Жаростойкие алюминиевые сплавы: Алюминиевые жаропрочные сплавы – свойства и особенности производства

Жаропрочный алюминиевый сплав — Большая Энциклопедия Нефти и Газа, статья, страница 1

Cтраница 1

Жаропрочные алюминиевые сплавы широко применяются в различных отраслях промышленности, в том числе в авиационной и ракетной технике.
 [1]

Диаграмма состояния алюминий-кремний ( начальная область. пунктирными линиями показаны превращения для модифицированного спла.
 [2]

Жаропрочные алюминиевые сплавы обладают способностью сохранять механические свойства при повышенных температурах, жаростойкостью против окисляющего воздействия горячих газов и малым коэффициентом термического расширения.
 [3]

Жаропрочные алюминиевые сплавы обладают спо-собностью сохранять механические свойства при по-вышенных температурах, жаростойкостью против окисляющего воздействия горячих газов и имеют небольшой коэффициент термического расширения.
 [4]

Часть диаграммы состояния сплавов системы алюминий — медь. ж. с. — жидкий сплав. э — эвтектика.
 [5]

Жаропрочные алюминиевые сплавы АК4 — 1 ( 1 9 — 2 5 % Си; 1 4 — 1 8 % Mg; I-1 5 % Fe; 1 — 1 5 % Ni) и ВД17 ( 2 6 — 3 2 % Си; 2 0 — 2 4 % Mg; 0 45 — 0 70 % Мп) используют для изготовления деталей, работающих при повышенных температурах.
 [6]

Жаропрочные алюминиевые сплавы широко применяются в различных отраслях промышленности, в том числе в авиационной и ракетной технике.
 [7]

Жаропрочные алюминиевые сплавы типа АК4 — 1 используют для деталей, работающих при температурах до 300 С.
 [8]

К жаропрочным алюминиевым сплавам относятся и дуралюмины Д20, Д21, легированные дополнительно титаном, и сплав АК 4 — 1, легированный железом и никелем. Эти сплавы способны работать при температуре 300 С, они хорошо деформируются в горячем состоянии, удовлетворительно свариваются, хорошо обрабатываются резаньем. Для защиты от коррозии подвергаются анодированию и покрытию лакокрасочными материалами. Сплав АК 4 — 1 используется для деталей реактивных двигателей.
 [9]

В жаропрочных алюминиевых сплавах железо в сочетании с никелем оказывает положительное влияние. В большинстве же случаев железо относится к вредным примесям в алюминии. Кремний на механические и физико-химические свойства алюминия влияет так же, как и железо.
 [10]

Кокильный станок для литья Поршень.| Кокиль для отливки Поршень.
 [11]

В 1965 — 1975 гг. разработаны новые жаропрочные алюминиевые сплавы АЛ30 и АК21М2Н2 5 с лучшими литейными свойствами и повышенной жаропрочностью. Из сплава АЛЗО отливают поршни автомобильных четырехтактных двигателей М-412.
 [12]

Зависимость прочности границ и тела зерен в металлических жаропрочных сплавах от температуры. о по Джеффрису. б по М. Г. Лозинскому. / — прочность тела зерна, 2 — — прочность границ зерен. / — область транскристаллического разрушения. / / — область межкристаллического разрушения. Экв — — температура, при которой прочность зерен равна ( эквивалентна прочности границ.
 [13]

Магниевые сплавы по удельной прочности и жаропрочности превосходят наилучшие жаропрочные алюминиевые сплавы.
 [14]

Анализ взаимодействия процессов накопления циклических и статических повреждений, проведенный для жаропрочного алюминиевого сплава АК4 — 1 — Т1 в условиях мягкого и жесткого циклических нагружении с различной асимметрией и формой цикла, позволил также перейти к построению подобных схем, характеризующих предельные состояния сплава по условию малоциклового нагружения в связи с кинетикой накопления повреждений при различных уровнях температур, нагрузок и частот деформирования.
 [15]

Страницы:  

   1

   2

   3

Алюминий и сплавы.

Свойства.

Свойства алюминия

Алюминий и его сплавы имеют малую плотность 2,64— 2,89 г/см3. Прочностные же свойства зависят от легирования, тер­мической обработки, степени деформирования и могут достигать высоких значений. По прочности многие алюминиевые сплавы не уступают конструкционным сталям.

Чистый алюминий (суммарное содержание примесей не более 0,05%) имеет гранецентрированную кубическую решетку с пара­метрами 4,04 А. Температура его плавления 659,8—660,2° С, температура кипения 1800—2500° С.

Для сплавов алюминия электропроводность составляет 30—50% электропроводности меди, а для чистого алюминия 62—65% электропроводности меди.

Алюминий окисляется с образованием окисной пленки Аl203, которая защищает его от дальнейшего окисления,Химический состав деформируемых и литейных алюминиевых сплавов по ГОСТам 4784—65 и 2685—63.

Из алюминиевых сплавов в основном изготовляют конструк­ции, работающие при сравнительно низких температурах не свыше 350° С. Так дуралюмин используют для работы при темпе­ратурах не более 200° С, сплавы типа В95 до 125° С, авиали до 80—100° С при длительной работе и до 200° С при кратковре­менной. Специальные сплавы САП (спеченный алюминиевый поро­шок) применяют и для работы при более высоких температурах. До температуры 100° С кратковременные механические свойства меняются мало. Обращает внимание высокое относительное удли­нение алюминиевых сплавов при низких температурах.

Характеристики длительной проч­ности термически не упрочняемых сплавов обычно ниже, чем тер­мически упрочняемых.

Длительные выдержки сплавов типа авиаль при температурах свыше 80—100° С приводят к их упрочнению и снижению пласти­ческих свойств. Исследованиями, проведенными авторами, уста­новлено, что относительное удлинение снижается при указанных условиях с 20—25% (исходное состояние после закалки и есте­ственного старения) до 1—2%. Подобное ухудшение свойств, при которых возможно хрупкое разрушение конструкций, яв­ляется существенным препятствием применения сплавов такого типа для работы при температурах выше 80° С.

 

Циклическая прочность 

Циклическая прочность деформируемых сплавов при симме­тричном изгибе на базе 5*108циклов составляет 3,5 кГ/мм2 для сплава А ДМ, 4,2—6,3 кГ/мм2 для сплава АДН, 5—6,5 кГ/мм2 для сплава АМцАМ, 15 кГ/мм2 для сплава В95.

Области применения литейных сплавов различны. Сплавы группы I рекомендуют для литья в песчаные формы, кокиль и для литья под давлением. Сплав АЛ22 обычно применяют в закален­ном состоянии, а сплав АЛ23 и АЛ29 — в литом. Сплавы группы II имеют высокие литейные свойства благодаря наличию в сплавах двойной эвтектики, которая уменьшает также литейную усадку и склонность к образованию горячих трещин. Сплавы AЛ2, АЛ4 и АЛ9 обладают повышенной коррозионной стойкостью, поэтому их применяют для изделий, работающих во влажной и морской средах. С целью получения заданных механических свойств отливки подвергают термической обработке по различ­ным режимам.

Сплавы группы III обладают высокими механи­ческими свойствами, особенно пределом текучести и повышенной жаропрочностью. У этих сплавов пониженные литейные свойства и коррозионная стойкость, кроме того, они склонны к образова­нию горячих трещин. Для выполнения отливок сложной формы такие сплавы не рекомендуют. Сплав АЛ7 применяют для деталей, испытывающих средние нагрузки и температуры не свыше 200° С. Сплав АЛ 19 по сравнению с АЛ 17 имеет более высокую жаропроч­ность (в 2 раза), и применяют его для силовых деталей в условиях статических и ударных нагрузок при температурах до 300° С.

Сплавы группы IV применяют для всех способов литья. По ли­тейным свойствам они менее технологичны, чем сплавы II.

Сплавы группы V применяют для самых разнообразных дета­лей, работающих при высоких температурах. К этой группе относятся также самозакаливающиеся сплавы.

 

Механические свойства

Механические свойства всех вышеуказанных, литейных спла­вов зависят от режимов термической обработки, определяющей структурное и фазовое состояние сплавов.

Высокая коррозионная стойкость алюминия объясняется обра­зованием окисиой пленки Аl203. Коррозионная стойкость алю­миния зависит от влияния агрессивной среды на растворимость защитной окисной пленки, от чистоты обработки поверхности и режима термической обработки. Чистый алюминий обладает высокой стойкостью в сухом и влажном воздухе. В азотной кислоте концентрации 30—50% при увеличении температуры скорость коррозии алюминия возрастает. При концентрации азотной кис­лоты выше 80% коррозия резко снижается. Алюминий обладает высокой стойкостью в разбавленной серной кислоте и в концен­трированной при 20° С. Средние концентрации серной кислоты (более 40%) наиболее опасны для алюминия. При комнатных тем­пературах алюминий устойчив в фосфорной и уксусных кислотах. Такие, как муравьиная, щавелевая, трихлоруксусная и другие хлороорганические кислоты значительно разрушают алюминий. В растворах едких щелочей окисная пленка алюминия раство­ряется. Растворы углекислых солей калия и натрия оказывают меньшее влияние на скорость коррозии алюминия.

Алюминий при температурах до 300° С обладает хорошей стойкостью в жидких металлических средах, например, натрии.

Коррозионная стойкость алюминия в воде и водяном паре при повышенных температурах (выше 200° С) зависит от чистоты алюминия. Если происходит движение среды, то скорость корро­зии повышается в 10—60 раз.

Основными видами коррозии алюминиевых сплавов является межкристаллитная коррозия и коррозия под напряжением. Для повышения коррозионных свойств применяют защитные покрытия, такие, как плакирование, оксидные пленки, лакокрасочные по­крытия, смазки, хромовые или никель-хромовые гальванические покрытия.

 

Технология производства

Технология производства и термическая обработка могут оказывать существенное влияние на коррозионные свойства спла­вов. Сплавы АД, АД1, АМц, АМг2 и АМгЗ мало чувствительны к методам производства. Коррозионная стойкость сплавов АМг5, АМгб во многом зависит от методов производства. У этих сплавов при длительном нагреве на 60—70° С проявляется склонность к межкристаллитной коррозии и коррозии под напряжением.

Сплавы Д1, Д18, Д16 и типа В95 имеют пониженную корро­зионную стойкость. Подобные сплавы применяют с соответствую­щей защитой от коррозии. Сплавы типа авиаль обладают высокой коррозионной стойкостью в воде высокой чистоты с до­бавлением углекислого газа при температурах до 100° С.

При изучении влияния облучения на некоторые характеристики алюминия установлено, что после облучения интегральным пото­ком 1,1 х 1019 нейтрон/см2 при 80° С критическое напряжение сдвига увеличивается в 5 раз. При этом электросопротив­ление алюминия повышается на 30%. Влияние облучения на электрическое и критическое сопротивления сдвигу снимается при температуре около 60° С.

Из разработанных свариваемых, термически обрабатываемых, самозакаливающихся при сварке сплавов, наиболее характерны сплавы системы Аl—Zn—Mg. Однако, обладая удовлетвори­тельными прочностными свойствами, они склонны к коррозии под напряжением и замедленному разрушению. Такая склонность вызвана переходом от зонной к фазовой стадии старения даже при комнатных температурах эксплуатации сварных соединений. Поэтому сплавы системы Аl—Zn-Mg можно применять в усло­виях низких температур, исключающих переход к фазовому ста­рению при низком уровне сварочных напряжений. Содержание цинка и магния должно быть при этом минимальным.

 

Высокая стойкость 

К самозакаливающимся сплавам относится сплав 01911, по химическому составу он является среднелегированным сплавом системы Аl—Zn-Mg. Высокая стойкость против коррозии под напряжением обеспечивается суммарным содержанием цинка и магния до 6,5% и дополнительным введением марганца, хрома, меди и циркония. Причем медь ухудшает свариваемость сплава, поэтому для его сварки применяют проволоку марки 01557, аналогичную по химическому составу сплаву АМг5, но с добавкой циркония й хрома. Сплавы Д20 и АК8 достаточно прочны, но имеют низкую общую коррозионную стойкость. Они обладают высокой стойкостью против коррозии под напряжением и замедленного разрушения.

Перспективными являются спеченные сплавы. К числу жаро­стойких относятся сплавы типа САП, которые можно применять для конструкций, работающих при температурах до 400—500° С. САП содержит до 13% тугоплавкой окисной фазы, поэтому тем­пература плавления его очень высокая (2000° С).

Из сплавов САП-1 (6,0—9,0% А1203) и САП-2 (9,1 — 13,0% А1203) изготовляют такие же полуфабрикаты, как из алю­миниевых сплавов. Сплав САП-3 применяют только для прессо­ванных полуфабрикатов. Наибольшая масса прессованных полу­фабрикатов до 400 кг. Размеры изготовляемых листов 1000 X Х7000 мм при толщине от 0,8 до 10 мм.

Сплавы имеют высокие прочностные свойства. Так у сплава САП-1 при 20° С ов = 35 кГ/мм2, а у САП-3  40 кГ/мм2. Подобными свойствами обладает сплав САС-1 (25—30% Si и 7% Nі), получаемый из распыленного порошка. Он износостоек, достаточно прочен (<та = 25,0-28,0 кГ/мм2), имеет коэффициент линейного расширения, близкий к стали, и высокий модуль упру­гости.

Сплавы САС-1 и САП не склонны к коррозии под напряжением и замедленным разрушениям. Сплав САП можно применять при сравнительно высоких температурах эксплуатации. При сварке этих сплавов обычно применяют присадочную проволоку марки АМг6.

 

Материалы с сатйа: http://ruswelding.com

 

AMT Advanced Materials Technology GmbH

Используются обычные жаропрочные алюминиевые сплавы, такие как A4032 или A2618.
для высокопроизводительных поршней, авиакосмических планеров и других компонентов. Выше 300°С эти сплавы значительно теряют прочность. Чтобы преодолеть ограничение, новые алюминиевые сплавы, изготовленные методом порошковой обработки
были разработаны. Некоторые из этих передовых высокотемпературных алюминиевых сплавов могут заменить титан или даже сталь.

Эти сплавы
демонстрируют исключительную термическую стабильность даже после сотен часов при рабочей температуре и превосходят обычные жаропрочные алюминиевые сплавы, такие как A4032 и A2618,
существенно.

Большинство из них
Новые высокотемпературные алюминиевые сплавы требуют новых способов обработки, таких как усовершенствованная обработка порошка. Кроме того, такие процессы, как литье под давлением, используются для производства армированных частиц.
Металломатрица-композиты.

Цель
Эти новые процессы заключаются в получении более тонкой микроструктуры и более высокой прочности. Процессы быстрого затвердевания обеспечивают более высокую растворимость легирующих элементов из-за более высокого охлаждения.
оценивать.

 

Алюминий Al-MS89это высокая температура
Алюминиевый сплав, изготовленный с помощью усовершенствованного порошкового процесса. Сплав демонстрирует экстремальную температурную стабильность. Даже после тысяч часов при высокой температуре свойства остаются довольно стабильными. В
В отличие от многих сплавов на основе алюминия и кремния, Al-MS89 также демонстрирует хорошую пластичность. Al-MS89 доступен до D = 100 мм. Его можно использовать для передовых автомобильных, Aeropsace, полупроводниковых и других
промышленное применение.

 

 

Алюминий Al-SF25 является
Алюминий-кремний-сплав, изготовленный методом распыления. Он демонстрирует хорошее сочетание таких свойств, как жаропрочность, высокая жесткость и низкий КТР. Al-SF25 демонстрирует отличные механические характеристики
по сравнению с другими алюминиево-кремниевыми сплавами. Как и большинство алюминиево-кремниевых сплавов, Al-SF25 демонстрирует сравнительно низкую пластичность. Это необходимо учитывать при проектировании деталей.

 

Алюминий Al-MS31 порошковый маршрут
изготавливается из жаропрочного сплава с высокой прочностью до 350°С. Этот сплав демонстрирует превосходную температурную стабильность после длительного термического воздействия. Обладает отличными механическими свойствами в
в дополнение к высокому модулю упругости и очень низкому тепловому расширению. Такое сочетание свойств можно найти только в труднообрабатываемых композитах алюминий-металл-матрица. Этот сплав является отличным
выбор по сравнению с алюминиево-матричными композитами со всеми их недостатками, связанными с обработкой и механической обработкой.

Обычно доступны в диам. до 120мм. Больший диаметр до 400 мм или блоки могут быть изготовлены с помощью
горячее прессование с незначительным снижением прочности на разрыв.

 

Алюминий Al-MS95 порошковый
Изготовлен из жаропрочного сплава с исключительной прочностью до 300°C. Обладая прочностью при комнатной температуре до 650 МПа, включая хорошую пластичность, он может использоваться для широкого спектра применений.
Термическая стабильность достаточно хорошая до 350°C даже после 1000 часов термического воздействия.

Обычно доступны диаметром до 120 мм.
Блоки большего диаметра можно изготавливать горячим прессованием с некоторым снижением предела прочности.

DSC-Al, D=95мм, h=30-200мм (DSC-Materials Inc.)

 

DSC-алюминий
Металл-Матрица-Композит. Керамическая заготовка из наноразмерных (200-400 нм) частиц оксида алюминия пропитывается либо чистым алюминием, либо алюминиевым сплавом. Из-за наноразмерных частиц
происходит дисперсионное усиление. Это приводит к значительному увеличению прочности. Дисперсно-упрочненные материалы, такие как DSC-алюминий, демонстрируют превосходную термостойкость и стабильность. Керамика
частицы значительно увеличивают модуль упругости и, следовательно, жесткость. Коэффициент термического расширения (КТР) ниже, чем у обычных алюминиевых сплавов. DSC-Al — предпочтительный материал
для компонентов, требующих высокой термостойкости и/или жесткости.

Насколько жарко для алюминия?

Алюминий — удивительный металл с выдающимися механическими свойствами, которые делают его идеальным выбором для различных применений. Одним из качеств, которое отличает его от других материалов, является его теплопроводность. Из всех широко используемых металлов медь и алюминий обладают наибольшей теплопроводностью, что делает алюминий отличным вариантом для задач, связанных с регулированием или перемещением тепла.

В то время как некоторые аспекты алюминия, как правило, привлекают все внимание, такие как его высокое соотношение прочности к весу, превосходная коррозионная стойкость и исключительная формуемость, теплопроводность часто упускается из виду. Обладая способностью проводить гораздо больше тепла, чем нержавеющая сталь и другие металлы, алюминий стал отличным вариантом для производителей во многих отраслях, включая электронику, производство пластмасс и аэрокосмическую промышленность.

Один из вопросов, который нам часто задают, заключается в том, насколько горячим может быть алюминий, прежде чем он станет проблемой. Люди хотят знать, сколько тепла можно приложить к алюминиевым деталям и машинам, прежде чем материал выйдет из строя. Все эти вопросы сводятся к двум основным принципам: теплопроводность и температура плавления; это то, что мы сегодня обсудим.

Как мы измеряем теплопроводность?

Говоря о теплопроводности материала, мы имеем в виду его способность проводить тепло. С научной точки зрения, это определяется как число, основанное на так называемом законе Фурье, который гласит, что скорость теплопередачи через материал пропорциональна отрицательному градиенту температуры и площади под прямым углом к ​​этому градиенту. , по которому течет тепло. Это сложный способ сказать, что теплопроводность говорит нам, насколько быстро тепло передается через материал. Как правило, чем выше число, тем быстрее теплообмен.

Также важно отметить, что даже для чистого алюминия фактическое число зависит от количества тепла; расчет проводимости может быть еще более сложным для различных сплавов. Вы никогда не должны предполагать, что номер лаборатории для теплопроводности верен, так как вам нужно будет протестировать ваше приложение в различных сценариях, чтобы быть уверенным в том, как оно справляется с различными температурами.

Давайте рассмотрим несколько реальных примеров. Пенополистирол, который часто используется в качестве изоляционного материала, имеет очень плохую теплопроводность. Чашка из пенопласта хороша для хранения горячего кофе, потому что она не позволяет теплу жидкости передаваться руке, держащей чашку. С другой стороны, такой металл, как алюминий, обладает отличной теплопроводностью. Это означает, что если бы у вас была алюминиевая чашка, наполненная очень горячим кофе, сама чашка была бы горячей на ощупь и ее было бы трудно удержать.

Радиатор относится к пассивному теплообменнику, в котором тепло, выделяемое электронным или механическим устройством, передается либо воздуху, либо жидкому хладагенту, тем самым предотвращая перегрев устройства. Обычно радиаторы используются в процессорах и графических процессорах, которые имеют тенденцию нагреваться и могут быть повреждены избыточным теплом. Алюминий обычно используется в таких устройствах благодаря его теплопроводности и легкому весу.

Другим промышленным применением, в котором выгода от высокой теплопроводности алюминия является обработка пластмасс. Когда расплавленный пластик затвердевает в готовую деталь в процессе литья под давлением или выдувного формования, время отверждения в форме зависит от теплопроводности его материала. Использование алюминия вместо стали сокращает время цикла изготовления детали, повышая производительность и сокращая ценное время на пресс/машину.

Какова температура плавления алюминия?

Конечно, такая теплопроводность хороша лишь до определенной степени. Если металл нагреть слишком сильно, он начнет деформироваться, поэтому очень важно знать температуру плавления вашего материала и то, сколько тепла он должен выдержать, прежде чем использовать его в приложении. Существуют и другие ситуации, когда важно знать температуру плавления алюминия, например, при сварке или термообработке алюминиевого сплава.

Какова температура плавления алюминия? Если вы посмотрите в учебнике, ответ будет 1221 ° F (660,3 ° C), но производители почти никогда не работают с чистым алюминием. У каждого сплава своя температура плавления, а некоторые созданы специально для работы в условиях высоких температур. Существуют высокопрочные алюминиевые сплавы с Zn, Mg, Cu и Sc в качестве легирующих элементов, температура плавления которых достигает 1275°F.

С другой стороны, необходимо понимать, что температура плавления — не единственный фактор, который необходимо учитывать при попытке понять, как металл будет работать при высоких температурах. Например, если вы сварите алюминиевую заготовку, используя алюминиевый сплав 5356 в качестве сварочного стержня, то готовая деталь будет очень восприимчива к коррозионному растрескиванию под напряжением уже при 150 градусах. То же самое относится к алюминиевым сплавам 5183 и 5556. Хотя точка плавления может никогда не быть достигнута, вы должны знать, что другие проблемы могут возникнуть, когда некоторые сплавы подвергаются воздействию даже умеренно высоких температур.

Еще одна важная проблема, связанная с применением алюминия при высоких температурах, — это точка, в которой будут затронуты механические свойства металла. Высоколегированные марки, которые были упрочнены процессами термообработки, теряют эти более высокие механические свойства при воздействии повышенных температур. Воздействие чрезмерного тепла приведет к отпуску и ослаблению термообработанного металла.

Если у вас есть приложение, которое будет подвергаться сильному нагреву, важно тщательно протестировать его на этапе прототипирования, особенно если важным фактором является долговечность. Выбор правильного сплава, который будет правильно работать в ваших конкретных условиях, крайне важен для обеспечения вашей прибыли. Вот почему работа с опытным поставщиком материалов может помочь вам сэкономить время и деньги.