из диэтанизированного сырья давление насыщенных паров при температуре минус 20 °С допускается не менее 0,14 МПа.

При нормальном давлении пропан-бутановая смесь переходит в жидкое состояние при температуре примерно –40 °С. В таблице 4 указаны условия перехода пропана и бутана в жидкое состояние. При испарении 1 кг жидкого пропана получается около 0,535 м3 паров, а 1 кг жидкого бутана – 0,406 м3 паров.

Таблица 4 — Условия перехода пропана и бутана в жидкое состояниеТемпература, °С Давление, при котором газ переходитв жидкое состояние, кгс/см2 Пропан Бутан
-20 2,7 0,45
-10 3,7 0,68
0 4,8 0,96
+10 6,4 1,5
+20 8,5 2,1
+40 14,3 3,9

 Транспортирование и хранение

Крупные потребители получают углеводородные газы в железнодорожных или автомобильных цистернах, из которых их переливают в заводские стационарные емкости (хранилище). Из них газ проходит через газификатор или отбирается в паровой фазе и поступает в заводской газорегуляторный пункт (ГРП) и далее в межцеховые газопроводы.

Мелкие потребители пользуются обычно баллонами, получаемыми со станции наполнения. Баллоны устанавливаются в разрядные рампы или применяются для индивидуального питания постов. Давление пропан-бутана, подаваемого по трубопроводу, при максимальном отборе газа должно быть не менее 0,01 МПа (0,1 кгс/см2).

Транспортировка газов железнодорожным, автомобильным и водным транспортом должна осуществляться в соответствии с правилами перевозок опасных грузов, действующих на соответствующем виде транспорта, и правилами устройства и безопасной эксплуатации сосудов, работающих под давлением, утвержденными в установленном порядке.

Хранят и транспортируют пропан-бутановые смеси в сжиженном состоянии в баллонах вместимостью 40 и 55 л под давлением 1,6…1,7 МПа (16…17 кгс/см3). Жидкость смесью заполняют только половину баллона, так как при нагреве значительное повышение давления может привести к взрыву баллона.

 Требования безопасности

Сжиженные углеводородные газы пожаро- и взрывоопасны, малотоксичны, имеют специфический характерный запах.

По степени воздействия на организм газы относятся к веществам 4-го класса опасности по ГОСТ 12.1.007.

Пропано-бутановые смеси значительно тяжелее воздуха, поэтому при утечке газа они могут скапливаться в нижних слоях атмосферы, на полу в помещении и в углублениях, что может привести к образованию взрывоопасных концентраций.

Сжиженные газы образуют с воздухом взрывоопасные смеси при концентрации паров пропана от 2,1 до 9,5 %, нормального бутана от 1,5 до 8,5 % (по объему) при давлении 98066 Па (1 атм) и температуре 15-20 °С.

Температура самовоспламенения пропана в воздухе при нормальных условиях составляет 466 °С, нормального бутана 405 °С, изобутана – 462 °С.

Предельно допустимая концентрация в воздухе рабочей зоны (в пересчете на углерод) предельных углеводородов (пропана, нормального бутана) 300 мг/м3, непредельных углеводородов (пропилен, бутилен) – 100 мг/м3.

Сжиженные газы, попадая на тела человека, вызывают обмораживание, напоминающее ожог.

Человек, находящийся в атмосфере с небольшим содержанием паров сжиженного газа в воздухе, испытывает кислородное голодание, а при значительных концентрациях в воздухе может погибнуть от удушья.

Сжиженные углеводородные газы действуют на организм наркотически.

Признаками наркотического действия являются недомогание и головокружение, затем наступает состояние опьянения, сопровождаемое беспричинной веселостью, потерей сознания.

Пары сжиженных углеводородных газов быстро накапливаются в организме при вдыхании и столь же быстро выводятся через легкие, в организме человека не аккумулируются.

При высоких концентрациях сжиженных углеводородных газов необходимо использовать шланговые изолирующие противогазы с принудительной подачей чистого воздуха. При небольших концентрациях используют фильтрующие противогазы марки БКФ, коробка защитного цвета.

В производственных помещениях должны соблюдаться требования санитарной гигиены по ГОСТ 12.1.005. Все производственные помещения должны быть оборудованы приточно-вытяжной вентиляцией, обеспечивающей десятикратный воздухообмен в 1 ч и чистоту воздуха рабочей зоны производственных помещений.

В помещениях производства, хранения и перекачивания сжиженных углеводородных газов запрещается обращение с открытым огнем, искусственное освещение должно быть выполнено во взрывозащищенном исполнении, все работы следует проводить инструментами, не дающими при ударе искру.

Защита оборудования от вторичных проявлений молний и статического электричества должна соответствовать правилам защиты от статического электричества производств химической, нефтехимической и нефтеперерабатывающей промышленности.

При загорании применяют следующие средства пожаротушения: углекислотные огнетушители и пенные марки ОХП-10, воду в виде компактных и распыленных струй в тонкораспыленном виде, сухой песок, водяной пар, асбестовое полотно и др.

weldworld.ru

Температура аидоизменения пропана

Главная » Температура аидоизменения пропана

При решении ежедневных задач в век постоянно развивающегося технического прогресса самым востребованным техническим продуктов является газ пропан. Он находит широкое применение в бытовой сфере на производстве – при резке и газосварке металлов, и во многих других отраслях.

Возникает вопрос, чем обусловлена такая широкая гамма его применения?  Пропан по своей природе является бесцветным газом, он не имеет вкуса и запаха, он почти в полтора раза тяжелее, чем воздух. При обычной температуре этот газ, легко переходит в жидкую форму состояния лишь при давлении рваном шестнадцати – двадцати атмосферам (его поддерживают стандартные баллоны красного цвета). При транспортировке это будет намного удобнее. В состоянии обычного давления температура сжижения у пропана равна – 42 ºС.

Температура сгорания пропана на воздухе ориентировочно восемьсот градусов. В струе чистого кислорода температура горения пропана – до 2800 ºС.  В чистый виде пропан применяется очень редко, намного шире используется его смесь с бутаном и то, что мы привыкли называть - «пропан» - это является такой смесью. Температура горения пропан бутана будет выше и доходит до 3000 ºС. Благодаря тому, что температура пламени пропана очень высокая, его применяют для резки металлов в газовых горелках. У нас доставка пропана осуществляется по Москве и области.

Поэтому такая смесь переходит в жидкую форму и при этом испаряется, гораздо медленнее, температура испарения пропана немного ниже нуля градусов. При этом температура кипения пропана почти равная температуре сжижения, испаряемость такого газа достаточно высокая. Но при низких показателях температуры необходимо обеспечить не просто испаряемость, но и создание нужного уровня давления в трубопроводной  системе, а техническими нормами установленное давление, которое в зимний период ослабевает. Нужно отметить, что температура замерзания пропана составляет -187,6 градусов, а у бутана этот показатель – 138 градусов.

Такие перепады температур заставили ввести жесткую регламентацию составов смесей, отличающихся составами для различных времен года.  Зимой при низких температурах состав бутана уменьшают, летом его увеличивают почти до пятидесяти процентов. Пропан будет находиться в состоянии газа при температуре ниже нуля 42 градуса, бутам в газовом состоянии только при нуле. Если температуры будут ниже данных показателе, то будет наблюдаться отсутствие давление газов. Это должны учитывать автомобилисты. Купить пропановые газовые баллоны можете на нашем сайте.

На нашем сайте Вы можете сделать заказ необходимого Вам оборудования в городах и регионах: Москва, Санкт-Петербург, Новосибирск, Екатеринбург, Нижний Новгород, Казань, Челябинск, Ростов-на-Дону, Уфа, Красноярск, Краснодар.

8 (800) 500-49-17 - Звонок по России бесплатный

gazzachas.ru

Что происходит с двигателем во время горения газа?

За последние 10 лет технологии в газовом оборудовании сделали колоссальный прорыв, и все детские болезни ушли в прошлое. Газовое оборудование абсолютно нормально работает на всех двигателях и при нормальной эксплуатации ресурс двигателя зачастую выше. При нынешнем развитии технологий ГБО, можно смело заявлять о возможности установки газового оборудования на любой двигатель внутреннего сгорания (вопрос только в том, является это обоснованным с экономической точки зрения)...    Многократные исследования, которые начинаются с 60-х годов прошлого века подтверждают факт, что скорость горения газа (пропан-бутана) практически сопоставима с бензиновой, однако присутствует одна важная физическая характеристика газа: газ, до 5-го поколения ГБО, попадает в камеру сгорания в испаренном виде (в 5-м поколении ГБО он испаряется во впускном коллекторе). "Ну и что...", многие скажут, но будут не правы. Жидкий бензин, попадая на впускные клапана, на стенки цилиндра и поршень, испаряется и так же поглощает температуру. При повышенных нагрузках на двигатель это свойство часто используется автомобильными конструкторами, чтобы снять термо нагрузку с двигателя (при этом растет расход бензина пропорционально скорости). По этому при повышенных нагрузках (не скоростях) газ не способен так же хорошо снимать температурную нагрузку в двигателе. В таком случае это может привести к более быстрому износу клапанов и седел в головке блока цилиндра.   КАК ЭТО ПРОИСХОДИТ НА ПРАКТИКЕ:  Вы часами едете на скоростях свыше 150 км в час, при этом кратковременные обгоны не в счет. Двигатель работает в режиме повышенной нагрузки в котором, на бензине, подается топливо в излишке(богатая смесь) чтобы "охладить" поршневую группу. Газ на это не способен и металл начинает нагреваться до более высоких температур. Это приводит к тому, что  металл становиться менее прочным и процесс износа ускоряется.    Машины, которые ездят регулярно на трассе быстро, без дополнительного наблюдения, которое производится при регламентном обслуживании ГБО, могут возыметь определенные сложности через 70-100 тыс. км пробега в виде тяжелого запуска двигателя/вибраций на холостом ходе и впоследствии прогара клапанов. А вот автомобили, чья среда обитания в городе таких проблем практически не имеют.     ПРИ РЕШЕНИИ УСТАНОВИТЬ ГБО ГЛАВНОЕ ЗАПОМНИТЬ ВАЖНЫЙ МОМЕНТ: Газовое оборудование вы ставите, чтобы экономить! Для спортивной езды(как стиля вождения) газ не подходит. Чтобы избежать прогара клапанов при езде на газе, вам просто необходимо избегать повышенных скоростей.      Повышенные скорости для бюджетных и среднего класса автомобилей - это 135+ км\час Повышенные скорости для автомобилей премиум класса 150-170 км\час   Для автомобилей немецкого автопрома 190-220 км\час     Почему у немецких автомобилей не прогорают клапана\нет сложностей с усадкой клапанов на газе?   Все очень просто. В Германии очень важной частью инфраструктуры являются автобаны на которых вы можете ехать с любой скоростью часами, пока у вас не закончится топливо... Даже, к примеру, когда вы заезжаете на заправку на автобане, для удобства, все топливные колонки настроены на заправку "до полного" и клиент сам контролирует то количество топлива, которое ему необходимо.    При этом "честность" клиента контролируется десятками видеокамер на каждой колонке...   Так вот немецкие автопроизводители заведомо зная о потенциальных возможностях скоростных режимах в своей стране, закладывают значительный запас прочности в двигатели.     Какие возможные технические решения для снижения рисков прогара клапанов при езде на газе?     Решение №1 Исключение механических и электронных погрешностей ГБО   В газовом оборудовании BRC, благодаря тому, что все компоненты были разработаны одним производителем, стало возможным использование очень сложных и тонких алгоритмов, которые позволяют избежать проблем с клапанами, а именно:   1. Высокоточная электроника точно и быстро производит расчет необходимой порции газа для каждого отдельного цилиндра   2. Газовый редуктор точно и стабильно обеспечивает подачу подогретого должным образом газа при постоянном давлении.   3. Газовые форсунки не подвержены загрязнению и тем самым сохраняют свои первоначальные параметры многие годы (но помните, что нужно периодично...раз в 10 тысяч км производить плановую замену фильтров). Так как в газовом блоке управления содержится информация о параметрах производительности форсунки, возможно применение очень интересного алгоритма сохранения клапанов (головки блока цилиндра)...     Решение №2 Внедрение специальных алгоритмов в газовой электронике   Это очень интересный момент, который раньше практиковался в ручном режиме с меньшей точностью из-за того, что использовались постоянно разные комплектующие, с разбросом характеристик... итак...   В электронике газового оборудования BRC было применено два очень точных и продуманных алгоритма.     Алгоритм №1 VSR - Valve Seat Recession ( дословно "усадка седел клапанов")        Суть данного алгоритма в том, что установщик выставляет(если знает что и как делать) порог оборотов и нагрузки двигателя, после которых газовый блок управления ГБО начинает замещать часть газа и подавать вместо него порцию бензина. Внимание: двигатель не переходит на бензин выше определенных оборотов...вместо этого происходит подача микро доз бензина и только при достижении определенной нагрузки. Этот алгоритм возможно реализовать только, если вы знаете точную дозировку газовой форсунки, характеристики редуктора. С ГБО BRC это возможно.    Так же благодаря этому режиму возможна установка ГБО на скоростные/спортивные автомобиля без ущерба ресурсу.      Алгоритм №2 Leaning in open loop strategy (дословно "обеднение смеси при разорванной петле" лямбда регулирования)          Помните, как я писал выше о методах снятия температурных нагрузок на бензине? Подавая в избыточном количестве бензин, он будет отбирать тепло с мест, где слишком жарко(во время испарения). На газе этого сделать эффективно не удастся (на 6-м поколении ГБО это возможно), так как в камеру сгорания он попадает уже испаренным. При этом в прямом смысле газ при повышенных нагрузках вылетает в выхлопную трубу и нагружает катализатор (который должен дожечь избыточное топливо).        Суть данного алгоритма в том, что установщик может убрать излишки газа в режимах повышенных нагрузок, а газовая электроника это сможет четко реализовать.        Для наглядности поясню, что на некоторых автомобилях речь идет о 20...а иногда и о 30% уменьшения расхода на газе на режимах разгона и повышенной нагрузке!!! Именно поэтому на ГБО BRC, возможно очень точно настроить параметры расхода газа. А по большому счету цель заказчика, который решил установить ГБО - экономить на топливе и не иметь головной боли с газовым оборудованием.     ...и самое последнее...   Газовое оборудование возможно настроить только с использованием OBD сканера и только в движении.   Регулировка ГБО в статике не дает гарантии аккуратной настройки всех параметров и расхода           Так же возможен вариант применения динамометрического стенда с замерами мощности и крутящего момента...но при наличии хорошей трассы, вы получаете дополнительно такие вводные параметры, как свежий воздух, лобовое сопротивление при повышенных скоростях и реальное сопротивление качению. При этом двигатель работает в штатных нагрузках.

rosavtogas.ru