Большая Энциклопедия Нефти и Газа. Металлургия алюминия


Металлургия алюминия

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Магнитогорский Государственный Технический Университет

им. Носова

Кафедра металлургии черных металлов

Реферат по дисциплине «История металлургии»

МЕТАЛЛУРГИЯ АЛЮМИНИЯ

Аннотация

Рассмотрена тема "Металлургия алюминия", описаны основные свойства этого металла. Кратко изложена история открытия алюминия, возможные способы его получения и применения в различных отраслях промышленности.

Содержание

Введение

1. Свойства алюминия

2. Применение алюминия

3. Сырые материалы

4. Производство глинозема

5. Электролитическое получение алюминия

6. Рафинирование алюминия

Заключение

Список использованной литературы

Введение

Слово «металлургия» происходит от греч.:

metalleuо – выкапываю, добываю из земли;

metallurgeo – добываю руду, обрабатываю металлы;

metallon – рудник, металл.

Это слово означает область науки и техники, охватывающую процессы обработки добытых из недр руд, получение металлов и сплавов, придание им определенных свойств.

В древности, в средние века и сравнительно недавно, вплоть до времени М.В.Ломоносова, считалось, что существует 7 металлов (золото, серебро, медь, олово, свинец, железо, ртуть).

В 1814 г. шведский химик Й.Берцелиус предложил использовать буквенные знаки, которыми пользуется весь мир, за редкими исключениями.

Сегодня науке известно более 80 металлов, большинство из них используется в технике.

В мировой практике сложилось деление металлов на черные (железо и сплавы на его основе) и все остальные – нечерные (Non-ferrousmetals, англ.; Nichtei-senmetalle, нем.) или цветные металлы. Металлургия часто подразделяется на черную и цветную. В настоящее время на долю черных металлов приходится около 95% всей производимой в мире металлопродукции.

В технике принята также условная классификация, по которой цветные металлы разделены на «легкие» (алюминий, магний), «тяжелые» (медь, свинец и др.), тугоплавкие (вольфрам, молибден и др.), благородные (золото, платина и др.), редкие металлы.

Доля продукции, изготовленной с использованием черных и цветных металлов, в настоящее время составляет 72-74% валового национального продукта государства. Можно утверждать, что металлы в XXI в. останутся основным конструкционными материалами, так как по своим свойствам, экономичности производства и потребления не имеют себе равных в большинстве сфер применения.

Из ~ 800 млн. т потребляемых металлов ~ 750 млн. т – сталь, 20-22 млн. т – алюминий, 8-10 млн. т – медь, 5-6 млн. т – цинк, 4-5 млн. т – свинец (остальные - < 1 млн. т).

Из наиболее ценных и важных для современной техники металлов лишь немногие содержится в земной коре в больших количествах: алюминий (8,8%), железо (4,65%), магний (2,1%), титан (0,63%).

К рудным месторождениям легких металлов обычно относят руды, содержащие алюминий; основной поставщик алюминия – бокситы, а также алуниты, нефелины и раз личные глины. К рудным месторождениям цветных металлов относятся месторождения меди, свинца и цинка, кобальта, никеля, сурьмы. Запасы металлов в наиболее крупных из них достигают от десятков до сотен млн. т, при обычном содержании металлов в руде – единицы процентов.

Масса добываемых материалов во много раз превышает количество содержащихся в руде металлов и в подавляющем большинстве случаев из природных руд экономически невыгодно непосредственно извлекать полезные компоненты.

Археологические раскопки свидетельствуют о том, что знакомство человека с металлами относится к временам, весьма удаленным от нас. Считается, что первые изделия из бронзы получены за 3 тыс. лет до н.э восстановительной плавкой смеси медной и оловянной руд с древесным углем. Значительно позже бронзы стали изготовлять добавкой в медь олова и других металлов (алюминиевые, бериллиевые, кремненикелевые и др.). В настоящее время наиболее распространены алюминиевые бронзы (5-12% Al) с добавками железа, марганца и никеля.

В настоящее время металлургическое производство является одним из приоритетных отраслей народного хозяйства. [2]

1. СВОЙСТВА АЛЮМИНИЯ

Алюминий был впервые получен датским физиком Х.Эрстедом в 1825 г. Название этого элемента происходит от латинского алюмен, так в древности назывались квасцы, которые использовали для крашения тканей. [1]

Алюминий обладает многими ценными свойствами: небольшой плотностью – около 2,7г/см3 , высокой теплопроводностью – около 300 Вт/(м . К) и высокой электропроводностью 13,8 . 107 Ом/м, хорошей пластичностью и достаточной механической прочностью.

Алюминий образует сплавы со многими элементами. В расплавленном состоянии алюминий жидкотекуч и хорошо заполняет формы, в твердом виде он хорошо деформируется и легко поддается резанию, пайке и сварке.

Сродство алюминия к кислороду очень большое. При его окислении выделяетсябольшое количество тепла (~ 1670000 Дж/моль). Тонкоизмельченный алюминий при нагревании воспламеняется и сгорает на воздухе. Алюминий соединяется с кислородом воздуха и в атмосферных условиях. При этом алюминий покрывается тонкой (толщиной ~ 0,0002 мм) плотной пленкой окиси алюминия, защищающей его от дальнейшего окисления; поэтому алюминий стоек против коррозии. Поверхность алюминия хорошо защищает от окисления этой пленки и в расплавленном состоянии.

Из сплавов алюминия наибольшее значение имеют дюралюминий и силумины.

В состав дюралюминия, кроме алюминия, входят 3,4-4% Cu, 0,5% Mn и 0,5%Mg, допускается не более 0,8% Fe и 0,8% Si. Дюралюминий хорошо деформируется и по своим механическим свойствам близок к некоторым сортам стали, хотя он в 2,7 раза легче стали (плотность дюралюминия 2,85 г/см3 ).

Механические свойства этого сплава повышаются после термической обработке и деформации в холодном состоянии. Сопротивление на разрыв повышается со 147-216 МПа до 353-412 МПа, а твердость по Бринеллю с 490-588 до 880-980 МПа. При этом относительное удлинение сплава почти не изменяется и остается достаточно высоким (18-24%).

Силумины – литейные сплавы алюминия с кремнием. Они обладают хорошими литейными качествами и механическими свойствами. [2]

2. ПРИМЕНЕНИЕ АЛЮМИНИЯ

Алюминий и сплавы широко применяют во многих отраслях промышленности, в том числе в авиации, транспорте, металлургии, пищевой промышленности и др. Из алюминия и его сплавов изготовляют корпуса самолетов, моторы, блоки цилиндров, коробки передач, насосы и другие детали в авиационной, автомобильной и тракторной промышленности, сосуды для хранения химических продуктов. Алюминий широко применяют в быту, пищевой промышленности, в ядерной энергетики и космических кораблей изготовлены из алюминия и его сплавов.

Вследствие большого химического сродства алюминия к кислороду его применяют в металлургии как раскислитель, а также для получения при использовании так называемого алюминотермического процесса трудно восстанавливаемых металлов (кальция, лития и др.).

По общему производству металла в мире алюминий занимает второе место после железа. [2], [1]

3. СЫРЫЕ МАТЕРИАЛЫ

Основным современным способом производства алюминия является электролитический способ, состоящий из двух стадий. Первая – это получение глинозема (Al2 O3 ) из рудного сырья и вторая – получение жидкого алюминия из глинозема путем электролиза.

Руды алюминия. Вследствие высокой химической активности алюминий встречается в природе только в связанном виде: корунд Al2 O3 , гиббсит Al2 O3. 3h3 O, бемит Al2 O3. h3 O, кианит 3Al2 O3 , 2SiO2 , нефелин (Na, K)2 O. Al2 O3 . 2SiO2 , каолинит Al2 O3, 2SiO2 . 2h3 Oи другие. Основными используемыми в настоящее время алюминиевыми рудами являются бокситы, а также нефелины и алуниты.

Бокситы. Алюминий в бокситах находится главным образом в виде гидроксидов алюминия (гиббсита, бемита и др.), корунда и каолинта. Химический состав бокситов довольно сложен. Они часто содержат более 40 химических элементов. Содержание глинозема в них составляет 35-60%, кремнезема 2-20%, оксида Fe2 O3 2-40%, окиси титана 0,01-10%. Важной характеристикой бокситов является отношение содержаний в них Al2 O3 к SiO2 по массе – так называемый кремневый модуль.

К числу крупных месторождений бокситов в нашей стране относится Тихвинское (Ленинградская область), Североуральское (Свердловская область), Южноуральское (Челябинская область), Тургайское и Краснооктябрьское (Кустанайская область).

Нефелины входят в состав нефелиновых сиенитов и уртитов. Большое месторождение уртитов находится на Кольском полуострове. Основные компоненты уртита – нефелин и апатит 3Ca3 (PO4 )2 . CaF2 . Их подвергают флотационному обогащению с выделением нефелинового апатитового концентратов. Апатитовый концентрат идет для приго товления фосфорных удобрений, а нефелиновый – для получения глинозема. Нефелиновый концентрат содержит , %: 20-30 Al2 O3 , 42-44 SiO2 , 13-14 Na2 O, 6-7 K2 O, 3-4 Fe2 O3 и 2-3 CaO.

Алуниты представляют собой основной сульфат алюминия и калия (или натрия) K2 SO4. Al2 ( SO4 )3. 4 Al(OH)3 . Содержание Al2 O3 в них невысокое (20-22%), но в них находится другие ценные составляющие: серный ангидрид SO3 (~ 20%) и щелочь Na2 O, K2 O (4-5%). Таким образом, они, так же как и нефелины, представляют собой комплексное сырье.

Другие сырые материалы. При производстве глинозема применяют щелочь NaOH, иногда известняк CaCO3 , при электролизе глинозема криолит Na3 AlF6 (3NaF. AlF3 ) и немного фтористого алюминия AlF3 , а также CaF2 и MgF2 . [2]

mirznanii.com

Металлургия алюминия

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Магнитогорский Государственный Технический Университет

им. Носова

Кафедра металлургии черных металлов

Реферат по дисциплине «История металлургии»

МЕТАЛЛУРГИЯ АЛЮМИНИЯ

Аннотация

Рассмотрена тема "Металлургия алюминия", описаны основные свойства этого металла. Кратко изложена история открытия алюминия, возможные способы его получения и применения в различных отраслях промышленности.

Содержание

Введение

1. Свойства алюминия

2. Применение алюминия

3. Сырые материалы

4. Производство глинозема

5. Электролитическое получение алюминия

6. Рафинирование алюминия

Заключение

Список использованной литературы

Введение

Слово «металлургия» происходит от греч.:

metalleuо – выкапываю, добываю из земли;

metallurgeo – добываю руду, обрабатываю металлы;

metallon – рудник, металл.

Это слово означает область науки и техники, охватывающую процессы обработки добытых из недр руд, получение металлов и сплавов, придание им определенных свойств.

В древности, в средние века и сравнительно недавно, вплоть до времени М.В.Ломоносова, считалось, что существует 7 металлов (золото, серебро, медь, олово, свинец, железо, ртуть).

В 1814 г. шведский химик Й.Берцелиус предложил использовать буквенные знаки, которыми пользуется весь мир, за редкими исключениями.

Сегодня науке известно более 80 металлов, большинство из них используется в технике.

В мировой практике сложилось деление металлов на черные (железо и сплавы на его основе) и все остальные – нечерные (Non-ferrous metals, англ.; Nichtei-senmetalle, нем.) или цветные металлы. Металлургия часто подразделяется на черную и цветную. В настоящее время на долю черных металлов приходится около 95% всей производимой в мире металлопродукции.

В технике принята также условная классификация, по которой цветные металлы разделены на «легкие» (алюминий, магний), «тяжелые» (медь, свинец и др.), тугоплавкие (вольфрам, молибден и др.), благородные (золото, платина и др.), редкие металлы.

Доля продукции, изготовленной с использованием черных и цветных металлов, в настоящее время составляет 72-74% валового национального продукта государства. Можно утверждать, что металлы в XXI в. останутся основным конструкционными материалами, так как по своим свойствам, экономичности производства и потребления не имеют себе равных в большинстве сфер применения.

Из ~ 800 млн. т потребляемых металлов ~ 750 млн. т – сталь, 20-22 млн. т – алюминий, 8-10 млн. т – медь, 5-6 млн. т – цинк, 4-5 млн. т – свинец (остальные - < 1 млн. т).

Из наиболее ценных и важных для современной техники металлов лишь немногие содержится в земной коре в больших количествах: алюминий (8,8%), железо (4,65%), магний (2,1%), титан (0,63%).

К рудным месторождениям легких металлов обычно относят руды, содержащие алюминий; основной поставщик алюминия – бокситы, а также алуниты, нефелины и раз личные глины. К рудным месторождениям цветных металлов относятся месторождения меди, свинца и цинка, кобальта, никеля, сурьмы. Запасы металлов в наиболее крупных из них достигают от десятков до сотен млн. т, при обычном содержании металлов в руде – единицы процентов.

Масса добываемых материалов во много раз превышает количество содержащихся в руде металлов и в подавляющем большинстве случаев из природных руд экономически невыгодно непосредственно извлекать полезные компоненты.

Археологические раскопки свидетельствуют о том, что знакомство человека с металлами относится к временам, весьма удаленным от нас. Считается, что первые изделия из бронзы получены за 3 тыс. лет до н.э восстановительной плавкой смеси медной и оловянной руд с древесным углем. Значительно позже бронзы стали изготовлять добавкой в медь олова и других металлов (алюминиевые, бериллиевые, кремненикелевые и др.). В настоящее время наиболее распространены алюминиевые бронзы (5-12% Al) с добавками железа, марганца и никеля.

В настоящее время металлургическое производство является одним из приоритетных отраслей народного хозяйства. [2]

  1. СВОЙСТВА АЛЮМИНИЯ

Алюминий был впервые получен датским физиком Х.Эрстедом в 1825 г. Название этого элемента происходит от латинского алюмен, так в древности назывались квасцы, которые использовали для крашения тканей. [1]

Алюминий обладает многими ценными свойствами: небольшой плотностью – около 2,7г/см3, высокой теплопроводностью – около 300 Вт/(м . К) и высокой электропроводностью 13,8 . 107Ом/м, хорошей пластичностью и достаточной механической прочностью.

Алюминий образует сплавы со многими элементами. В расплавленном состоянии алюминий жидкотекуч и хорошо заполняет формы, в твердом виде он хорошо деформируется и легко поддается резанию, пайке и сварке.

Сродство алюминия к кислороду очень большое. При его окислении выделяетсябольшое количество тепла (~ 1670000 Дж/моль). Тонкоизмельченный алюминий при нагревании воспламеняется и сгорает на воздухе. Алюминий соединяется с кислородом воздуха и в атмосферных условиях. При этом алюминий покрывается тонкой (толщиной ~ 0,0002 мм) плотной пленкой окиси алюминия, защищающей его от дальнейшего окисления; поэтому алюминий стоек против коррозии. Поверхность алюминия хорошо защищает от окисления этой пленки и в расплавленном состоянии.

Из сплавов алюминия наибольшее значение имеют дюралюминий и силумины.

В состав дюралюминия, кроме алюминия, входят 3,4-4% Cu, 0,5% Mn и 0,5%Mg, допускается не более 0,8% Fe и 0,8% Si. Дюралюминий хорошо деформируется и по своим механическим свойствам близок к некоторым сортам стали, хотя он в 2,7 раза легче стали (плотность дюралюминия 2,85 г/см3).

Механические свойства этого сплава повышаются после термической обработке и деформации в холодном состоянии. Сопротивление на разрыв повышается со 147-216 МПа до 353-412 МПа, а твердость по Бринеллю с 490-588 до 880-980 МПа. При этом относительное удлинение сплава почти не изменяется и остается достаточно высоким (18-24%).

Силумины – литейные сплавы алюминия с кремнием. Они обладают хорошими литейными качествами и механическими свойствами. [2]

  1. ПРИМЕНЕНИЕ АЛЮМИНИЯ

Алюминий и сплавы широко применяют во многих отраслях промышленности, в том числе в авиации, транспорте, металлургии, пищевой промышленности и др. Из алюминия и его сплавов изготовляют корпуса самолетов, моторы, блоки цилиндров, коробки передач, насосы и другие детали в авиационной, автомобильной и тракторной промышленности, сосуды для хранения химических продуктов. Алюминий широко применяют в быту, пищевой промышленности, в ядерной энергетики и космических кораблей изготовлены из алюминия и его сплавов.

Вследствие большого химического сродства алюминия к кислороду его применяют в металлургии как раскислитель, а также для получения при использовании так называемого алюминотермического процесса трудно восстанавливаемых металлов (кальция, лития и др.).

По общему производству металла в мире алюминий занимает второе место после железа. [2], [1]

  1. СЫРЫЕ МАТЕРИАЛЫ

Основным современным способом производства алюминия является электролитический способ, состоящий из двух стадий. Первая – это получение глинозема (Al2O3) из рудного сырья и вторая – получение жидкого алюминия из глинозема путем электролиза.

Руды алюминия. Вследствие высокой химической активности алюминий встречается в природе только в связанном виде: корунд Al2O3, гиббсит Al2O3. 3h3O, бемит Al2O3. h3O , кианит 3Al2O3 , 2SiO2, нефелин (Na, K)2O . Al2O3 . 2SiO2, каолинит Al2O3, 2SiO2 . 2h3O и другие. Основными используемыми в настоящее время алюминиевыми рудами являются бокситы, а также нефелины и алуниты.

www.coolreferat.com

Металлургия - алюминий - Большая Энциклопедия Нефти и Газа, статья, страница 1

Металлургия - алюминий

Cтраница 1

Металлургия алюминия описана в гл.  [1]

Металлургия алюминия с конца 80 - х годов приобрела это новое направление, основанное на действии гальванического тока при высокой температуре на криолит [455] и растворы в нем окиси алюминия ( из боксита или прямо в виде ископаемого корунда), потому что при этом восстановляется на отрицательном полюсе ( катоде) металлический А1 в довольно чистом виде, а если катодом служит медь, то получаются ее сплавы с алюминием.  [2]

Металлургия алюминия описана в гл.  [3]

Чем отличается металлургия алюминия от металлургии цинка и ртути.  [4]

Во-вторых, металлургия алюминия относится к числу вредных для окружающей среды производств, что также ведет к ее вытеснению из ПРС.  [5]

Важнейшими рудами для металлургии алюминия служат бокситы и нефелины.  [6]

Вслед за развитием металлургии алюминия начинает развиваться ряд других электротермических производств. В конце прошлого века были открыты карборунд и способ его получения. Тогда же был разработан метод получения карбида кальция, который стал потребляться в больших количествах для чыра ботки ацетилена.  [7]

Состав второго необходимого для металлургии алюминия минерала - криолита обычно выражается формулой двойной соли: 3NaF - AlFs.  [8]

Публикуемые данные освещают ряд важных вопросов электрохимии и металлургии алюминия, магния, натрия, титана, циркония, гафния, ванадия, ниобия, вольфрама, редкоземельных металлов, а также процессов, протекающих при высоких температурах.  [9]

В настоящее время приготавливается искусственным путем, применяют в металлургии алюминия.  [10]

В настоящее время приготавливается искусственным путем, применяется в металлургии алюминия.  [11]

Исторически химия фторидов алюминия и натрия послужила основой для металлургии алюминия, а позже и атомная промышленность стала использовать достижения химии и технологии фтористых соединений урана. Кроме того, фториды играют большую роль в химии и технологии редких элементов.  [12]

В настоящее время приготавливается искусственным путем, применяют в металлургии алюминия.  [13]

В настоящее время приготавливается искусственным путем, применяется в металлургии алюминия.  [14]

Исторически химия фторидов алюминия и натрия послужила основой для металлургии алюминия, а позже и атомная промышленность стала использовать достижения химии и технологии фтористых соединений урана. Кроме того, фториды играют большую роль в химии и технологии редких элементов.  [15]

Страницы:      1    2    3

www.ngpedia.ru

Применение алюминия в металлургии

Алюминий является сильным раскислителем и применяется в количестве 0,3—1 кг/т для раскисления почти всех сталей и для регулирования размеров зерна аустенита с повышением пластичности и вязкости стали. Комплексный сплав — силикоалюминий также является сильным  раскислителем. Для раскисления стали применяют сплавы с 20 % Al и 40 % Si, с 18—30 % Al и 40—75 % Si; 45 % Al и 35 % Si; 10 % Al и 50 % Si и др. В 1939 г. на Днепровском алюминиевом заводе была впервые осуществлена выплавка железистого силикоалюминия с высоким содержанием алюминия (до 70 %) в печах мощностью 10 MBА. В СССР в 1966 г. на ДАЗ’е было организовано крупное промышленное производство силикоалюминия. Его производят также в ФРГ, Франции, Канаде и других странах. Основное количество силикоалюминия  используют в качестве жидкого полупродукта для получения силумина и сплавов на его основе. При производстве сплава из железистых видов сырья получают ферросиликоалюминий, который успешно может быть использован в черной металлургии. Для раскисления стали используют также ферроалюминий, получаемый сплавлением стали с алюминием в дуговых печах или, что лучше, смешением жидкой стали и жидким алюминием в ковше. Некоторое количество ферросиликоалюминия производят расплавлением чушкового алюминия в жидком 75 %-ном  ферросилиции.

Основным преимуществом электротермического метода производства алюминокремниевых сплавов является использование широко распространенных в природе алюмосиликатных пород: глин, каолинов, силлиманитов, бокситов и т. д. Вместо того, чтобы производить сложную химическую переработку по удалению кремнезема из алюминосиликатных пород, целесообразнее одновременно использовать содержащиеся в них алюминий и кремний. Кроме того, необходимо учитывать, что современные электролизеры с единичной мощностью 500—1000 кВА имеют тепловой к. п. д. 34—40 % (64—75 % для рудовосстановительных печей мощностью 15—20 MBА) и это обеспечит снижение расхода электроэнергии с 54 до 46,8 МДж/кг (с 15,3 до 12,7 кВт-ч/кг) алюминия, а также то, что электротермические методы обеспечивают снижение себестоимости силумина на 23—35 % и капиталовложений — на 40—50 %. На рис. 17 приведена технологическая схема комплексного использования каолинов, кианитов, бедных бокситов и других алюмосиликатов.

metallurgy.zp.ua

Металлургия алюминия - Справочник химика 21

    Дня расплавленных сред, обладающих ионной проводимостью, справедливы законы Фарадея, учение о числах переноса и электрической проводимости. Электролиз расплавов имеет важное практическое значение в металлургии алюминия, магния, титана и других щелочных и щелочноземельных металлов. [c.465]

    Наиболее молодой и быстро развивающейся отраслью цветной металлургии является металлургия алюминия. Алюминий впервые был получен лишь в 1825 г. действием амальгамы калия на безводный хлорид алюминия  [c.40]

    Исторически химия фторидов алюминия и натрия послужила основой для металлургии алюминия, а позже и атомная промышленность стала использовать достижения химии и технологии фтористых соединений урана. Кроме того, фториды играют большую роль в химии и технологии редких элементов. Особое значение приобретают фторорганические соединения, связанные с процессами фторирования [266, 299, 465]. [c.7]

    Чем отличается металлургия алюминия от металлургии циика и ртути  [c.298]

    Важным является применение алюминия для алитирования, которое заключается в насыщении поверхности стальных или чугунных изделий алюминием с целью защиты основного материала от окисления при сильном нагревании. В металлургии алюминий применяется для получения кальция, бария, лития и некоторых других металлов методом алюминотермии (см. 192). [c.637]

    Глина — конечный продукт выветривания алюмосиликатов в умеренном климате. В тропическом и субтропическом климате разрушение алюмосиликатов идет дальше алю.миний отделяется от кремния в виде смеси своих гидратов окислов, примерный состав которых АиОз-НгО. Эта смесь представляет собой основной для современной металлургии алюминия минерал — боксит. [c.656]

    Металлургия алюминия в СССР. До революции в России не было даже в зародыше ни металлургии алюминия, ни сколько-либо разведанных запасов его руд. [c.657]

    Публикуемые данные освещают ряд важных вопросов электрохимии и металлургии алюминия, магния, натрия, титана, циркония, гафния, ванадия, ниобия, вольфрама, редкоземельных металлов, а также процессов, протекающих при высоких температурах. [c.2]

    Рапопорт М. Б. Межслойные соединения углерода и их значение для металлургии алюминия. Автореф. дис. на соискание ученой степени доктора тех. наук. М., 1970. В надз. Ленинградский горный институт нм. Г. В. Плеханова, 32 с. [c.679]

    Значительно реже встречается минерал корунд AljOs- Распространенными породами, содержащими алюминий, являются глины и каолины (см. гл. III, 4). Для металлургии алюминия имеет значение [c.75]

    Криолит — минерал состава А1Рз-ЗКаР или МазА . В настоящее время приготавливается искусственным путем, применяется в металлургии алюминия. [c.249]

    Настоящую революцию в металлургии алюминия совершили Ч. Холл в США и П. Эру во Франции, которые независимо друг от друга в 1886 г. открыли способ получения алюминия путем электролиза расплава глинозема AI2O3 в криолите NagAlFe с содержением 6—8% глинозема при температуре 950 °С. При этом сам жидкий алюминий является катодом и собирается на дне ванны, в то время как угольный анод, вертикально опущенный в расплав, выгорает до смеси оксидов углерода. По представлениям П. П. Федотьева при этом протекают следующие процессы  [c.40]

    Криолитовая руда Жилоподобные скопления в гранитах, минерал пегматитов Криолит NajAlFo = 50-90 % (сидерит, Сар2, сульфиды, Fe ) Используется в металлургии алюминия, для изготовления молочно-белого стекла, эмали [c.66]

    В металлургии алюминий используют для раскисления стали, получения некоторых металлов методом алюмотерм ни. [c.168]

    Металлургия алюминия в СССР. До революции з России не было даже в эародыще ни металлургии алюминия, ни сколько-либо разведан--ных запасов его руд. Мощные залежи боксита иа Урале бьши офкрыты лишь в советское время. Первый алюминиевый завод, вступивший в-строй в 1932 г. под Ленинградом, работает на тихвинских бокситах и энергии Волховской гидроэлектрической станции. [c.472]

    Смесь этих гидратов называется бокситом. Важное значение в металлургии алюминия имеет криолит ЗМаР А1Рз. Залежи бокситов имеются в Ленинградской области, на Урале и в некоторых районах Сибири. [c.295]

    Состав второго необходимого для металлургии алюминия минерала — криолита обычно выражается формулой двойной соли ЗЫаР-А1Рз. Но в действительности это соль комплексной алюминий-фтористо-водородной кислоты НзА1Рб. Криолит — редкий минерал, и его приходится для алюминиевой металлургии приготовлять искусственно. [c.656]

    Синтетический гексафтороалюминат натрия или натриевый криолит (его обычно называют просто криолитом) согласно ГОСТ 1056 —80 выпускают следующих марок КА высшего и первого сортов (применяют в металлургии алюминия) и КП (для производства стекла, эмалей, абразивов и др.). Они характеризуются криолитовым модулем т (молярным отношением NaF AIF3), который для сортов марки КА должен быть не менее 1,7 и 1,5 (для марки КП — не нормирован), и должны содержать (соответственно) не менее 54, 54, 52 % F и 23, 22, 13 % Na и не более 18, 19, 23 % А1. Ограничено также содержание SiOa, РеаОз, P jOs, сульфатов и влаги. Продукт высшей категории качества (КАэ) должен содержать 55 1 % F, 24 1 % Na, 17 I % А1. [c.216]

    Карбид алюминия АЦСд разлагается кремнием [544]. В системе А1—С-—Si образование тройных соединений мало вероятно. Поэтому из указанного следует, что AI4 3 и алюминий находятся в равновесии с карборундом. Это обстоятельство может быть использовано для практических целей при применении карборундовых огнеупоров в металлургии алюминия и его сплавов, а также для металлизации контактов (концов) карборундовых электронагревателей. [c.79]

    Книги по электротермии неметаллов, опубликованные за последние годы, являются монографиями, посвященными отдельным вопросам. В противоположность этому настоящая работа является попыткой комплексного изложения всей области электротермии неметаллов. Поэтому в той или иной мере книга охватывает все основные электротермические производства неметаллических веществ. Не включены лишь некоторые отдельные вопросы, к числу которых относятся электротермические способы получения глинозема для производства алюминия, рассматриваемые детально в трудах по металлургии алюминия, и электротермические методы получения карбидов вольфрама, титана и т. п. для производства так называемых твердых сплавов, излагаемые в соответствующих спег циальных курсах порошковой металлургии. Кроме того, в книге не рассматриваются введенные в производство, но не привившие ся в практике электротермические методы получения глиноземи стого цемента, а также оксидов и сульфидов некоторых щелочног земельных и щелочных металлов. [c.10]

chem21.info

Металлургия алюминия

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Магнитогорский Государственный Технический Университет

им. Носова

Кафедра металлургии черных металлов

Реферат по дисциплине «История металлургии»

МЕТАЛЛУРГИЯ АЛЮМИНИЯ

Аннотация

Рассмотрена тема "Металлургия алюминия", описаны основные свойства этого металла. Кратко изложена история открытия алюминия, возможные способы его получения и применения в различных отраслях промышленности.

Содержание

Введение

1. Свойства алюминия

2. Применение алюминия

3. Сырые материалы

4. Производство глинозема

5. Электролитическое получение алюминия

6. Рафинирование алюминия

Заключение

Список использованной литературы

Введение

Слово «металлургия» происходит от греч.:

metalleuо – выкапываю, добываю из земли;

metallurgeo – добываю руду, обрабатываю металлы;

metallon – рудник, металл.

Это слово означает область науки и техники, охватывающую процессы обработки добытых из недр руд, получение металлов и сплавов, придание им определенных свойств.

В древности, в средние века и сравнительно недавно, вплоть до времени М.В.Ломоносова, считалось, что существует 7 металлов (золото, серебро, медь, олово, свинец, железо, ртуть).

В 1814 г. шведский химик Й.Берцелиус предложил использовать буквенные знаки, которыми пользуется весь мир, за редкими исключениями.

Сегодня науке известно более 80 металлов, большинство из них используется в технике.

В мировой практике сложилось деление металлов на черные (железо и сплавы на его основе) и все остальные – нечерные (Non-ferrous metals, англ.; Nichtei-senmetalle, нем.) или цветные металлы. Металлургия часто подразделяется на черную и цветную. В настоящее время на долю черных металлов приходится около 95% всей производимой в мире металлопродукции.

В технике принята также условная классификация, по которой цветные металлы разделены на «легкие» (алюминий, магний), «тяжелые» (медь, свинец и др.), тугоплавкие (вольфрам, молибден и др.), благородные (золото, платина и др.), редкие металлы.

Доля продукции, изготовленной с использованием черных и цветных металлов, в настоящее время составляет 72-74% валового национального продукта государства. Можно утверждать, что металлы в XXI в. останутся основным конструкционными материалами, так как по своим свойствам, экономичности производства и потребления не имеют себе равных в большинстве сфер применения.

Из ~ 800 млн. т потребляемых металлов ~ 750 млн. т – сталь, 20-22 млн. т – алюминий, 8-10 млн. т – медь, 5-6 млн. т – цинк, 4-5 млн. т – свинец (остальные - < 1 млн. т).

Из наиболее ценных и важных для современной техники металлов лишь немногие содержится в земной коре в больших количествах: алюминий (8,8%), железо (4,65%), магний (2,1%), титан (0,63%).

К рудным месторождениям легких металлов обычно относят руды, содержащие алюминий; основной поставщик алюминия – бокситы, а также алуниты, нефелины и раз личные глины. К рудным месторождениям цветных металлов относятся месторождения меди, свинца и цинка, кобальта, никеля, сурьмы. Запасы металлов в наиболее крупных из них достигают от десятков до сотен млн. т, при обычном содержании металлов в руде – единицы процентов.

Масса добываемых материалов во много раз превышает количество содержащихся в руде металлов и в подавляющем большинстве случаев из природных руд экономически невыгодно непосредственно извлекать полезные компоненты.

Археологические раскопки свидетельствуют о том, что знакомство человека с металлами относится к временам, весьма удаленным от нас. Считается, что первые изделия из бронзы получены за 3 тыс. лет до н.э восстановительной плавкой смеси медной и оловянной руд с древесным углем. Значительно позже бронзы стали изготовлять добавкой в медь олова и других металлов (алюминиевые, бериллиевые, кремненикелевые и др.). В настоящее время наиболее распространены алюминиевые бронзы (5-12% Al) с добавками железа, марганца и никеля.

В настоящее время металлургическое производство является одним из приоритетных отраслей народного хозяйства. [2]

  1. СВОЙСТВА АЛЮМИНИЯ

Алюминий был впервые получен датским физиком Х.Эрстедом в 1825 г. Название этого элемента происходит от латинского алюмен, так в древности назывались квасцы, которые использовали для крашения тканей. [1]

Алюминий обладает многими ценными свойствами: небольшой плотностью – около 2,7г/см3, высокой теплопроводностью – около 300 Вт/(м . К) и высокой электропроводностью 13,8 . 107Ом/м, хорошей пластичностью и достаточной механической прочностью.

Алюминий образует сплавы со многими элементами. В расплавленном состоянии алюминий жидкотекуч и хорошо заполняет формы, в твердом виде он хорошо деформируется и легко поддается резанию, пайке и сварке.

Сродство алюминия к кислороду очень большое. При его окислении выделяетсябольшое количество тепла (~ 1670000 Дж/моль). Тонкоизмельченный алюминий при нагревании воспламеняется и сгорает на воздухе. Алюминий соединяется с кислородом воздуха и в атмосферных условиях. При этом алюминий покрывается тонкой (толщиной ~ 0,0002 мм) плотной пленкой окиси алюминия, защищающей его от дальнейшего окисления; поэтому алюминий стоек против коррозии. Поверхность алюминия хорошо защищает от окисления этой пленки и в расплавленном состоянии.

Из сплавов алюминия наибольшее значение имеют дюралюминий и силумины.

В состав дюралюминия, кроме алюминия, входят 3,4-4% Cu, 0,5% Mn и 0,5%Mg, допускается не более 0,8% Fe и 0,8% Si. Дюралюминий хорошо деформируется и по своим механическим свойствам близок к некоторым сортам стали, хотя он в 2,7 раза легче стали (плотность дюралюминия 2,85 г/см3).

Механические свойства этого сплава повышаются после термической обработке и деформации в холодном состоянии. Сопротивление на разрыв повышается со 147-216 МПа до 353-412 МПа, а твердость по Бринеллю с 490-588 до 880-980 МПа. При этом относительное удлинение сплава почти не изменяется и остается достаточно высоким (18-24%).

Силумины – литейные сплавы алюминия с кремнием. Они обладают хорошими литейными качествами и механическими свойствами. [2]

  1. ПРИМЕНЕНИЕ АЛЮМИНИЯ

Алюминий и сплавы широко применяют во многих отраслях промышленности, в том числе в авиации, транспорте, металлургии, пищевой промышленности и др. Из алюминия и его сплавов изготовляют корпуса самолетов, моторы, блоки цилиндров, коробки передач, насосы и другие детали в авиационной, автомобильной и тракторной промышленности, сосуды для хранения химических продуктов. Алюминий широко применяют в быту, пищевой промышленности, в ядерной энергетики и космических кораблей изготовлены из алюминия и его сплавов.

Вследствие большого химического сродства алюминия к кислороду его применяют в металлургии как раскислитель, а также для получения при использовании так называемого алюминотермического процесса трудно восстанавливаемых металлов (кальция, лития и др.).

По общему производству металла в мире алюминий занимает второе место после железа. [2], [1]

  1. СЫРЫЕ МАТЕРИАЛЫ

Основным современным способом производства алюминия является электролитический способ, состоящий из двух стадий. Первая – это получение глинозема (Al2O3) из рудного сырья и вторая – получение жидкого алюминия из глинозема путем электролиза.

Руды алюминия. Вследствие высокой химической активности алюминий встречается в природе только в связанном виде: корунд Al2O3, гиббсит Al2O3. 3h3O, бемит Al2O3. h3O , кианит 3Al2O3 , 2SiO2, нефелин (Na, K)2O . Al2O3 . 2SiO2, каолинит Al2O3, 2SiO2 . 2h3O и другие. Основными используемыми в настоящее время алюминиевыми рудами являются бокситы, а также нефелины и алуниты.

en.coolreferat.com

Металлургия алюминия

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию

Магнитогорский Государственный Технический Университет

им. Носова

Кафедра металлургии черных металлов

Реферат по дисциплине «История металлургии»

МЕТАЛЛУРГИЯ АЛЮМИНИЯ

Аннотация

Рассмотрена тема "Металлургия алюминия", описаны основные свойства этого металла. Кратко изложена история открытия алюминия, возможные способы его получения и применения в различных отраслях промышленности.

Содержание

Введение

1. Свойства алюминия

2. Применение алюминия

3. Сырые материалы

4. Производство глинозема

5. Электролитическое получение алюминия

6. Рафинирование алюминия

Заключение

Список использованной литературы

Введение

Слово «металлургия» происходит от греч.:

metalleuо – выкапываю, добываю из земли;

metallurgeo – добываю руду, обрабатываю металлы;

metallon – рудник, металл.

Это слово означает область науки и техники, охватывающую процессы обработки добытых из недр руд, получение металлов и сплавов, придание им определенных свойств.

В древности, в средние века и сравнительно недавно, вплоть до времени М.В.Ломоносова, считалось, что существует 7 металлов (золото, серебро, медь, олово, свинец, железо, ртуть).

В 1814 г. шведский химик Й.Берцелиус предложил использовать буквенные знаки, которыми пользуется весь мир, за редкими исключениями.

Сегодня науке известно более 80 металлов, большинство из них используется в технике.

В мировой практике сложилось деление металлов на черные (железо и сплавы на его основе) и все остальные – нечерные (Non-ferrousmetals, англ.; Nichtei-senmetalle, нем.) или цветные металлы. Металлургия часто подразделяется на черную и цветную. В настоящее время на долю черных металлов приходится около 95% всей производимой в мире металлопродукции.

В технике принята также условная классификация, по которой цветные металлы разделены на «легкие» (алюминий, магний), «тяжелые» (медь, свинец и др.), тугоплавкие (вольфрам, молибден и др.), благородные (золото, платина и др.), редкие металлы.

Доля продукции, изготовленной с использованием черных и цветных металлов, в настоящее время составляет 72-74% валового национального продукта государства. Можно утверждать, что металлы в XXI в. останутся основным конструкционными материалами, так как по своим свойствам, экономичности производства и потребления не имеют себе равных в большинстве сфер применения.

Из ~ 800 млн. т потребляемых металлов ~ 750 млн. т – сталь, 20-22 млн. т – алюминий, 8-10 млн. т – медь, 5-6 млн. т – цинк, 4-5 млн. т – свинец (остальные - < 1 млн. т).

Из наиболее ценных и важных для современной техники металлов лишь немногие содержится в земной коре в больших количествах: алюминий (8,8%), железо (4,65%), магний (2,1%), титан (0,63%).

К рудным месторождениям легких металлов обычно относят руды, содержащие алюминий; основной поставщик алюминия – бокситы, а также алуниты, нефелины и раз личные глины. К рудным месторождениям цветных металлов относятся месторождения меди, свинца и цинка, кобальта, никеля, сурьмы. Запасы металлов в наиболее крупных из них достигают от десятков до сотен млн. т, при обычном содержании металлов в руде – единицы процентов.

Масса добываемых материалов во много раз превышает количество содержащихся в руде металлов и в подавляющем большинстве случаев из природных руд экономически невыгодно непосредственно извлекать полезные компоненты.

Археологические раскопки свидетельствуют о том, что знакомство человека с металлами относится к временам, весьма удаленным от нас. Считается, что первые изделия из бронзы получены за 3 тыс. лет до н.э восстановительной плавкой смеси медной и оловянной руд с древесным углем. Значительно позже бронзы стали изготовлять добавкой в медь олова и других металлов (алюминиевые, бериллиевые, кремненикелевые и др.). В настоящее время наиболее распространены алюминиевые бронзы (5-12% Al) с добавками железа, марганца и никеля.

В настоящее время металлургическое производство является одним из приоритетных отраслей народного хозяйства. [2]

1. СВОЙСТВА АЛЮМИНИЯ

Алюминий был впервые получен датским физиком Х.Эрстедом в 1825 г. Название этого элемента происходит от латинского алюмен, так в древности назывались квасцы, которые использовали для крашения тканей. [1]

Алюминий обладает многими ценными свойствами: небольшой плотностью – около 2,7г/см3 , высокой теплопроводностью – около 300 Вт/(м . К) и высокой электропроводностью 13,8 . 107 Ом/м, хорошей пластичностью и достаточной механической прочностью.

Алюминий образует сплавы со многими элементами. В расплавленном состоянии алюминий жидкотекуч и хорошо заполняет формы, в твердом виде он хорошо деформируется и легко поддается резанию, пайке и сварке.

Сродство алюминия к кислороду очень большое. При его окислении выделяетсябольшое количество тепла (~ 1670000 Дж/моль). Тонкоизмельченный алюминий при нагревании воспламеняется и сгорает на воздухе. Алюминий соединяется с кислородом воздуха и в атмосферных условиях. При этом алюминий покрывается тонкой (толщиной ~ 0,0002 мм) плотной пленкой окиси алюминия, защищающей его от дальнейшего окисления; поэтому алюминий стоек против коррозии. Поверхность алюминия хорошо защищает от окисления этой пленки и в расплавленном состоянии.

Из сплавов алюминия наибольшее значение имеют дюралюминий и силумины.

В состав дюралюминия, кроме алюминия, входят 3,4-4% Cu, 0,5% Mn и 0,5%Mg, допускается не более 0,8% Fe и 0,8% Si. Дюралюминий хорошо деформируется и по своим механическим свойствам близок к некоторым сортам стали, хотя он в 2,7 раза легче стали (плотность дюралюминия 2,85 г/см3 ).

Механические свойства этого сплава повышаются после термической обработке и деформации в холодном состоянии. Сопротивление на разрыв повышается со 147-216 МПа до 353-412 МПа, а твердость по Бринеллю с 490-588 до 880-980 МПа. При этом относительное удлинение сплава почти не изменяется и остается достаточно высоким (18-24%).

Силумины – литейные сплавы алюминия с кремнием. Они обладают хорошими литейными качествами и механическими свойствами. [2]

2. ПРИМЕНЕНИЕ АЛЮМИНИЯ

Алюминий и сплавы широко применяют во многих отраслях промышленности, в том числе в авиации, транспорте, металлургии, пищевой промышленности и др. Из алюминия и его сплавов изготовляют корпуса самолетов, моторы, блоки цилиндров, коробки передач, насосы и другие детали в авиационной, автомобильной и тракторной промышленности, сосуды для хранения химических продуктов. Алюминий широко применяют в быту, пищевой промышленности, в ядерной энергетики и космических кораблей изготовлены из алюминия и его сплавов.

Вследствие большого химического сродства алюминия к кислороду его применяют в металлургии как раскислитель, а также для получения при использовании так называемого алюминотермического процесса трудно восстанавливаемых металлов (кальция, лития и др.).

По общему производству металла в мире алюминий занимает второе место после железа. [2], [1]

3. СЫРЫЕ МАТЕРИАЛЫ

Основным современным способом производства алюминия является электролитический способ, состоящий из двух стадий. Первая – это получение глинозема (Al2 O3 ) из рудного сырья и вторая – получение жидкого алюминия из глинозема путем электролиза.

Руды алюминия. Вследствие высокой химической активности алюминий встречается в природе только в связанном виде: корунд Al2 O3 , гиббсит Al2 O3. 3h3 O, бемит Al2 O3. h3 O, кианит 3Al2 O3 , 2SiO2 , нефелин (Na, K)2 O. Al2 O3 . 2SiO2 , каолинит Al2 O3, 2SiO2 . 2h3 Oи другие. Основными используемыми в настоящее время алюминиевыми рудами являются бокситы, а также нефелины и алуниты.

Бокситы. Алюминий в бокситах находится главным образом в виде гидроксидов алюминия (гиббсита, бемита и др.), корунда и каолинта. Химический состав бокситов довольно сложен. Они часто содержат более 40 химических элементов. Содержание глинозема в них составляет 35-60%, кремнезема 2-20%, оксида Fe2 O3 2-40%, окиси титана 0,01-10%. Важной характеристикой бокситов является отношение содержаний в них Al2 O3 к SiO2 по массе – так называемый кремневый модуль.

К числу крупных месторождений бокситов в нашей стране относится Тихвинское (Ленинградская область), Североуральское (Свердловская область), Южноуральское (Челябинская область), Тургайское и Краснооктябрьское (Кустанайская область).

Нефелины входят в состав нефелиновых сиенитов и уртитов. Большое месторождение уртитов находится на Кольском полуострове. Основные компоненты уртита – нефелин и апатит 3Ca3 (PO4 )2 . CaF2 . Их подвергают флотационному обогащению с выделением нефелинового апатитового концентратов. Апатитовый концентрат идет для приго товления фосфорных удобрений, а нефелиновый – для получения глинозема. Нефелиновый концентрат содержит , %: 20-30 Al2 O3 , 42-44 SiO2 , 13-14 Na2 O, 6-7 K2 O, 3-4 Fe2 O3 и 2-3 CaO.

Алуниты представляют собой основной сульфат алюминия и калия (или натрия) K2 SO4. Al2 ( SO4 )3. 4 Al(OH)3 . Содержание Al2 O3 в них невысокое (20-22%), но в них находится другие ценные составляющие: серный ангидрид SO3 (~ 20%) и щелочь Na2 O, K2 O (4-5%). Таким образом, они, так же как и нефелины, представляют собой комплексное сырье.

Другие сырые материалы. При производстве глинозема применяют щелочь NaOH, иногда известняк CaCO3 , при электролизе глинозема криолит Na3 AlF6 (3NaF. AlF3 ) и немного фтористого алюминия AlF3 , а также CaF2 и MgF2 . [2]

mirznanii.com