Атомно-кристаллическое строение металлов (стр. 1 из 2). Кристаллическое строение металлов типы кристаллических решеток
Кристаллическое строение металлов
Рекомендуем приобрести:
Установки для автоматической сварки продольных швов обечаек - в наличии на складе! Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.
Сварочные экраны и защитные шторки - в наличии на складе! Защита от излучения при сварке и резке. Большой выбор. Доставка по всей России!
У металлов электроны на внешних оболочках имеют слабую связь с ядром, легко отрываются и могут свободно перемещаться между положительно заряженными ядрами. Следовательно, в металле положительно заряженные ионы окружены коллективизированными электронами. Так как эти электроны подвижны аналогично частицам газа, то используется термин «электронный газ».
Металлургический тип связи характерен тем, что нет непосредственного соединения атомов друг с другом, нет между ними прямой связи. Атомы в металлах размещаются закономерно, образуя кристаллическую решетку.
Кристаллическая решетка - это мысленно проведенные в пространстве прямые линии, соединяющие ближайшие атомы и проходящие через их центры, относительно которых они совершают колебательные движения. В итоге образуются фигуры правильной геометрической формы - кристаллическая решетка (рис. 1.1).
Рис. 1.1. Схема кристаллической решетки
Расстояния (а,b,с) между атомами , т.е. параметры кристаллической решетки, находятся в пределах 2… 6 Ao (1 Ao=10-8 см). Каждый атом принадлежит 8 кристаллическим решеткам. В аморфных телах с хаотическим расположением атомов в пространстве, свойства в различных направлениях одинаковы, а в кристаллических телах расстояния между атомами в различных направлениях неодинаковы, поэтому различны и свойства. Тип кристаллической решетки (рис. 1.2) зависит от металла, температуры и давления. Это используется при термообработке металлов для упрочнения их.
Реальные металлы состоят из большого количества кристаллов, различно ориентированных в пространстве относительно друг друга. На границах зерен атомы кристаллов не имеют правильного расположения, здесь скапливаются примеси, дефекты и включения. Экспериментально установлено , что внутреннее кристаллическое строение зерен не является правильным. В решетках имеются различные дефекты (несовершенства), которые нарушают связь между атомами и оказывают влияние на свойства металлов.
Имеются следующие несовершенства в кристаллических решетках:
- Точечные (рис. 1.3): а) Наличие вакансий, т. е. мест в решетке, не занятых атомами. Это происходит из-за смещения атомов от равновесного состояния. Число вакансий увеличивается с ростом температуры. б) Дислоцированные атомы, т. е. атомы вышедшие из узла решетки и занявшие место в междоузлии. в) Примесные атомы, т.е. в основном металле имеются чужеродные примеси. Например, в чугуне основными атомами являются атомы железа, а примесными- атомы углерода, которые или занимают место основного атома, или внедряются внутрь ячейки.
- Поверхностные несовершенства, имеющие небольшую толщину при значительных размерах в двух других направлениях.
- Линейные несовершенства (цепочки вакансий, дислокаций и т. д.). Линейные дефекты малы в двух направлениях и значительно большего размера в третьем.
Рис. 1.3. Дефекты кристаллической решетки.
Количество дефектов в металле оказывает существенное влияние на его прочность.
Повышение прочности с увеличением плотности дислокаций выше их критического значения объясняется тем, что имеются не только параллельные, но и взаимопересекающиеся (объемные) дислокации. Они препятствуют взаимному перемещению металла и, как результат, приводят к увеличению прочности металла.
Все современные способы упрочнения металлов (легирование, закалка, прокатка, ковка, штамповка, волочение и т.д.) – это увеличение количества дефектов в металле. Наивысшая прочность, которую можно получить путем увеличения количества дефектов в металле , составляет около 1/3 от теоретически возможной (идеальной) прочности.
Российские ученые и практики сделали много открытий в металловедении и технологии обработки металлов. Так, основы научной металлургии и геологии заложил еще Михаил Васильевич Ломоносов, об этом свидетельствует написанный им в 1763 году труд «Первые основания металлургии или рудных дел».
Дмитрий Иванович Менделеев систематизировал в периодической таблице химические элементы, что способствовало развитию многих вопросов металловедения (из известных в то время 63 химических элемента 50 были металлами). Родоначальником металлургии является и русский горный инженер Павел Петрович Аносов (1797…1851 г.), работающий в городе Златоусте на Урале. Он впервые применил световой микроскоп для изучения микроструктур металлов и нашел секрет булатной стали, заложил основы легирования стали (исследовал добавки золота, платины, хрома, марганца и других элементов к стали).
Дмитрий Константинович Чернов (1839…1921 г.) - основоположник теории и строения стального слитка. Работал на Обуховском заводе г. Санкт-Петербурга.
Источник: Н.В. Храмцов. Металлы и сварка (лекционный курс)
www.autowelding.ru
Атомно-кристаллическое строение металлов. Основные типы кристаллических решеток. Анизотропия. Полиморфизм.
Атомно-кристаллическое строение металлов. Основные типы кристаллических решеток. Анизотропия. Полиморфизм.
Все металлы в твердом состоянии имеют кристаллическое строение, те атомы расположены упорядоченно и образуют кристаллическую решетку. Различают 3 типа решеток: 1) простая кубическая (куб). Плотность упаковки 8*1/8=1; Координационное Число=6. 2) объемно – центрированная кубическая (оцк) (калий, натрий, литий). Куб, в котором атомы расп. по углам +1 в центре. Плотность 8*1/8+1=2; КЧ=8, коэффициент заполнености 68%. Пример: Fea; Feδ; Tiβ; Wo; Mo; Cr. 3) Кубическая гранецентрированная (гцк) (свинец, никель, золото, марганец). Куб, в котором атомы расп. по углам + по серединам граней. КЧ=12, плотность 8*1/8+6*1/2=4, коэф=74%. 4) Гексагональная плотноупакованная (ГПУ) (цинк), шесть боковых и верхняя и нижняя грани, на которых тоже атом.
Чем больше плотность упаковки, тем выше пластичность.
Свойство металла изменять кристаллическую решетку с изменением температур – полиморфизм (много форм). Полиморфные модификации обозначают α, β, и т д.
Анизотропия - зависимость физических свойств вещества от направления. Естественная А. — наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников.
Квазиизотропия – почти одинаковые свойства в различных направлениях.
Строение реальных кристаллических материалов. Дефекты кристаллического строения.
Металлы и сплавы, полученные в обычных условиях всегда состоят из большого числа кристаллов. Их называют зернами. В крист. решетках имеются дефекты.
I) Точечные: вакансии (отсут. атомов в узлах крист. решетки), межузельные (атомы, находящиеся вне узлов крист. реш.), примесные атомы (занимают в крист. реш. места осн. атомов или внедряются внутрь решетки)
II) Линейные: 1. Цепочки вакансий или межузельных атомов, 2. дислокации (линии,вдоль и вблизи которых нарушено правильное периодическое расположение плоскостей кристаллов) бывают краевые(предст. границу неполной атомной пл-ти) и винтовые (линия, вокруг которой атомные пл-ти изогнуты по винтовой пов-ти)
III) Поверхностные: 1. Границы зерен и блоков, 2. Дефекты упаковки (локальные изменения расположения атомных пл-й в кристалле)
IV) Объемные – трещины, поры
Теоретическая и реальная прочность. Пути повышения прочности металлов и сплавов.
Предположим сдвиг верхнего и нижнего слоя в таблице 3х5 до получения «лесницы». Tтеор=(a/b)*(G/2п)=70000/(2*3,14)~13000МПа, tреал~150Мпа. Получено из-за дефектов.
Пути повышения: 1) уменьшение количества дефектов путем создания монокристаллических материалов («усы») – используют для армирования; 2) увеличение количества дефектор поликристаллических материало – создание препятствий на пути движения дислокаций: а) другие дислокации <= пластические деформаци; б) много мелких частиц->границ->дефектов; в) термическая обработка, легирование; г) термодинамическая обработка.
Понятие о сплавах. Твердые растворы, механические смеси, химические соединения.
Сплав – вещ-во, полученное сплавлением 2х или более элементов. Фаза – однородных частица в сплаве, имеющая определенных химический состав, кристаллическую решетку и свойства, отделенные от остальной части сплава четкой границей. Система – совокупность фаз, находящихся в равновесии. В твердом сплаве компоненты могут образовывать:
1) жидкость – жидкое состояние, когда оба компоненты неограниченно растворяются друг в друге. 2) чистые компоненты (А.В).
3) Механическая смесь образуется, если компоненты сплава обладают полной взаимной нерастворимостью и имеют различные кристаллические решетки. Сплав будет состоять из смеси кристаллов составляющих его компонентов. Мех. смесь, образовавшаяся из расплава называется эвтектика. Из тв. вещ-ва – эвтектоид.
4) твердое вещество – мех. Смесь с границами.
5) Химические соединения. Чаще всего происходит, если элементы сущ-но различаются по строению и свойствам. Особенности: 1. Соотношение чисел атомов AnBm 2. Крист. решетка отлична от решеток компонентов. 3. Св-ва хим. с-я отличны от св-в его компонентов. Fe+C=Fe3C-цемент.
6) твердые растворы - компоненты располагается один в другом. Атомы составляют крист. решетку Тв. р-ры бывают внедрения (атомы растворенного эл-та расположены между атомами растворителя) и замещения (ограниченные и неогр.).
Условия неогр. растворимости: 1. Атомные диаметры должны различаться не более чем на 15%. 2. Атомные решетки должны быть однотипные.
Предварительная термическая обработка углеродистых инструментальных сталей.
Заэвтектоидные инструментальные стали имеют исходную структуру перлит + вторичный цементит, при этом в ряде случаев при некачественно проведенной горячей обработке давлением (ковке, прокатке и др.) вторичный цементит расположен в виде сетки по границам перлитных зерен.
Такая структура приводит к повышенной хрупкости стали и затрудняет ее механическую обработку, а после дальнейшей закалки инструмент будет хрупок и неработоспособен. Поэтому в первую очередь необходимо избавиться от сетки вторичного цементита. Для этого заэвтектоидную сталь нагревают до температуры, при которой вторичный цементит полностью растворится, т. е. на 30-50 °С выше линии Ас3 (но обычно не выше 920-950 °С), выдерживают при этой температуре и ускоренно охлаждают на воздухе или в масле (в зависимости от сечения заготовки). Если же охлаждать медленно, например, с печью, то вторичный цементит успевает вновь выделиться избирательно по границам перлитных зерен.
Главным условием образования перлита с зернистой формой цементита является фиксация при охлаждении неоднородного по углероду твердого раствора (аустенита). Из однородного (гомогенного) аустенита при медленном охлаждении всегда образуется цементит пластинчатой формы. На практике отжиг проводят путем нагрева стали выше точки Ac1 (до 740-770 °С) с последующей длительной изотермической выдержкой при температуре 660-700 °С (наиболее технологичный режим) или с последующим непрерывным охлаждением с печью со скоростью не более 50 град/ч до 500-600 °С и далее на воздухе (рис. 6.5). Для отдельных заготовок инструментов и небольших их партий возможен маятниковый отжиг, сокращающий время обработки.
Цианирование сталей.
Цианирование - процесс диффузионного насыщения поверхностного слоя стали одновременно углеродом и азотом при температурах 600–1200 °С в расплавленных солях, содержащих группу NaCN (значительно ниже температур цементации и температур фазовых превращений). Различают низко-, средне- и высокотемпературное цианирование.
Наиболее часто это насыщение применяют для деталей, работающих на износ: винтов, шайб, осей, шестерён, а также инструментов из быстрорежущей и высокохромистой сталей; стойкость инструмента при этом повышается в полтора два раза.
Среднетемпературное цианирование сталей проводят в ванне, содержащей 20-25%NaCN и 25-50% Na2Cl3 25-50%NaCl при 820-960’С в течении 30- 90 мин для получения слоя небольшой толщины (0.15-0.36 мм) После цианирования при таких сравнительно невысоких температурах следует закалка непосредственно из ванны и низкий отпуск при 160-200 ‘С Твёрдость слоя достигает HRCэ 59-63.
Высокотемпературное цианирование проводят в ваннах, содержащих 8% NaCN, 8% BaCl 10% NaCl при 930-950 ‘C в течение 1.5-6 часов для получения слоя толщиной 0.5-2.0 мм. При цианировании в большей степени поверхность насыщается углеродом. После цианирования детали охлаждают на воздухе, а затем для измельчения зерна закаливают и подвергают низкому отпуску.
Низкотемпературное цианирование проводят в ваннах, содержащих 50-90% активных солей NaCN или NaCN и KCN, а остальные – неактивные соли – Na2CO3, NaCl, NaOH, KCH, при температурах 500-600 и иногда 700C Преимущественно идёт насыщение азотом. При температурах 550-570'C азотируют инструмент из быстрорежущих сталей после окончательной термической обработки. Толщина слоя 0.01-0.015 мм для инструментов с тонкой режущей кромкой. Продолжительность процесса от 10-15 минут до 2 ч.
Преимущества цианирования по сравнению с цементацией – значительно меньшая продолжительность процесса и более высокая износостойкость и коррозионная стойкость.
Атомно-кристаллическое строение металлов. Основные типы кристаллических решеток. Анизотропия. Полиморфизм.
Все металлы в твердом состоянии имеют кристаллическое строение, те атомы расположены упорядоченно и образуют кристаллическую решетку. Различают 3 типа решеток: 1) простая кубическая (куб). Плотность упаковки 8*1/8=1; Координационное Число=6. 2) объемно – центрированная кубическая (оцк) (калий, натрий, литий). Куб, в котором атомы расп. по углам +1 в центре. Плотность 8*1/8+1=2; КЧ=8, коэффициент заполнености 68%. Пример: Fea; Feδ; Tiβ; Wo; Mo; Cr. 3) Кубическая гранецентрированная (гцк) (свинец, никель, золото, марганец). Куб, в котором атомы расп. по углам + по серединам граней. КЧ=12, плотность 8*1/8+6*1/2=4, коэф=74%. 4) Гексагональная плотноупакованная (ГПУ) (цинк), шесть боковых и верхняя и нижняя грани, на которых тоже атом.
Чем больше плотность упаковки, тем выше пластичность.
Свойство металла изменять кристаллическую решетку с изменением температур – полиморфизм (много форм). Полиморфные модификации обозначают α, β, и т д.
Анизотропия - зависимость физических свойств вещества от направления. Естественная А. — наиболее характерная особенность кристаллов. Именно потому, что скорости роста кристаллов в разных направлениях различны, кристаллы вырастают в виде правильных многогранников.
Квазиизотропия – почти одинаковые свойства в различных направлениях.
infopedia.su
Атомно-кристаллическое строение металлов
Министерство образования и науки Украины
Донбасский государственный технический университет
Кафедра ОМД
ЛЕКЦИЯ
по дисциплине Металловедение
на тему
«Атомно-кристаллическое строение металлов»
Ст.преп. Горецкий Ю.В.
Алчевск 2009
«Атомно-кристаллическое строение металлов»
1. Строение металлов в твердом состоянии
Все металлы и металлические сплавы – тела кристаллические, атомы (ионы) расположены в металле закономерно в отличие от аморфных тел, в которых атомы расположены хаотично.
Металлическое состояние возникает в комплексе атомов, когда при их сближении внешние электроны теряют связь с отдельными атомами, становятся общими, т.е. коллективизируются и свободно перемещаются между положительно заряженными и периодически расположенными ионами.
Устойчивость металла определяется электрическим притяжением между положительно заряженными ионами и обобщенными электронами (такое взаимодействие получило название металлической связи).
Сила связи в металлах определяется силами отталкивания и силами притяжения между ионами и электронами. Атомы (ионы) располагаются на таком расстоянии друг от друга, чтобы энергия взаимодействия была минимальной (рис. 1)
Рисунок 1. Энергетические условия взаимодействия атомов в кристаллической решетке вещества
Величина а соответствует расстояние между атомами в кристаллической решетке, а а0 соответствует равновесному расстоянию между атомами. В связи с этим в металле атомы располагаются закономерно, образуя правильную кристаллическую решетку, что соответствует минимальной энергии взаимодействия атомов.
Металлические состояния характеризуются высокой энергией связи между атомами. Мерой ее служит теплота сублимации (сумма энергии необходимой для перехода твердого металла к парообразному состоянию, для металла – от 20 до 200 ккал/(г·атом)).
2. Атомно-кристаллическое строение металлов
Под атомно-кристаллической структурой понимают взаимное расположение атомов, существующее в кристалле. Атомы в кристалле расположены в определенном порядке, который периодически повторяется в трех измерениях.
Для описания атомно-кристаллической структуры пользуются понятием пространственной или кристаллической решетки.
Кристаллическая решетка представляет собой воображаемую пространственную сетку, в узле которой располагаются атомы (ионы), образующие металл.
Наименьший объем кристалла, дающий представление об атомной структуре металла во всем объеме, получил название элементарной кристаллической ячейки (решетки).
Для характеристики элементарной ячейки задают шесть величин: три ребра ячейки a, b, c и три угла между ними α, β, γ. Эти величины называют параметрами кристаллической решетки.
Кристаллические решетки бывают простыми (атомы только в вершинах решетки) и сложными.
Металлы образуют одну из следующих высокосимметричных сложных решеток с плотной упаковкой атомов: кубическую объемноцентрированную (ОЦК), кубическую гранецентрированную (ГЦК) и гексагональную (ГПУ) (рис. 2).
ОЦК: Rb, K, Na, Li, Tiβ , Tlβ , Zrβ , Ta, W, V, Feα , Cr, Nb, Ba, и др.
ГЦК: Cu, Al, Pt, Pb, Ni, Ag, Au, Pd, Rh, Ir, Feγ , Coα , Caα , Ce, Srα , Th, Sc и др.
ГПУ: Mg, Cd, Re, Os, Ru, Zn, Be, Coβ , Caα , Zrα , Laα , Tiα и др.
Рисунок 2. Кристаллические решетки металлов и схемы упаковки атомов
Расстояние между ближайшими параллельными атомными плоскостями, образующими элементарную ячейку, называют периодом решетки, измеряется в нанометрах (1нм = 10-9 см = Å= 10-8 см).
Периоды решетки металлов находятся в пределах 0,2 – 0,7 нм.
ДляОЦК: a, b, c; a = b = c.
ДляГЦК: a, b, c; a = b = c.
Для ГПУ: а, с; с/а = 1,633 (к Zn не относится)
Число атомов в каждой элементарной ячейке (плотность упаковки – равняется числу атомов, приходящихся на одну элементарную ячейку):
ОЦК: ПУ (плотноупакованная) =
;ГЦК: ПУ =
;ГПУ: ПУ =
.Координационное число – под ним понимают число атомов, находящихся на равном и наименьшем расстоянии от данного атома. Чем выше координационное число, тем больше плотность упаковки атомов:
ОЦК: расстояние (min) между атомами
, на этом расстоянии от рассматриваемого атома находится 8 соседей – К8 .ГЦК:
, К12.ГПУ: Г12 (с/а = 1,633).
Коэффициент заполнения ячейки (плотность укладки) – определяется как отношение объема, занятого атомами к объему ячейки:
ОЦК: 68%
ГЦК: 74%
ГПУ: 74%
Для характеристики величины атома служит атомный радиус, под которым понимается половина расстояния между ближайшими соседними атомами. Атомный радиус возрастает при уменьшении координационного числа.
3. Полиморфные (аллотропические) превращения
Атомы металла – исходя из геометрических соображений, могут образовать любую кристаллическую решетку.
Однако устойчивым, а, следовательно, реально существующим типом является решетка, обладающая наиболее низким запасом свободной энергии.
Многие металлы в зависимости от температуры могут существовать в разных кристаллических формах (т.н. полиморфных (аллотропических) модификациях). В результате полиморфного превращения атомы кристаллического тела, имеющего решетку одного типа, перестраиваются таким образом, что образуется кристаллическая решетка другого типа.
Полиморфную модификацию, устойчивую при более низкой температуре, для большинства металлов принято обозначать буквой α, при более высокой температуре β, затем γ и т.д.
Полиморфное превращение протекает при постоянной температуре (например, при нагреве идет поглощение теплоты).
Известные полиморфные превращения: Feα ↔ Feβ ; Coα ↔ Coβ ; Tiα ↔ Tiβ ; Mnα ↔ Mnβ ↔ Mnγ ↔ Mnδ ; Snα ↔ Snβ , а также для Ca, Li, N, Cs, Sr, Te, Zr, V и др.
Металл с данной кристаллической решеткой должен обладать меньшим запасом свободной энергии.
Рисунок 3. Полиморфизм железа и его связь со свободной энергией системы
Полиморфизм железа. Из рис. 3, видно, что в интервале температур 911 – 1392°С устойчивым является γ-железо (К 12) (имеет min свободную энергию), а при температурах ниже 911°С и выше 1392°С устойчиво α-железо (К 8).
В твердом металле полиморфные превращения происходят в результате зарождения и роста кристаллов аналогично кристаллизации из жидкого состояния. Зародыши новой модификации наиболее часто возникают на границах зерна исходных кристаллов.
В результате полиморфного превращения образуется новые кристаллические зерна, имеющие другой размер и форму, поэтому превращение также называют перекристаллизацией.
Полиморфное превращение сопровождается скачкообразным изменением всех свойств металлов и сплавов: удельного объема, теплоемкости, теплопроводности, электропроводности, магнитных свойств, механических и химических свойств и т.д.
Высокотемпературная модификация имеет высокую пластичность.
В таблице № 1 показан интервал температур существования различных аллотропических форм некоторых, имеющих практическое значение металлов, у которых обнаружена температурная аллотропия.
4. Анизотропия свойств металлов
Из атомно-кристаллического строения металлов видно, что плотность расположения атомов по различным плоскостям в кристаллических решетках неодинакова (рис. 4).
Вследствие неодинаковой плотности атомов в различных плоскостях и направлениях решетки многие свойства (химические, физические, механические) каждого кристалла зависят от направления решетки. Подобная неодинаковость свойств монокристалла в разных кристаллографических направлениях называется анизотропией.
Рисунок 4. Расположение атомов в различных плоскостях и направлениях в кубической решетке (ОЦК)
Кристалл – тело анизотропное в отличие от аморфных тел (стекло, пластмассы и т.д.), свойства которых не зависят от направления.
Технические металлы являются поликристаллами, т.е. состоят из большого числа анизотропных кристаллов. В большинстве случаев, как уже указывалось выше, кристаллы статистически неупорядоченно ориентированы один по отношению к другому, поэтому во всех направлениях свойства более или менее одинаковы, т.е. поликристаллическое тело является изотропным (вернее – квазиизотропным (ложная изотропия)). Такая мнимая изотропность не будет наблюдаться, если кристаллы имеют одинаковую преимущественную ориентировку в каких-то направлениях. Эта ориентированность, или текстура, создается в известной степени, но не полностью в результате значительной холодной деформации; в этом случае поликристаллический металл приобретает анизотропию свойств.
Литература
1. Лахтин Ю.М., Леонтьева В.П. Материаловедение. М., 1972, 1980.
2. Гуляев А.П. Металловедение. М., 1986.
3. Новиков И.И. Дефекты кристаллического строения металлов. М., 1983.
mirznanii.com
Типы кристаллических решеток различных веществ
В природе есть два вида твердых тел, которые заметно различаются своими свойствами. Это аморфные и кристаллические тела. И аморфные тела не имеют точной температуры плавления, они во время нагревания постепенно размягчаются, а затем переходят в текучее состояния. Примером таких веществ может служить смола или обычный пластилин. Но совсем по-другому дело обстоит с кристаллическими веществами. Они остаются в твердом состоянии до какой-то определенной температуры, и только достигнув ее, эти вещества расплавляются.
Здесь все дело в строении таких веществ. В кристаллических телах частицы, из которых они состоят, расположены в определенных точках. И если их соединить прямыми линиями, то получится некий воображаемый каркас, который так и называется - кристаллическая решетка. А типы кристаллических решеток могут быть самые разные. И по виду частиц, из которых они «построены», решетки делятся на четыре типа. Это ионная, атомная, молекулярная и металлическая решетки.
И в узлах ионных кристаллических решеток, соответственно, расположены ионы, и между ними существует ионная связь. Ионы эти могут быть как простыми (Cl-, Na+), так и сложными (OH-, SO2-). И такие типы кристаллических решеток могут содержать некоторые гидроксиды и оксиды металлов, соли и другие подобные вещества. Возьмем, к примеру, обычный хлорид натрия. В нем чередуются отрицательные ионы хлора и положительные ионы натрия, которые образуют кубическую кристаллическую решетку. Ионные связи в такой решетке весьма устойчивы и вещества, «построенные» по такому принципу, имеют достаточно высокую прочность и твердость.
Есть также типы кристаллических решеток, называемых атомными. Здесь в узлах расположены атомы, между которыми существует сильная ковалентная связь. Атомную решетку имеют не очень много веществ. К ним относится алмаз, а также кристаллический германий, кремний и бор. Есть еще некоторые сложные вещества, которые содержат оксид кремния и имеют, соответственно, атомную кристаллическую решетку. Это песок, кварц, горный хрусталь и кремнезем. И в большинстве случаев такие вещества очень прочные, твердые и тугоплавкие. Также они практически нерастворимы.
А молекулярные типы кристаллических решеток имеют самые разные вещества. К ним относится замерзшая вода, то есть обычный лед, «сухой лед» - затвердевший оксид углерода, а также твердый сероводород и хлороводород. Еще молекулярные решетки имеют много твердых органических соединений. К ним относится сахар, глюкоза, нафталин и прочие подобные вещества. А молекулы, находящиеся в узлах такой решетки, связаны между собой полярными и неполярными химическими связями. И несмотря на то, что внутри молекул между атомами существуют прочные ковалентные связи, сами эти молекулы держатся в решетке за счет очень слабых межмолекулярных связей. Поэтому такие вещества достаточно летучи, легко плавятся и не обладают большой твердостью.
Ну а металлы имеют самые разные виды кристаллических решеток. И в их узлах могут находиться как атомы, так и ионы. При этом атомы могут легко превращаться в ионы, отдавая свои электроны в «общее пользование». Таким же образом ионы, «захватив» свободный электрон, могут становиться атомами. И такое строение металлической кристаллической решетки определяет такие свойства металлов, как пластичность, ковкость, тепло- и электропроводимость.
Также типы кристаллических решеток металлов, да и других веществ, делятся на семь основных систем по форме элементарных ячеек решетки. Самой простой является кубическая ячейка. Есть также ромбические, тетрагональные, гексагональные, ромбоэдрические, моноклинные и триклинные элементарные ячейки, которые определяют форму всей кристаллической решетки. Но в большинстве случаев кристаллические решетки являются более сложными, чем те, что перечислены выше. Это связано с тем, что элементарные частицы могут находиться не только в самих узлах решетки, а и в ее центре или на ее гранях. И среди металлов наиболее распространены такие три сложные кристаллические решетки: гранецентрированная кубическая, объемно-центрированная кубическая и гексагональная плотноупакованная. Еще физические характеристики металлов зависят не только от формы их кристаллической решетки, а и от межатомного расстояния и от других параметров.
fb.ru