Большая Энциклопедия Нефти и Газа. Электроизоляционные материалы таблица
Электроизоляционные материалы - Основы электротехники - Электротехника - Каталог материалов
В электротехнике для изоляции токоведущих частей и обеспечения их надежной работы находят применение множество электроизоляционных материалов с различными изоляционными свойствами. Среди этого множества можно выделить наиболее часто используемые.
Асбест
Минерал, имеющий волокнистое строение. Длина волокна – от десяти долей миллиметра до нескольких сантиметров. Из асбеста изготовляют пряжу, ленты, ткани, бумагу, картон и другие изделия. Ценным качеством асбеста является его высокая нагревостойкость. Нагрев до 300 – 400 °С не меняет свойств асбеста. Благодаря низкой теплопроводности асбест применяют в качестве тепловой изоляции при высоких температурах. Асбест обладает гигроскопичностью, которая уменьшается при пропитке его смолами, битумами и тому подобным. Асбестовое волокно, пропитанное битумом и подклеенное к проводу лаком, образует дельта-асбестовую изоляцию. Асбест входит в качестве наполнителя в состав пластичных масс. Электроизоляционные свойства асбеста невысоки. Электрическая прочность его 0,6 – 1,2 кВ/мм. Поэтому он не применяется при высоких напряжениях.
Асбоцемент
Пластическая масса холодного прессования. В качестве наполнителя входит асбестовое волокно, связующим веществом является цемент. Асбоцемент идет на изготовление щитков, панелей, оснований аппаратов, труб и тому подобного. Асбоцемент обладает хорошими механическими свойствами, высокой дугостойкостью, теплостойкостью и негорючестью. Электроизоляционные свойства асбоцемента низки. Пропитка его расплавленным парафином, льняным маслом, битумом и другими составами уменьшает гигроскопичность асбоцемента.
Бакелит
Искусственная смола, получаемая варкой фенола (спирта) с формалином (водным раствором формальдегида – продукта окисления спирта). Полученная в результате варки масса называется бакелитом стадии А. Температура размягчения бакелита А около 80 °С. Он может растворяться в спирте и в ацетоне. При нагреве до 110 – 140 °С бакелит А переходит в бакелит С, который не плавится и не растворяется. Бакелит применяют для пропитки дерева и других материалов, изготовления пластических масс – гетинакса, текстолита, склейки фанеры. Электрическая прочность бакелита 10 – 20 кВ/мм; ε = 4,5 – 6.
Бумага
Изготовляется путем специальной обработки щелочью измельченной древесины деревьев хвойных пород. В электротехнике применяют следующие основные сорта электроизолирующих бумаг: конденсаторную, кабельную, пропиточную (для изготовления листового гетинакса), намоточную (для изготовления бумажно-бакелитовых цилиндров), микалентную (для изготовления клееной слюдяной изоляции), оклеечную (для изготовления листов электротехнической стали).
Галовакс
Получают хлорированием нафталина. Галовакс имеет температуру плавления 95 – 135 °С. Ввиду высокой диэлектрической проницаемости (около 5) галовакс применяют для пропитки бумажных конденсаторов. В отличие от парафина и церезина галовакс не горюч.
Гетинакс
Изготовляют из бумаги, пропитанной искусственной смолой (бакелитом). Листы бумаги сдавливают прессом, одновременно нагревают до 160 – 165 °С, в результате чего бакелит стадии А переходит в стадию С. Таким образом получают гетинаксовые доски, которые имеют толщину от 0,5 до 50 мм. Гетинакс хорошо подвергается механической обработке: сверлению, обтачиванию, фрезерованию, распиливанию. При толщине от 2,5 до 3 мм гетинакс можно штамповать. Под действием электрической дуги блестящая поверхность гетинакса обугливания и становится электропроводящей. Гетинакс применяется для изготовления щитков, панелей, прокладок, каркасов изоляции в трансформаторах. Электрическая прочность гетинакса 20 – 25 кВ/мм; ε = 5 – 6.
Древесина
Природный волокнистый органический материал. Применяется для изготовления малоответственных изоляционных деталей. Используют обычные твердые лиственные породы: березу, дуб, бук, клен. Для повышения электрической прочности древесины ее пропитывают парафином, льняным маслом, смолами. Древесину в электротехнике применяют для опорных и крепежных деталей трансформаторов, пазовых клиньев электрических машин, деревянных опор линий связи и электропередач и так далее.
Канифоль
Хрупкая смола светло-желтого или коричневого цвета, получаемая путем обработки смолы хвойных деревьев (сосны). Канифоль растворяется в нефтяных маслах, жидких углеводородах, растительных маслах, спирте, скипидаре. Температура размягчения канифоли 50 – 70 °С. Электрическая прочность канифоли 10 – 15 кВ/мм. Канифоль употребляют для приготовления пропиточных и заливочных масс.
Картон электротехнический
Отличается от бумаги повышенной толщиной. Изготовляют два сорта картона: ЭВ – для работы на воздухе и ЭМ – для работы в масле. Картон применяют для изготовления мелких деталей. Электрическая прочность картона 8 – 10 кВ/мм; ε = 2,5 – 4.
Каучук
Каучук (резина) получается из сока растений каучуконосов. Такой каучук называют натуральным (НК). Каучук можно получить также искусственным путем. Искусственный или синтетический каучуке (СК) изготовляют из спирта или нефтепродуктов. Нагретый до 50 °С каучук размягчается и становится липким, а при низкой температуре – хрупким. Каучук хорошо растворяется в углеводородах и сероуглероде. Для увеличения механической прочности, нагревостойкости и морозоустойчивости, стойкости к растворителям к каучуку добавляют 3 – 10 % серы. Этот процесс называется вулканизацией, в результате чего получается резина. В электротехнике резину применяют для изоляции установочных и монтажных проводов и кабелей некоторых конструкций, для изолирующих трубок, защитных перчаток, галош, ковриков и тому подобного. Резина обладает высокими электроизоляционными свойствами, влагостойкостью, непроницаемостью для воды и газов, имеет невысокую нагревостойкость (при нагреве свыше 60 – 75 °С резина делается хрупкой и трескается), при действии на резину нефтяных масел она набухает, при действии света – стареет. Электрическая прочность резины 24 кВ/мм; ε = 2,5 – 3.
Лаки электроизоляционные
Представляют собой растворы твердеющих веществ (смолы, битума, высыхающего масла и других) в летучих растворителях (бензине, бензоле, спиртах, эфирах, ацетоне, скипидаре и других). Электроизоляционные лаки делятся на три группы: пропиточные, покровные и клеящие. Пропиточные лаки служат для пропитки пористой, волокнистой или твердой изоляции (бумаги, картона, пряжи, ткани, изоляции обмоток электрических машин и аппаратов). Покровные лаки служат для создания на предметах прочной, водостойкой пленки. При помощи клеящих лаков склеивают отдельные листочки слюды. По режиму сушки лаки делятся на лаки горячей (печной) сушки и лаки холодной (воздушной) сушки.
Лакоткани
Изготовляют из хлопчатобумажной, шелковой или стеклянной ткани, которую затем пропитывают масляным или масляно-битумным лаком. Лакоткани применяют для изолирования обмоток машин и аппаратов. Хлопчатобумажные лакоткани имеют толщину 0,15 – 0,25 мм, электрическую прочность 35 – 40 кВ/мм. Шелковые лакоткани имеют толщину 0,05 – 0,1 мм и повышенную электрическую прочность (в 1,5 – 2 раза по сравнению с хлопчатобумажными лакотканями).
Трансформаторное масло
Получают из нефти путем ее ступенчатой перегонки. В электрических аппаратах трансформаторное масло служит для обеспечения надежной электрической изоляции. В силовых трансформаторах оно является, кроме того, охлаждающей средой. В масляных выключателях трансформаторное масло используют в качестве дугогасящей среды. Трансформаторное масло применяют также для заливки высоковольтных вводов и как составную часть заливочных масс. Нефтяные масла после специальной очистки используют в конденсаторах и кабельном производстве. Важнейшей характеристикой трансформаторного масла как электроизоляционного материала является электрическая прочность, которая равна 5 – 18 кВ/мм; ε = 2,2.
Мрамор
Горная порода зернисто-кристаллического строения. Глыбы мрамора распиливают на доски, которые затем фрезеруют и полируют. Недостатки мрамора: гигроскопичность, хрупкость, способность растрескиваться при сильном нагреве, способность разлагаться кислотами. Пропитка мрамора парафином, битумом, канифолью делает его практически негигроскопичным. Электрическая прочность мрамора 2,5 – 3,5 кВ/мм; ε = 8.
Парафин
Воскообразное вещество, полученное из нефти. Хорошо очищенный парафин – кристаллическое вещество белого цвета. Парафин применяется для пропитки дерева, бумаги, волокнистых веществ, для заливки высокочастотных катушек и трансформаторов, для приготовления изолирующих составов. Парафин нерастворим в воде и спирте, но растворяется в жидких углеводородах: нефтяных маслах, бензине, бензоле. Удельный вес парафина 0,85 – 0,9, температура плавления 50 – 55 °С. Электрическая прочность 16 – 30 кВ/мм; ε = 2,1 – 2,2.
Пластические массы
Состоят из связующего вещества (смолы, битум и другие) и наполнителя («каменная мука», «древесная мука», хлопчатобумажное, асбестовое или стеклянное волокно, слюда, бумага, ткань и тому подобных). Кроме того в состав пластмасс входят пластификаторы – вещества, уменьшающие хрупкость, и красители, придающие изделию нужную окраску. Связующее вещество, смешанное с наполнителем, закладывается в пресс-форму и при помощи давления и нагрева (иногда только давления) получается изделие нужных размеров и конфигурации. Пластмассы используют в качестве электроизолирующих, а также конструкционных материалов.
Пропиточные и заливочные составы
По другому такие составы называют – компаунды. Они применяются для пропитки и заливки различных частей электрических установок. Эти составы изолируют отдельные токоведущие части, создают водостойкую изоляцию и улучшают условия охлаждения. Пропиточные и заливочные составы изготовляют из нефтяных битумов и сплавов минерального масла с канифолью. Иногда для увеличения теплопроводности в битумы вводят наполнитель, например кварцевый песок.
Слюда
Минерал кристаллического строения. Благодаря своему строению слюда легко расщепляется на отдельные листочки. Она обладает высокой электрической прочностью (80 – 200 кВ/мм), высокой нагревостойкостью, влагостойкостью, механической прочностью и гибкостью. В электротехнике применяют два вида слюды: мусковит и флогопит, различающиеся по составу, цвету и свойствам. Лучшей слюдой является мусковит. Из листочков слюды штампуют прямоугольные пластинки для конденсаторов, шайбы для электротехнических приборов и тому подобное. Однако чаще отдельные листочки слюды при помощи клеящих лаков (глифталевого, битумно-масляного, шеллачного и других) склеивают между собой. Такой материал называется миканитом. Различают миканиты: коллекторный (для изоляции коллекторных пластин), прокладочный (для изоляции шайб, прокладок), формовочный (прессуется при нагреве для изготовления фасонных деталей), гибкий (для межвитковой и пазовой изоляции электрических машин), жароупорный (для электронагревательных приборов). Иногда пластинки слюды наклеивают на бумагу или ткани (микалента, микафолий, стекломикафолий).
Стекло
Получают переплавкой кремнезема – SiO2 (в виде песка) с окислами различных металлов – натрия, калия, свинца, кальция (в виде соды, селитры, буры, различных каменных пород). Стекло – аморфное тело, поэтому оно не имеет определенной температуры плавления. При нагреве стекло размягчается и становится жидким. В этом состоянии стекло можно выдувать, вытягивать, прессовать, отливать. Физические и механические свойства стекла зависят от его состава и обработки. Если обычное стекло хрупкое, то особо закаленное стекло – сталинит обладает высокой прочностью на удар. Стекло практически водонепроницаемо, на него не действуют кислоты (за исключением плавиковой) и щелочи. Однако, стекла, содержащие только щелочные окислы (Na2O, K2O), хорошо растворяются в воде (жидкое стекло). Электроизоляционные свойства стекла очень высоки. С нагревом стекло быстро теряет изоляционные качества. В электротехнике стекло используют для изготовления баллонов осветительных и электронных ламп, изоляторов и тому подобного. Из стекла можно получить волокна диаметром до 0,005 – 0,006 мм. Отдельные волокна свиваются в нити. Стеклянные нити (стеклопряжа) используют для нагревостойкой изоляции проводников марки ПСД. Электрическая прочность стекла 10 – 40 кВ/мм; ε = 5,5 – 10.
Текстолит
Пластмасса, представляющая собой многослойную ткань, пропитанную резольной смолой и спрессованную под большим давлением при 150 °С. по сравнению с гетинаксом текстолит обладает следующими положительными свойствами: меньшей хрупкостью, высокими механическими качествами и стойкостью к истиранию. Его отрицательными качествами являются: худшие электрические свойства, меньшая влагостойкость, дороговизна (в 5 – 6 раз дороже гетинакса). Текстолит, изготовленный на основе стеклянной ткани, называется стеклотекстолитом. Он обладает высокими электрическими свойствами, влагостойкостью, нагревостойкостью и большой механической прочностью. Текстолит легко поддается механической обработке на станках. Он применяется для изготовления роликов, бесшумных зубчатых колес, вкладышей для подшипников и так далее. Электрическая прочность текстолита 27 – 45 кВ/мм.
Фарфор электротехнический
Является наиболее распространенным керамическим электроизоляционным материалом. В состав фарфора входят: каолин – белая глина, огнеупорная глина, кварц и полевой шпат. Изготовление фарфоровых изделий состоит из следующих операций: измельчение составных частей фарфора и перемешивание их с водой в однородную массу. Путем прессования, обтачивания, отливки в гипсовые формы или выдавливания из этой массы получают изделия нужной конфигурации. Для удаления избытка воды изделия сушат, затем их покрывают стекловидной массой – глазурью, которая уменьшает гигроскопичность фарфора, придает определенную окраску изделиям и создает при обжиге ровную, гладкую поверхность. после глазуровки изделие опять сушат и обжигают в печах при температуре 1320 – 1450 °С. Фарфор характеризуется высокой теплостойкостью, стойкостью к электрическим дугам и весьма малым водопоглощением. Из фарфора изготовляют линейные (подвесные и штыревые) изоляторы, стационарные (опорные и проходные) изоляторы, аппаратные изоляторы, установочные фарфоровые изделия (ролики, детали предохранителей, патронов, штепселей и тому подобные). Электрическая прочность фарфора 6 – 10 кВ/мм; ε = 5 – 6,5. Кроме фарфора, применяется другой керамический материал – стеатит, изготовляемый на основе минерала – талька. Стеатит по сравнению с фарфором обладает более высокими электроизоляционными и физико-механическими свойствами.
Фибра
Изготовляется из пористой бумаги, обработанной раствором хлористого цинка. Фибра хорошо поддается механической обработке. Большим недостатком фибры является ее гигроскопичность. Фибра разъедается кислотами и щелочами. Из нее изготовляют мелкие детали, прокладки, каркасы катушек. Электрическая прочность фибры 5 – 11 кВ/мм; ε = 2,5 – 5. тонкая фибра (0,1 – 0,5 мм) называется летероидом.
Церезин
Получают путем очистки воскообразного минерала – озокерита или петролатума. Церезин по сравнению с парафином имеет повышенную температуру плавления (65 – 80 °С) и повышенную стойкость против окисления. Церезин применяют для пропитки бумажных конденсаторов, приготовления изолирующих составов и другого. Электрическая прочность церезина 15 кВ/мм.
Шелк
Получают из коконов червя-шелкопряда. Толщина нити 0,01 – 0,015 мм. Шелковые нити идут на изоляцию проводов и изготовление ткани.
Шеллак
Природная смола тропических растений, температура его плавления 100 – 200 °С. Шеллак имеет вид желтоватых или коричневых чешуек, легко растворяется в спирте. Шеллак применяется для приготовления заливочных масс, изоляционных и клеящих лаков, пропитки изоляционных лент; ε = 2,7 – 3,7.
Шифер
Шифер-сланец, имеет слоистое строение. Шифер негигроскопичен, легко поддается механической обработке. Ранее он шел на изготовление панелей, щитков для рубильников и тому подобного. Электрическая прочность шифера 1,5 – 3 кВ/мм; ε = 6 – 7,5.
Эбонит
Это твердая резина, получаемая из каучука путем добавки в него 20 – 50 % серы. Эбонит выпускается в виде листов (досок), палок и трубок, хорошо поддается механической обработке. Он применяется в технике слабых токов, в эбонитовые трубки протаскивают провода при входе сквозь стены и при скрытой проводке.
flamingo-nn.ucoz.com
Электроизоляционные материалы и изделия
Категория: Электромонтажные работы
Электроизоляционные материалы и изделия
Электроизоляционные материалы и изделия составляют группу наиболее распространенных и разнообразных материалов. Рассмотрим некоторые из них, главным образом изделия.
Ленты, применяемые для изоляции проводов и кабелей, изготовляют поливинилхлоридными, полиэтиленовыми, самослипающимися, хлопчатобумажными, прорезиненными и смоляными, лако- и стеклотканевыми.
Поливинилхлоридную ленту ПВХ изготовляют из светотермостойкого поливинилхлоридного пластиката с липким слоем на одной стороне. Лента имеет хорошие механические свойства и удовлетворительную адгезию к металлам, морозостойка и эластична. Ее изготовляют в рулонах (кругах) с наружным диаметром до 100 мм, шириной от 15 до 50 мм и толщиной от 0,2 до 0,45 мм. Выпускают также ленты ПВХ и нелипкими, но при использовании каждый слой промазывают клеящим лаком.
Полиэтиленовую ленту ПЛ (А) и ПЛ (В) с липким слоем, обладающую теми же свойствами, что и лента ПВХ, выпускают шириной 30—50 мм и толщиной 0,11-0,13 мм.
Электроизоляционная самослипающаяся лента СЭЛ на основе полиолефинов с индексом А применяется для герметизации в соединительных муфтах кабелей с пластмассовой изоляцией, а с индексом Б — в соединительных муфтах в качестве основной изоляции, обладает хорошей адгезией к поливинилхлориду, полиэтилену и металлу, самослипается при температуре окружающей среды, образуя монолитный слой. Выпускают ее черного цвета в кругах с наружным диаметром до 90 мм, шириной 15 и 25 мм и толщиной 1 мм.
Самослипающаяся термостойкая электроизоляционная лента радиационной вулканизации ЛЭТСАР, выполненная на кремнийорганической основе, применяется в качестве основной изоляции в соединительных и концевых муфтах кабелей с бумажной и пластмассовой изоляцией. Выпускают ее белого и красного цвета в кругах с наружным диаметром до 150 мм, шириной 26 мм и толщиной 0,2 — 0,5 мм. Разновидностями ленты ЛЭТСАР являются: ЛЭТСАР ЛП с повышенными адгезионными свойствами, используемая для герметизации в муфтах кабелей с пластмассовой изоляцией, и ЛЭТСАР ЛПм с повышенной стойкостью к пропиточному составу, используемая для герметизации в муфтах кабелей с бумажной изоляцией. Ленты ЛЭТСАР ЛПП и ЛЭТСАР ЛППм относят к полупроводящим. Первую применяют для восстановления полупроводящих слоев в муфтах кабелей с пластмассовой изоляцией, вторую (маслостой-кую) — для кабелей с бумажной изоляцией.
Хлопчатобумажные ленты (непропитанные) могут быть киперными, тафтяными, миткалевыми и батистовыми и применяются при монтаже муфт и заделок в качестве герметизирующих изоляционных подмоток, а в некоторых конструкциях заделок — в качестве основной изоляции с промазкой каждого витка эпоксидным компаундом. Для этих лент характерна значительная гигроскопичность (увлажнение при нарушении хранения).
Киперная лента имеет ширину от 10 до 50 мм и толщину 0,45 мм, тафтяная — соответственно от 10 до 50 мм и 0,25 мм, миткалевая — от 12 до 40 мм и 22 мм, батистовая — от 10 до 20 мм и 0,12 — 0,18 мм. Длина хлопчатобумажной ленты в рулоне (круге) 50 м.
Изоляционную прорезиненную ленту марок 1ПОЛ и 2ПОЛ (цифры и буквы в марке означают: 1 — односторонняя пропитка липкой резиновой смесью, 2 — то же, но двусторонняя, П — промышленного применения, ОЛ — обычной липкости) применяют для электрической изоляции соединений и оконцевания проводов и шнуров с резиновой изоляцией. Выпускают ее в кругах шириной 10 — 50 мм и толщиной 0,3 мм. Длина ленты в одном круге 55 — 85 м.
Наряду с изоляционной прорезиненной выпускают смоляную ленту черного цвета, применяемую для уплотнения мест ввода кабелей и проводов, а также для подмотки изоляции в местах вязки проводов на воздушных линиях. Изготовляют ее шириной 30 — 50 мм и толщиной 0,6; 0,8 и 1 мм.
Электроизоляционные лакоткани в виде лент применяют для изоляции проводов и кабелей. В зависимости от применяемых материалов их изготовляют на хлопчатобумажной или шелковой основе, пропитанные органическими лаками и на основе стеклянных тканей, пропитанные органическими, кремнийоргани-ческим и синтетическим лаками. Лакоткань обладает высокими диэлектрическими свойствами, стойкостью к воздействию минеральных масел, бензина, воды. Для длительной работы при нагреве до 120—180 °С (в зависимости от материала пропитки) используют стеклолако-ткань. Толщина ленты 0,05 — 0,24 мм; ширина рулона 690—1140 мм; длина в рулоне 40 м.
Поливинилхлоридную трубку ХВТ применяют для изоляции проводов и жил кабелей, маркировки концов проводок с нанесением надписей, а также для прокладки проводов в проходах через стены и междуэтажные перекрытия. Их выпускают диаметром от 3 до 40 мм с толщиной стенок от 0,4 до 1,75 мм.
Термоусаживаемые трубки применяют для изолирования мест соединения жил оболочками в соединительных муфтах и герметизации жил в концевых заделках кабелей с пластмассовой изоляцией. Их изготовляют нескольких марок: полиэтиленовые электроизоляционные ТТЭ-С (стабилизированный полиэтилен), ТТЭ-Т (термостабилизированный полиэтилен), ТТШ (шланговые), ТТВ (поливинилхлоридные).
Трубку ТТШ выполняют черного цвета, остальные — разных цветов, указанных обычно в условном обозначении. Например, марка ТТВ 40/20-К расшифровывается так: термоусаживаемая трубка поливинилхлоридная 0 40 мм до усадки и 20 мм при свободной усадке красного цвета. Термоусаживаемые трубки выпускают 0 от 12 до 110 мм с толщиной стенок от 1 до 3 мм.
Лаки и эмали делят на две группы: общего применения для защиты изделий от коррозии и придания им хорошего внешнего вида и электроизоляционные (пропиточные, покровные и клеящие). По химическому составу лаки также можно разделить на три группы: на основе растительных масел, синтетических полимеров и природных смол. Электроизоляционные лаки на основе кремнийорганических смол обладают высокой теплостойкостью и стойкостью к действию солнечного света, имеют длительный срок службы.
Пропиточные лаки имеют небольшую вязкость и используются для пропитки пористой волокнистой изоляции, увеличения электрической прочности, теплопроводности и влагостойкости.
Покровные лаки создают на поверхности изоляции механически прочную и влагостойкую пленку, а некоторые из них — тепло- и химически стойкую пленку. Покровные лаки, содержащие пигменты, называют эмалями. Пигменты придают лаковой пленке механическую прочность, твердость, улучшают ее адгезионную способность и теплопроводность, придают желаемый цвет. Клеящие лаки при склеивании создают монолитную изоляцию.
Эмали служат для защиты окрашиваемых поверхностей от коррозии и других целей. Наиболее распространены нитроэмали, пентафталевые, перхлорвиниловые кислото- и маслостойкие эмали, которые заменяют масляные краски. Для окраски электроконструкций используют перхлорвиниловую эмаль ХВ-1100 различных цветов, для защиты различных конструкций, стальных труб, чугунных муфт от коррозии — лак БТ-577 (б. № 177) и краску БТ-177, битумные покровные лаки. Растворителями эмалей служат уайт-спирит, скипидар, сольвент и ксилол.
При электромонтажных работах применяют пропиточный светло-коричневый лак ГФ-95 для покрытия повреждений бакелитовой изоляции, изоляционных деталей аппаратов.
При монтаже электропроводок в качестве изолирующих опор применяют изоляторы, к л и ц ы, а на сельскохозяйственных объектах — ролики. Для оконце-вания изоляционных трубок в проходах стен и перекрытий используют втулки (для сухих) и воронки (для сырых помещений). Эти изделия выпускают разных типов и размеров с учетом диаметров проводов и трубок, для которых они предназначены. Фарфоровые втулки имеют обозначение ВФД или ВФК (втулка фарфоровая длинная или короткая) с цифрой после букв, указывающей диаметр изоляционной трубки, воронки соответственно В-6, В-10, В-16 и т. д.
Фарфоровые изоляторы служат для электрической изоляции проводов воздушных линий и внутренних проводок и выпускаются трех типоразмеров – ТФ12, ‘ГФ16 и ТФ20.
В марке изоляторов буквы ТФ означают телеграфный фарфоровый, а цифры — диаметр штыря или крюка, на который устанавливают изолятор.
Электромонтажные работы - Электроизоляционные материалы и изделияgardenweb.ru
Электроизоляционные материалы Свойства диэлектриков - Энциклопедия по машиностроению XXL
Электротехнические материалы разделяются на три группы металлы, неметаллические материалы (электроизоляционные материалы или диэлектрики) и полупроводники. В данном учебном пособии рассматриваются электротехнические материалы двух групп металлы и полупроводники. В связи с задачами курса в учебном пособии большое внимание уделяется эксплуатационным характеристикам материалов. Современное развитие науки о металлах характеризуется возрастанием роли физических представлений. Поэтому в учебном пособии главам, посвященным конкретному изучению свойств отдельных групп электротехнических материалов, предшествуют главы, в которых рассматриваются некоторые вопросы физического металловедения. [c.4] На использовании пассивных свойств диэлектрических материалов основано самое существенное их применение в электротехнике — в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных гидов. [c.4]Синтетические материалы получают все большее применение благодаря тому, что могут быть созданы с заранее заданными характеристиками, намного превышающими характеристики естественных материалов. Свойства диэлектриков зависят от их молекулярного строения. Благодаря достижениям химии и химической промышленности можно создавать синтетические электроизоляционные материалы с оптимальным для своего назначения молекулярным строением. [c.4]
Физико-химические свойства диэлектриков. Электроизоляционные материалы имеют самую различную стойкость к разрушению (коррозии) при контактировании с водой, кислотами, щелочами, солевыми растворами, маслами, топливами, газами. При определении химостойкости образцы длительное время выдерживаются в условиях, наиболее близких к эксплуатационным, после чего определяют изменение их внешнего вида, массы, электрических и других параметров. Например, в нефтяных маслах при эксплуатации происходит коррозия погруженных в масло изоляции и металлов, в процессе которой образуются кислоты и масло стареет. Кислоты содержат и плохо очищенное масло. Количество кислоты в масле характеризуется кислотным числом, равным количеству граммов едкого калия, необходимого для нейтрализации всех свободных кислот, содержащихся в 1 кг испытуемого материала. [c.191]
Диэлектриками называются вещества, основным электрическим свойством которых является способность поляризоваться в электрическом поле. Электроизоляционными материалами называют диэлектрические материалы, предназначенные для создания электрической изоляции токоведущих частей электротехнических установок. Изолятором называется изделие из электроизоляционного материала, задачами которого являются крепление и изоляция друг от друга проводников, находящихся под различными потенциалами пример — изоляторы воздушных линий электропередачи. Электрической изоляцией называется электроизоляционная система определенного конкретного электротехнического изделия, выполненная из одного или нескольких электроизоляционных материалов. [c.158]
Для электроизоляционных материалов решающее значение имеет их стойкость к нагреву, т.е. способность без ущерба для свойств выдерживать нагрев в течение длительного времени. По этой стойкости диэлектрики разделяют на классы (ГОСТ 8865-93) Y, А, Е, В, F, Н и др. В классе Y объединены наименее стойкие целлюлозные, шелковые и полимерные материалы, для них рабочая температура не превышает 90°С. Самыми стойкими к нагреву являются слюда, керамика, стекло, ситаллы, а также полиимиды и фторопласт-4. Они выдерживают длительный нагрев 180 °С и выше. [c.603]
Определение дугостойкости электроизоляционных материалов. Под дугостойкостью понимают способность диэлектрика выдерживать воздействие электрической дуги без недопустимого ухудшения его свойств. Различают стойкость электроизоляционных материалов к действию электрической дуги при высоком свыше 1000 В) переменном напряжении и малых токах и при воздействии дуги, создаваемой постоянным напряжением до 1000 В. Характеристикой дугостойкости при испытаниях переменным напряжением служит время воздействия дуги до наступления пробоя. При испытаниях действием дуги постоянного напряжения материалы разделяются на классы в зависимости от реакции на воздействие дуги. Существующие методы испытаний позволяют лишь сравнивать дугостойкость различных материалов они не дают возможности распространить результаты испытаний, проводимых в условиях чистых и сухих лабораторий, на рабочие условия применения материалов, где влияние окружающей среды, грязи, влаги может существенно изменить дугостойкость материала. Выбор того или иного метода испытаний зависит от особенностей испытуемого материала, его назначения и устанавливается стандартом или техническими условиями на материал или изделие. [c.397]
При длительном воздействии на диэлектрик электрического поля электрическая прочность его постепенно снижается, и пробой может произойти при напряжении, меньшем, чем то, которое вызывает пробой при кратковременном приложении напряжения. Процесс, сопровождающийся ухудшением свойств диэлектрика при длительном приложении электрического поля, называется электрическим старением. Разрушение обусловлено медленным изменением химического состава и структуры диэлектрика. Основной причиной ухудшения свойств является возникновение разрядов в газовых включениях неоднородной изоляции. Разряды вызывают ионизацию газов — распад на ионы и электроны, вследствие чего возникают местные перегревы и местные разрушения. Ниже приведены величины пробивного напряжения некоторых электроизоляционных материалов [c.11]
Как уже отмечалось, диэлектрические материалы обладают высокими удельными сопротивлениями р и в них возможно наличие электростатических полей. Весьма важно для диэлектриков явление поляризации, с рассмотрения которого (см. гл. 15) и начинается третья часть книги. Большое значение для радиоэлектроники имеют также электропроводность диэлектриков (гл. 16) и диэлектрические потери (см. гл. 17). При воздействии на диэлектрик высокого напряжения может произойти пробой. Вопросы пробоя (см. гл. 18) очень важны для изучения надежности как диэлектриков, так и всей радиоэлектронной аппаратуры в целом. Помимо электрических свойств диэлектрических материалов в ряде случаев определяющее значение имеют и общие физико-химические свойства (см. гл. 19) — механическая прочность, нагревостойкость, влагостойкость, химостойкость и т. п. Важнейшие современные электроизоляционные материалы рассмотрены в гл. 20 активные диэлектрики — в четвертой части книги. [c.108]
Главным требованием, предъявляемым к изоляционным резинам, является наличие хороших электроизоляционных (диэлектрических) свойств, поэтому основные материалы, входящие в состав изоляционных смесей, должны быть хорошими диэлектриками. Другие свойства изоляционных резин, имеющие большое значение механическая прочность, эластичность, стойкость к действию тепла, озона, водостойкость — зависят также от свойств, входящих в смеси материалов. [c.146]
Гигроскопичность. Электроизоляционные материалы в большей или меньшей степени гигроскопичны, т. е. обладают способностью впитывать в себя влагу из окружающей среды (при смачивании водой) или даже при соприкосновении с влажным воздухом, и в л а г о п р о н и-ц а е м ы, т. е. способны пропускать сквозь себя влагу. Эти свойства электроизоляционных материалов весьма важны, так как при увлажнении диэлектриков их электрические свойства резко ухудшаются, о чем мы упоминали выше. [c.26]
Стабильность диэлектрических и механических свойств материалов, изготовленных на основе природной слюды, в условиях длительной выдержки в воздухе и аргоне при 650°С и в вакууме при температуре до 700°С может объясняться следуюш.им образом. В диэлектриках неорганической природы—миканитах на алюмофосфатном связующем — температура 600—700°С еще не вызывает существенных структурных превращений в диэлектриках, содержащих органические группы — стеклослюдинит и слюдопласт с кремнийорганическими связующими, под воздействием такой температуры происходят структурные превращения, приводящие к образованию чисто неорганических материалов с повышенными стабильными свойствами. Характер таких превращений в различных электроизоляционных материалах высокой нагревостойкости подробно рассмотрен в гл. 2. [c.94]
Характеристика изоляционных материалов. Удельное электрическое сопротивление материала характеризуется качеством электроизоляционного материала. Для диэлектриков, применяемых в установках высокого напряжения и конденсаторах, важны также электрическая прочность, диэлектрическая проницаемость и угол диэлектрических потерь. Кроме электрических свойств электроизоляционных материалов, большое значение имеет механическая прочность, нагревостойкость, гигроскопичность и др. [c.332]
В технических изолирующих материалах, помимо потерь от сквозной электропроводности и потерь от замедленной поляризации самого диэлектрика, возникают дополнительные диэлектрические потери, которые сильно влияют на электрические свойства диэлектриков. Эти потери вызываются наличием посторонних полупроводящих примесей (влаги, окислов железа, углерода и др.) и значительны даже при малом содержании таких примесей в электроизоляционном материале. [c.74]
Приведенная выше классификация диэлектриков позволяет, до известной степени, предопределять основные электрические свойства электроизоляционных материалов, как это показано далее. [c.25]
Свойства электроизоляционных материалов существенно зависят от таких внешних факторов, как температура и влажность. Поскольку электроизоляционные материалы часто работают в условиях, резко отличающихся от нормальных, весьма важно изучение электрических свойств диэлектриков при различных значениях температуры и влажности. Кроме того, создание атмосферы с повышенной температурой зачастую необходимо перед измерением, когда образец должен находиться в указанных условиях достаточно длительное время, что требуется, например, при ускоренных испытаниях на старение. [c.239]
Наряду с определением электрических и физико-химических свойств диэлектриков нередко встает задача, имеющая своей целью установить, имеются ли в электроизоляционном материале внутренние дефекты — посторонние примеси или включения, трещины, расслоения, раковины и т. п. Такие нарушения однородности в непрозрачных материалах визуально обнаружить невозможно. Электрические же свойства при этом могут сохраняться на допустимом уровне, так как разрозненные дефекты иногда не способны сказаться на макроскопически определяемых параметрах. [c.284]
В книге освещены вопросы по физике диэлектриков, физико-механическим и химическим свойствам диэлектриков и их поведению в эксплуатаций, жидким диэлектрикам, твердым электроизоляционным материалам, проводниковым материалам, полупроводникам, магнитным материалам. [c.2]
Кислотное число есть количество миллиграммов (мг) едкого кали (КОН), необходимое для нейтрализации свободных кислот, содержащихся в 1 г диэлектрика. Кислотное число определяется у жидких диэлектриков, компаундов и смол. Кислотное число позволяет оценить количество свободных кислот в диэлектрике, а значит, степень их воздействия на органические материалы. Наличие свободных кислот ухудшает электроизоляционные свойства диэлектриков. [c.12]
С давних пор по электрическим свойствам материалы разделяют на проводники и диэлектрики (электроизоляционные материалы). К проводникам относят материалы, проводящие электрический ток, а к диэлектрикам — материалы, не обладающие такой способностью. Например, медь, алюминий и другие металлы — типичные проводники полиэтилен, бакелитовая смола, фарфор— диэлектрики. Все вещества — независимо от того, изоляторы они или проводники, — рассматривают как со- [c.53]
Что касается областей применения, то диэлектрики можно разделить на три группы 1) электроизоляционные материалы, служащие целям электрической изоляции 2) материалы, используемые в качестве диэлектриков в конденсаторах 3) материалы, использующие особые свойства диэлектриков пьезоэлектрические и сегнетоэлектрические явления. О третьей группе материалов подробно говорится в гл. 4, здесь же будут вкратце рассмотрены первые три группы. [c.121]
Настоящая книга написана как учебное пособие и справочное руководство для широкого круга читателей, интересующихся диэлектрическими и, в частности, электроизоляционными, материалами. Основное содержание книги дает сведения, в основном соответствующие тем частям программ упомянутых выше вузовских курсов, которые касаются общих свойств диэлектриков. В конце книги приведен указатель литературы для более подробного изучения различных вопросов физики диэлектриков и смежных областей науки. [c.3]
На электроизоляционные свойства диэлектриков большое влияние оказывает не только количество поглощенной материалом влаги, но и характер ее распределения в материале. [c.264]
На пспользовании пассивных свойств диэлектрических материалов основано самое существенное их применение в электротехнике в качестве электроизоляционных материалов и диэлектриков конденсаторов обычных типов. Электроизоляционными материалами называют диэлектрики, применяемые в технике для устранения утечки электрических зарядов иными словами, они должны разделять электрические цепи друг от друга или токоведущие части [c.3]
Необходимо иметь в виду, что электроизоляционные, механические, тепловые, влажностные и другие свойства диэлектриков заметно изменяются в зависимости от технологии получения и обработки материалов, наличия примесей, условий испытания и т.п. Поэтому численные значения параметров материалов во многих случаях следует рассмат]эивать лишь как ориентировочные. [c.127]
В книге освещены вопросы физики диэлектриков, физико-механических свойств диэлектриков и их поведение в эксплуатации. Рассмотрены газообразные и жидкие диэлектрики, твердые электроизоляционные материалы проводниковые, полупроводникоаь(е и /магнитные материалы. [c.2]
Мусковит и флогопит—хорошие диэлектрики. Их кристаллы, имеющие форму пластин неопределенных размеров, легко расщепляются на тонкие, упругоэластичные, прочные пластинки, обладающие высокой нагревостойко-стью. Слюда практически не стареет. Совокупность этих свойств определяет важное значение слюд в производстве электроизоляционных материалов, имеющих широкое применение. В высокочастотной технике в основном применяют мусковит, обладающий более высокими диэлектрическими свойствами. [c.118]
Некоторые из органических диэлектриков представляют собой низкомолекулярные неполимеризующиеся вещества, молекулы которых состоят из сравнительно небольшого числа (до нескольких десятков или сотен) атомов таковы, например, конденсаторное масло, вазелин, церезин. Однако наибольшее количество практически применяемых органических электроизоляционных материалов относится к высокомолекулярным соединениям, т. е. является веществами с чрезвычайно большими молекулами, содержащими иногда многие тысячи атомов. Молекулярный вес таких веществ доходит до 10 , а геометрические размеры молекул могут быть настолько велики, что растворы этих веществ по свойствам начинают приближаться к коллоидным системам. К высокомолекулярным соединениям принадлежат многие смолы, целлюлоза и ее производные, шелк, каучук и т. п. [c.136]
Книга является учебником для электроэнергетических, электромашиностроительных н электроприборостроительных техникумов. В книге освещены следующие в.опросы ф11зика диэлектриков физико-механические и химические свойства диэлектриков и их поведение в эксплуатации жидкие диэлектрики твердые электроизоляционные материалы проводниковые материалы полу- проводники магнитные материалы. [c.2]
Без создания специального раздела физики, посвященного поведению диэлектриков в электрическом поле — физики диэлектриков, теоретических основ химического синтеза высокомолекулярных соединений, определения связей между свойствами и строением диэлектриков, нельзя было бы создать ряд новых электроизоляционных материалов, обеспечивших развитие электромашино-, аппарато- и приборостроения до современного уровня, [c.5]
Реальные электроизоляционные материалы в какой-то степени проявляют и электропроводящие свойства, однако, поскольку в основе явлений лежат диэлектрические свойства, их относят к диэлектрикам. Разница между электроизоляционными материалами и проводниками, вообще говоря, заключается в том, что удельное электрическое сопротивление у первых очень велико, а у последних очень мало, и, как показано на рис. 2-1-1, оно может различаться более чем в 10 раз. Другое принципиальное различие заключается в том, что температурный коэффициент сопротивления у диэлектриков отрицательный, а у проводников положительный. Теоретическое объяснение этого факта дано в электронной теории твердого тела. Более подробно он будет рассмотрен при обсуждении электропроводности. Здесь же можно отметить, что к проводникам относят вещества, у которых уровни Ферми находятся в разрешенных зонах, а к электроизоляционным материалам — те, у которых они находятся в запрещевных зонах. [c.55]
Ответ. Свойства, которыми должен обладать диэлектрик, используемый в конденсаторах, обычно принципиально не отличаются от свойств электроизоляционных материалов, рассмотренных в задаче 2-39, однако большей частью желательно иметь более высокую диэ.тектрическую проницаемость. [c.137]
В инженерной практике термины диэлектрический материал и электроизоляционный материал часто применяются как равнозначащие. По ГОСТ 17СЗЗ-71 Материалы электротехнические. Термины и определения диэлектрик определяется как Вещество, основным электрическим свойством которого является способность к поляризации и в котором возможно существование электростатического поля , диэлектрический материал — как злектротехнический материал, обладающий свойствами диэлектрика , а электроизоляционный материал — как диэлектрический материал, применяемый для устранения утечки электрических зарядов в электротехнических устройствах . Таким образом, строго говоря, понятие диэлектрический материал шире, чем понятие электроизоляционный материал . Приобретающие все больщее значение в современной технике активные диэлектрики не только играют пассивную роль подобно обычным электроизоляционным материалам в различных устройствах, в частности во многих видах радиоэлектронной аппаратуры, используется изменяемость свойств этих материалов под действием различных факторов. К активным диэлектрикам (см. гл. 5) принадлежат сегнетоэлектрики, диэлектрическая проницаемость которых существенно изменяется при изменении напряженности электрического поля и температуры п ь е з о э л е к т р и к и, генерирующие электрические заряды под действием ме-ханических напряжений [c.5]
Каким же образом мы должны подходить к уточнению понятия допустимой рабочей температуры электрической изоляциии При повышении температуры в электроизоляционных материалах протекает ряд процессов, изменяющих их свойства. Эти процессы, определяемые прежде всего химическим составом и условиями работы изоляции в тепловом поле, могут быть весьма различными. Прежде всего при сохранении высокой механической прочности, неизменности геометрических размеров и формы изделия и т. п. электроизоляционные свойства материала могут ухудшаться настолько, что это само по себе ограничит допустимую рабочую температуру материала. Так, например, обычный электротехнический фарфор и многие стекла три повышении температуры быстро снижают электроизоляционные свойства. Но и механические и другие общие физические свойства диэлектриков [c.269]
Термопластичные полимеры относятся к числу электроизоляционных материалов (диэлектриков). Их электрические свойства [40, 79] определяются полярностью звеньев и в значительно меньшей степени физической структурой и физическим состоянием. Среди основных термопластичных полимеров неполярными являются полиолефины, политетрафторэтилен и полистирол, полярными — все гетероцепные полимеры и карбоцепные с полярными звеньями — полиакрилаты, поливинилхлорид и политрифторхлорэтилен. Полярные термопластичные полимеры в свою очередь можно условно подразделить на слабополярные (полифениленоксид, полисульфон, поликарбонат, полиарилат, нентанласт, политрифторхлорэтилен) и сильнополярные (полиамиды, полиформальдегид, поливинилхлорид, полиметилметакрилат). Важнейшими показателями электрических свойств полимеров являются электрическое сопротивление, электрическая прочность и диэлектрические свойства. [c.59]
mash-xxl.info
Твердые электроизоляционные материалы
Твердые электроизоляционные материалы делятся на волокнистые, керамические и стеклообразные.
Волокнистые электроизоляционные материалы: древесина, бумага, картон, фибра, лакоткани, асбест, слоистые пластики.
Древесина применяется в электротехнике только для изготовления малоответственных изоляционных деталей: штанг приводов разъединителей, масляных выключателей, рукояток и др.
Бумага, применяемая в электротехнике, делится на конденсаторную, кабельную, пропиточную, намоточную, микалентную и оклеечную. Конденсаторная бумага имеет толщину от 0,007 до 0,03 мм и высокую плотность.
Кабельная бумага имеет повышенную толщину (0,08; 0,12; 0,17 мм) и меньшую плотность (0,7—0,8 г/см3) по сравнению с конденсаторной, но обладает высокими механическими свойствами, она применяется для изоляции силовых кабелей.
Пропиточная и намоточная бумага отличается пониженной плотностью 0,6—0,75 г/см3 и поэтому имеет большую впитываемость. По своим механическим свойствам она уступает обычной кабельной бумаге. Пропиточную бумагу толщиной до 0,12 мм применяют для производства листового гетинакса.
Микалентная бумага имеет толщину 0,02 мм и отличается большой механической прочностью в продольном направлении. Она служит для изготовления тонкой клееной слюдяной изоляции (микаленты).
Оклеечная бумага имеет толщину 0,033 мм. Применяют ее для изоляции друг от друга стальных листов при сборке магнитопроводов в электрических машинах и трансформаторах.
Картон электротехнический — тонкий листовой материал толщиной от 0,1 до 3 мм. Различают два основных вида электротехнического картона: ЭВ—для работы на воздухе и ЭМ — для работы в масле в качестве прокладок, шайб, пазовой изоляции, междуслойной и витковой изоляций при производстве электрических машин и электротехнической аппаратуры.
Фибра электрическая марки ФЭ вырабатывается толщиной от 0,6 до 1,2 мм серого, черного и красного цвета в виде листов, прутков и трубок. Основной недостаток фибры — высокая гигроскопичность, что при большом увлажнении окружающего воздуха создает большую электролитическую проводимость, поэтому фибру часто заменяют гети наксом.
Лакоткани — гибкий электроизоляционный материал, получаемый пропиткой хлопчатобумажных, шелковых и стеклянных тканей масляными и масляно-битумными лаками, которые после высыхания образуют на поверхности ткани прочную эластичную пленку, обладающую высокими диэлектрическими свойствами.
Асбест — волокнистый минерал естественного происхождения, обладающий высокой огнестойкостью (1450°С), малой тепло- и электропроводностью, достаточной механической прочностью, кислого- и щелочеупорностью. Для технических целей асбестовое волокно применяется в качестве тепло- и электроизоляционного материала и фильтров.
Для целей электрической изоляции из асбеста изготовляют пряжу, ленты, ткани, бумагу, картон и другие изделия.
Электротехническая керамика представляет собой глинусодержащие материалы с добавлением окислов бария, кальция, титана, стронция. К этой группе керамики относятся электротехнический фарфор, стеатит, тиконд и пористая радиокерамика.
Стеклообразные и горные электроизолирующие материалы. Стекло — это твердый раствор различных силикатов. Механические свойства стекол различны и зависят от их химического состава. Все стекла отличаются малой теплопроводностью, высокими оптическими и электроизоляционными свойствами.
Наилучшими электроизолирующими свойствами обладает кварцевое стекло, которое получается плавлением горного хрусталя, жильного кварца или чистых кварцевых песков при весьма высоких температурах.
Кварцевое стекло отличается очень высоким пробивным напряжением, малой электропроводностью даже при высоких температурах. Это дает возможность использовать его в качестве высокочастотного и высоковольтного изолятора в электрорадиовакуумной промышленности и приборостроении.
Электротехнические стекла по назначению делятся на конденсаторные, установочные, ламповые, стеклоэмали и стекловолокно.
Слюда является минералом, способным расщепляться на очень тонкие листочки. Слюда имеет хорошие электроизоляционные свойства, высокую теплостойкость (1250—1300°С), влагостойкость, механическую прочность, гибкость.
Применяется в электротехнической промышленности для изоляции высоких напряжений, а также в качестве диэлектриков в конденсаторах.
Мрамор, шифер, талькохлорит — горные породы, которые находят применение в качестве электроизоляционных материалов.
Возможно, Вас так же заинтересует:mse-online.ru
Электроизоляционные материалы | Строительные материалы и технологии
Электроизоляционными материалами, или диэлектриками, называют такие материалы, с помощью которых осуществляют изоляцию, т. е. препятствуют утечке электрического тока между какими-либо токопроводящими частями, находящимися под разными электрическими потенциалами. Диэлектрики имеют очень большое электрическое сопротивление. По химическому составу диэлектрики делят на органические и неорганические. Основным элементов в молекулах всех органических диэлектриков является углерод. В неорганических диэлектриках углерода нет. Наибольшей нагревостойкостью обладают неорганические диэлектрики (слюда, керамика и др.).
По способу получения различают естественные (природные) и синтетические диэлектрики. Синтетические диэлектрики могут быть созданы с заданным комплексом электрических и физико-химических свойств, поэтому они широко применяются в электротехнике.
По строению молекул диэлектрики делят на неполярные (нейтральные) и полярные. Нейтральные диэлектрики состоят из электрически нейтральных атомов и молекул, которые до воздействия на них электрического поля не обладают электрическими свойствами. Нейтральными диэлектриками являются: полиэтилен, фторопласт-4 и др. Среди нейтральных выделяют ионные кристаллические диэлектрики (слюда, кварц и др.), в которых каждая пара ионов составляет электрически нейтральную частицу. Ионы располагаются в узлах кристаллической решетки. Каждый ион находится в колебательном тепловом движении около центра равновесия — узла кристаллической решетки. Полярные, или дипольные, диэлектрики состоят из полярных молекул-диполей. Последние вследствие асимметрии своего строения обладают начальным электрическим моментом еще до воздействия на них силы электрического поля. К полярным диэлектрикам относятся бакелит, поливинилхлорид и др. По сравнению с нейтральными диэлектриками полярные имеют более высокие значения диэлектрической проницаемости, а также немного повышенную проводимость.
По агрегатному состоянию диэлектрики бывают газообразными, жидкими и твердыми. Самой большой является группа твердых диэлектриков. Электрические свойства электроизоляционных материалов оценивают с помощью величин, называемых электрическими характеристиками. К ним относятся: удельное объемное сопротивление, удельное поверхностное сопротивление, диэлектрическая проницаемость, температурный коэффициент диэлектрической проницаемости, тангенс угла диэлектрических потерь и электрическая прочность материала.
Удельное объемное сопротивление — величина, дающая возможность оценить электрическое сопротивление материала при протекании через него постоянного тока. Величина, обратная удельному объемному сопротивлению, называется удельной объемной проводимостью. Удельное поверхностное сопротивление — величина, позволяющая оценить электрическое сопротивление материала при протекании постоянного тока по его поверхности между электродами. Величина, обратная удельному поверхностному сопротивлению, называется удельной поверхностной проводимостью.
Температурный коэффициент удельного электрического сопротивления — величина, определяющая изменение удельного сопротивления материала с изменением его температуры. С повышением температуры у всех диэлектриков электрическое сопротивление уменьшается, следовательно, их температурный коэффициент удельного сопротивления имеет отрицательный знак. Диэлектрическая проницаемость — величина, позволяющая оценить способность материала создавать электрическую емкость. Относительная диэлектрическая проницаемость входит в величину абсолютной диэлектрической проницаемости. Температурный коэффициент диэлектрической проницаемости — величина, дающая возможность оценить характер изменения диэлектрической проницаемости, а следовательно, и емкости изоляции с изменением температуры. Тангенс угла диэлектрических потерь — величина, определяющая потери мощности в диэлектрике, работающем при переменном напряжении.
Электрическая прочность — величина, позволяющая оценить способность диэлектрика противостоять разрушению его электрическим напряжением. Механическая прочность электроизоляционных и других материалов оценивается при помощи следующих характеристик: предел прочности материала при растяжении, относительное удлинение при растяжении, предел прочности материала при сжатии, предел прочности материала при статическом изгибе, удельная ударная вязкость, сопротивление раскалыванию.
К физико-химическим характеристикам диэлектриков относятся: кислотное число, вязкость, водопоглощаемость. Кислотное число — это количество миллиграммов едкого калия, необходимое для нейтрализации свободных кислот, содержащихся в 1 г диэлектрика. Кислотное число определяется у жидких диэлектриков, компаундов и лаков. Эта величина позволяет оценить количество свободных кислот в диэлектрике, а значит, степень их воздействия на органические материалы. Наличие свободных кислот ухудшает электроизоляционные свойства диэлектриков. Вязкость, или коэффициент внутреннего трения, дает возможность оценить текучесть электроизоляционных жидкостей (масел, лаков и др.). Вязкость бывает кинематической и условной. Водопоглощаемость — это количество воды, поглощенной диэлектриком после пребывания его в дистиллированной воде в течение суток при температуре 20° С и выше. Величина водопоглощаемости указывает на пористость материала и наличие в нем водорастворимых веществ. С увеличением этого показателя электроизоляционные свойства диэлектриков ухудшаются.
К тепловым характеристикам диэлектриков относятся: температура плавления, температура размягчения, температура каплепадения, температура вспышки паров, теплостойкость пластмасс, термоэластичность (теплостойкость) лаков, нагревостойкость, морозостойкость, тропикостойкость.
Большое применение в электротехнике получили пленочные электроизоляционные материалы, изготавливаемые из полимеров. К ним относятся пленки и ленты. Пленки выпускают толщиной 5—250 мкм, а ленты — 0,2—3,0 мм. Высокополимерные пленки и ленты отличаются большой гибкостью, механической прочностью и хорошими электроизоляционными свойствами. Полистирольные пленки выпускают толщиной 20—100 мкм и шириной 8—250 мм. Толщина полиэтиленовых пленок обычно составляет 30—200 мкм, а ширина 230—1500 мм. Пленки из фторопласта-4 изготавливают толщиной 5—40 мкм и шириной 10—200 мм. Также из этого материала выпускают неориентированные и ориентированные пленки. Наиболее высокими механическими и электрическими характеристиками обладают ориентированные фторопластовые пленки.
Полиэтилентерефталатные (лавсановые) пленки выпускают толщиной 25—100 мкм и шириной 50—650 мм. Полихлорвиниловые пленки изготавливают из винипласта и из пластифицированного полихлорвинила. Большей механической прочностью, но меньшей гибкостью обладают пленки из винипласта. Пленки из винипласта имеют толщину 100 мкм и более, а пленки из пластифицированного полихлорвинила — 20—200 мкм. Триацетатцеллюлозные (триацетатные) пленки изготавливают непластифицированными (жесткими), окрашенными в голубой цвет, слабопластифицированными (бесцветными) и пластифицированными (окрашенными в синий цвет). Последние обладают значительной гибкостью. Триацетатные пленки выпускают толщиной 25, 40 и 70 мкм и шириной 500 мм. Пленкоэлектрокартон — гибкий электроизоляционный материал, состоящий из изоляционного картона, оклеенного с одной стороны лавсановой пленкой. Пленкоэлектрокартон на лавсановой пленке имеет толщину 0,27 и 0,32 мм. Его выпускают в рулонах шириной 500 мм. Пленкоасбестокартон — гибкий электроизоляционный материал, состоящий из лавсановой пленки толщиной 50 мкм, оклеенной с двух сторон асбестовой бумагой толщиной 0,12 мм. Пленкоасбестокартон выпускают в листах 400 х 400 мм (не менее) толщиной 0,3 мм.
Электроизоляционные лаки и эмали
Лаки — это растворы пленкообразующих веществ: смол, битумов, высыхающих масел, эфиров целлюлозы или композиций этих материалов в органических растворителях. В процессе сушки лака из него испаряются растворители, а в лаковой основе происходят физико-химические процессы, приводящие к образованию лаковой пленки. По своему назначению электроизоляционные лаки делят на пропиточные, покровные и клеящие.
Пропиточные лаки применяются для пропитки обмоток электрических машин и аппаратов с целью закрепления их витков, увеличения коэффициента теплопроводности обмоток и повышения их влагостойкости. Покровные лаки позволяют создать защитные влагостойкие, маслостойкие и другие покрытия на поверхности обмоток или пластмассовых и других изоляционных деталей. Клеящие лаки предназначаются для склеивания листочков слюды друг с другом или с бумагой и тканями с целью получения слюдяных электроизоляционных материалов (миканиты, микалента и др.).
Эмали представляют собой лаки с введенными в них пигментами — неорганическими наполнителями (окись цинка, двуокись титана, железный сурик и др.). Пигменты вводятся с целью повышения твердости, механической прочности, влагостойкости, дутостойкости и других свойств эмалевых пленок. Эмали относятся к покровным материалам.
По способу сушки различают лаки и эмали горячей (печной) и холодной (воздушной) сушки. Первые требуют для своего отверждения высокой температуры — от 80 до 200° С, а вторые высыхают при комнатной температуре. Лаки и эмали горячей сушки, как правило, обладают более высокими диэлектрическими, механическими и другими свойствами. С целью улучшения характеристик лаков и эмалей воздушной сушки, а также для ускорения отверждения их сушку иногда производят при повышенных температурах — от 40 до 80° С.
Основные группы лаков имеют следующие особенности. Масляные лаки образуют после высыхания гибкие эластичные пленки желтого цвета, стойкие к влаге и к нагретому минеральному маслу. По нагревостойкости пленки этих лаков относятся к классу А. В масляных лаках используют дефицитные льняное и тунговое масла, поэтому они заменяются лаками на синтетических смолах, более стойкими к тепловому старению.
Масляно-битумные лаки образуют гибкие пленки черного цвета, стойкие к влаге, но легко растворяющиеся в минеральных маслах (трансформаторное и смазочное). По нагревостойкости эти лаки относятся к классу А (105° С). Глифталевые и масляно-глифталевые лаки и эмали отличаются хорошей клеящей способностью по отношению к слюде, бумагам, тканям и пластмассам. Пленки этих лаков обладают повышенной нагревостойкостью (класс В). Они устойчивы к нагретому минеральному маслу, но требуют горячей сушки при температурах 120—130° С. Чисто глифталевые лаки на основе немодифицированных глифталевых смол образуют твердые негибкие пленки, применяемые в производстве твердой слюдяной изоляции (твердые миканиты). Масляно-глифталевые лаки после высыхания дают гибкие эластичные пленки желтого цвета.
Кремнийорганические лаки и эмали отличаются высокой нагревостойкостью и могут длительно работать при 180—200° С, поэтому они применяются в сочетании со стекловолокнистой и слюдяной изоляцией. Кроме этого, пленки обладают высокой влагостойкостью и стойкостью к электрическим искрам.
Лаки и эмали на основе полихлорвиниловых и перхлорвиниловых смол отличаются стойкостью к воде, нагретым маслам, кислым и щелочным химическим реагентам, поэтому они применяются в качестве покровных лаков и эмалей для защиты обмоток, а также металлических деталей от коррозии. Следует обратить внимание на слабое прилипание полихлорвиниловых и перхлорвиниловых лаков и эмалей к металлам. Последние вначале покрывают слоем грунта, а затем лаком или эмалью на основе полихлорвиниловых смол. Сушка этих лаков и эмалей производится при 20, а также при 50—60° С. К недостаткам такого рода покрытий относится их невысокая рабочая температура, составляющая 60—70° С.
Лаки и эмали на основе эпоксидных смол отличаются высокой клеящей способностью и несколько повышенной нагревостойкостью (до 130° С). Лаки на основе алкидных и фенольных смол (фенолоалкидные лаки) имеют хорошую высыхаемость в толстых слоях и образуют эластичные пленки, могущие длительно работать при температурах 120—130° С. Пленки этих лаков обладают влаго- и маслостойкостью.
Водно-эмульсионные лаки — это устойчивые эмульсии лаковых основ в водопроводной воде. Лаковые основы производят из синтетических смол, а также из высыхающих масел и их смесей. Водно-эмульсионные лаки пожаро- и взрывобезопасны, потому что в их составе нет легковоспламеняющихся органических растворителей. Из-за малой вязкости такие лаки имеют хорошую пропитывающую способность. Их применяют для пропитки неподвижных и подвижных обмоток электрических машин и аппаратов, длительно работающих при температурах до 105° С.
Электроизоляционные компаунды
Компаунды представляют собой изоляционные составы, которые в момент использования бывают жидкими, а затем отвердевают. Компаунды не имеют в своем составе растворителей. По своему назначению данные составы делятся на пропиточные и заливочные. Первые из них применяют для пропитки обмоток электрических машин и аппаратов, вторые — для заливки полостей в кабельных муфтах, а также в электромашинах и приборах с целью герметизации.
Компаунды бывают термореактивными (не размягчающимися после отвердевания) и термопластичными (размягчающимися при последующих нагревах). К термореактивным можно отнести компаунды на основе эпоксидных, полиэфирных и некоторых других смол. К термопластичным относятся компаунды на основе битумов, воскообразных диэлектриков и термопластичных полимеров (полистирол, полиизобутилен и др.). Пропиточные и заливочные компаунды на основе битумов по нагревостойкости относятся к классу А (105° С), а некоторые к классу Y (до 90° С). Наибольшей нагревостойкостыо обладают компаунды эпоксидные и кремнийорганические.
Компаунды МБК изготовляют на основе метакриловых эфиров и применяют как пропиточные и заливочные. Они после отвердевания при 70—100° С (а со специальными отвердителями при 20° С) являются термореактивными веществами, которые могут использоваться в интервале температур от —55 до +105° С.
Непропитанные волокнистые электроизоляционные материалы
К этой группе относятся листовые и рулонные материалы, состоящие из волокон органического и неорганического происхождения. Волокнистые материалы органического происхождения (бумага, картон, фибра и ткань) получают из растительных волокон древесины, хлопка и натурального шелка. Нормальная влажность электроизоляционных картонов, бумаги и фибры колеблется от 6 до 10%. Волокнистые органические материалы на основе синтетических волокон (капрон) обладают влажностью от 3 до 5%. Такая же примерно влажность наблюдается у материалов, получаемых на основе неорганических волокон (асбест, стекловолокно). Характерными особенностями неорганических волокнистых материалов являются их негорючесть и высокая нагревостойкость (класс С). Эти ценные свойства в большинстве случаев снижаются при пропитке этих материалов лаками.
Электроизоляционную бумагу изготавливают обычно из древесной целлюлозы. Наибольшую пористость имеет микалентная бумага, применяемая в производстве слюдяных лент. Электрокартон изготавливают из древесной целлюлозы или из смеси хлопчатобумажных волокон и волокон древесной (сульфатной) целлюлозы, взятых в различных соотношениях. Увеличение содержания хлопчатобумажных волокон снижает гигроскопичность и усадку картона. Электрокартон, предназначенный для работы в воздушной среде, имеет более плотную структуру по сравнению с картоном, предназначенным для работы в масле. Картон толщиной 0,1—0,8 мм выпускают в рулонах, а картон толщиной от 1 мм и выше — в листах различных размеров.
Фибра представляет собой монолитный материал, получаемый в результате прессования листов бумаги, предварительно обработанных нагретым раствором хлористого цинка и отмытых в воде. Фибра поддается всем видам механической обработки и формованию после размачивания ее заготовок в горячей воде.
Летероид — тонкая листовая и рулонная фибра, используемая для изготовления различного вида электроизоляционных прокладок, шайб и фасонных изделий.
Асбестовые бумаги, картоны и ленты изготавливаются из волокон хризотилового асбеста, обладающего наибольшей эластичностью и способностью скручиваться в нити. Все асбестовые материалы стойки к щелочам, но легко разрушаются кислотами.
Электроизоляционные стеклянные ленты и ткани производят из стеклянных нитей, получаемых из бесщелочных или малощелочных стекол. Преимущество стеклянных волокон перед растительными и асбестовыми состоит в их гладкой поверхности, понижающей поглощение влаги из воздуха. Нагревостойкость стеклянных тканей и лент выше асбестовых.
Электроизоляционные лакированные ткани (лакоткани)
Лакированные ткани представляют собой гибкие материалы, состоящие из ткани, пропитанной лаком или каким-либо электроизоляционным составом. Пропиточный лак или состав после отвердевания образует гибкую пленку, которая обеспечивает хорошие электроизоляционные свойства лакоткани. В зависимости от тканевой основы лакоткани делятся на хлопчатобумажные, шелковые, капроновые и стеклянные (стеклоткани).
В качестве пропиточных составов для лакотканей применяют масляные, масляно-битумные, эскапоновые и кремнийорганические лаки, а также кремнийорганические эмали, растворы кремнийорганических каучуков и др. Наибольшей растяжимостью и гибкостью обладают шелковые и капроновые лакоткани. Они могут работать при нагреве не выше 105° С (класс А). К этому же классу нагревостойкости относятся все хлопчатобумажные лакоткани.
Основными областями применения лакотканей являются: электрические машины, аппараты и приборы низкого напряжения. Лакоткани используют для гибкой витковой и пазовой изоляции, а также в качестве различных электроизоляционных прокладок.
Пластические массы
Пластическими массами (пластмассами) называются твердые материалы, которые на определенной стадии изготовления приобретают пластические свойства и в этом состоянии из них могут быть получены изделия заданной формы. Данные материалы представляют собой композиционные вещества, состоящие из связующего вещества, наполнителей, красителей, пластифицирующих и других компонентов. Исходными материалами для получения пластмассовых изделий являются прессовочные порошки и прессовочные материалы. По нагревостойкости пластмассы бывают термореактивные и термопластичные.
Слоистые электроизоляционные пластмассы
Слоистые пластмассы — материалы, состоящие из чередующихся слоев листового наполнителя (бумага или ткань) и связующего. Важнейшими из слоистых электроизоляционных пластмасс являются гетинакс, текстолит и стеклотекстолит. Они состоят из листовых наполнителей, располагающихся слоями, а в качестве связующего вещества использованы бакелитовые, эпоксидные, кремнийорганические смолы и их композиции.
В качестве наполнителей применяют специальные сорта пропиточной бумаги (в гетинаксе), хлопчатобумажные ткани (в текстолите) и бесщелочные стеклянные ткани (в стеклотекстолите). Перечисленные наполнители сначала пропитывают бакелитовыми или кремнийорганическими лаками, сушат и режут на листы определенного размера. Подготовленные листовые наполнители собирают в пакеты заданной толщины и подвергают горячему прессованию, в процессе которого отдельные листы при помощи смол прочно соединяются друг с другом.
Гетинакс и текстолит устойчивы к минеральным маслам, поэтому широко используются в маслонаполненных электроаппаратах и трансформаторах. Наиболее дешевым слоистым материалом является древесно-слоистая пластмасса (дельта-древесина). Она получается горячим прессованием тонких листов березового шпона, предварительно пропитанных бакелитовыми смолами. Дельта-древесина применяется для изготовления силовых конструкционных и электроизоляционных деталей, работающих в масле. Для работы на открытом воздухе этот материал нуждается в тщательной защите от влаги.
Асбестотекстолит представляет собой слоистую электроизоляционную пластмассу, получаемую горячим прессованием листов асбестовой ткани, предварительно пропитанных бакелитовой смолой. Его выпускают в виде фасонных изделий, а также в виде листов и плит толщиной от 6 до 60 мм. Асбогетинакс — слоистая пластмасса, получаемая горячим прессованием листов асбестовой бумаги, содержащей 20% сульфатной целлюлозы или асбестовой бумаги без целлюлозы, пропитанных эпоксидно-фенолоформальдегидным связующим.
Из рассмотренных слоистых электроизоляционных материалов наибольшей нагревостойкостью, лучшими электрическими и механическими характеристиками, повышенной влагостойкостью и стойкостью к грибковой плесени обладают стеклотекстолиты на кремнийорганических и эпоксидных связующих.
Намотанные электроизоляционные изделия
Намотанные электроизоляционные изделия представляют собой твердые трубки и цилиндры, изготовленные методом намотки на металлические круглые стержни каких-либо волокнистых материалов, предварительно пропитанных связующим веществом. В качестве волокнистых материалов применяют специальные сорта намоточных или пропиточных бумаг, а также хлопчатобумажные ткани и стеклоткани. Связующими веществами являются бакелитовые, эпоксидные, кремнийорганические и другие смолы.
Намотанные электроизоляционные изделия вместе с металлическими стержнями, на которые они намотаны, сушат при высокой температуре. С целью гигроскопичности намотанных изделий их лакируют. Каждый слой лака сушат в печи. К намотанным изделиям можно отнести и сплошные текстолитовые стержни, потому что их тоже получают путем намотки заготовок из текстильного наполнителя, пропитанного бакелитовым лаком. После этого заготовки подвергают горячему прессованию в стальных пресс-формах. Намотанные электроизоляционные изделия применяют в трансформаторах с воздушной и масляной изоляцией, в воздушных и масляных выключателях, различных электроаппаратах и узлах электрооборудования.
Минеральные электроизоляционные материалы
К минеральным электроизоляционным материалам относятся горные породы: слюда, мрамор, шифер, талькохлорит и базальт. Также к этой группе относятся материалы, получаемые из портландцемента и асбеста (асбестоцемент и асбопласт). Вся эта группа неорганических диэлектриков отличается высокой стойкостью к электрической дуге и обладает достаточно высокими механическими характеристиками. Минеральные диэлектрики (кроме слюды и базальта) поддаются механической обработке, за исключением нарезания резьбы.
Электроизоляционные изделия из мрамора, шифера и талькохлорита получают в виде досок для панелей и электроизоляционных оснований для рубильников и переключателей низкого напряжения. Точно такие же изделия из плавленого базальта можно получить только методом литья в формы. Чтобы базальтовые изделия обладали необходимыми механическими и электрическими характеристиками, их подвергают термической обработке с целью образования в материале кристаллической фазы.
Электроизоляционные изделия из асбестоцемента и асбопласта представляют собой доски, основания, перегородки и дугогасительные камеры. Для изготовления такого рода изделий используют смесь, состоящую из портландцемента и асбестового волокна. Изделия из асбопласта получают холодным прессованием из массы, в которую добавлено 15% пластичного вещества (каолина или формовочной глины). Этим достигается большая текучесть исходной прессовочной массы, что позволяет получать из асбопласта электроизоляционные изделия сложного профиля.
Основным недостатком многих минеральных диэлектриков (за исключением слюды) является невысокий уровень их электрических характеристик, вызванный большим количеством имеющихся пор и наличием оксидов железа. Такое явление позволяет использовать минеральные диэлектрики только в устройствах низкого напряжения.
В большинстве случаев все минеральные диэлектрики, кроме слюды и базальта, перед применением пропитывают парафином, битумом, стиролом, бакелитовыми смолами и др. Наибольший эффект достигается при пропитке уже механически обработанных минеральных диэлектриков (панели, перегородки, камеры и др.).
Мрамор и изделия из него не переносят резких изменений температуры и растрескиваются. Шифер, базальт, талькохлорит, слюда и асбестоцемент более устойчивы к резким сменам температур.
Слюдяные электроизоляционные материалы
Данные материалы состоят из листочков слюды, склеенных при помощи какой-либо смолы или клеящего лака. К клееным слюдяным материалам относятся миканиты, микафолий и микаленты. Клееные слюдяные материалы используют в основном для изоляции обмоток электрических машин высокого напряжения (генераторы, электродвигатели), а также изоляции машин низкого напряжения и машин, работающих в тяжелых условиях.
Миканиты представляют собой твердые или гибкие листовые материалы, получаемые склеиванием листочков щипаной слюды с помощью шеллачной, глифталевых, кремнийорганических и других смол или лаков на основе этих смол.
Основные виды миканитов — коллекторный, прокладочный, формовочный и гибкий. Коллекторный и прокладочный миканиты относятся к группе твердых миканитов, которые после клейки слюды подвергаются прессованию при повышенных удельных давлениях и нагреве. Эти миканиты обладают меньшей усадкой по толщине и большей плотностью. Формовочный и гибкий миканиты имеют более рыхлую структуру и меньшую плотность.
Коллекторный миканит — это твердый листовой материал, изготовляемый из листочков слюды, склеенных при помощи шеллачной или глифталевой смол или лаков на основе этих смол. Для обеспечения механической прочности при работе в коллекторах электрических машин в данные миканиты вводят не более 4% клеящего вещества.
Прокладочный миканит представляет собой твердый листовой материал, изготовляемый из листочков щипаной слюды, склеенных с помощью шеллачной или глифталевой смол или лаков на их основе. После склеивания листы прокладочного миканита подвергают прессованию. В данном материале 75—95% слюды и 25—5% клеящего вещества.
Формовочный миканит — твердый листовой материал, изготовляемый из листочков щипаной слюды, склеенных с помощью шеллачной, глифталевой или кремнийорганических смол или лаков на их основе. После склеивания листы формовочного миканита прессуют при температуре 140—150° С.
Гибкий миканит представляет собой листовой материал, обладающий гибкостью при комнатной температуре. Он изготовляется из листочков щипаной слюды, склеенных масляно-битумным, масляно-глифталевым или кремнийорганическим лаком (без сиккатива), образующим гибкие пленки.
Отдельные виды гибкого миканита оклеивают с двух сторон микалентной бумагой для увеличения механической прочности. Гибкий стекломиканит — листовой материал, гибкий при комнатной температуре. Это разновидность гибкого миканита, отличается повышенной механической прочностью и повышенной устойчивостью к нагреву. Данный материал изготовляется из листочков щипаной слюды, склеенных друг с другом кремнийорганическими или масляно-глифталевыми лаками, образующими гибкие нагревостойкие пленки. Листы гибкого стекломиканита оклеиваются с двух или с одной стороны бесщелочной стеклотканью.
Микафолий — это рулонный или листовой электроизоляционный материал, формуемый в нагретом состоянии. Он состоит из одного или нескольких, чаще двух-трех, слоев листочков слюды, склеенных между собой и с полотном бумаги толщиной 0,05 мм, или со стеклотканью, или со стеклосеткой. В качестве клеящих лаков применяют шеллачный, глифталевый, полиэфирный или кремнийорганический.
Микалента представляет собой рулонный электроизоляционный материал, гибкий при комнатной температуре. Состоит из одного слоя листочков щипаной слюды, склеенных между собой и оклеенных с одной или двух сторон тонкой микалентной бумагой, стеклотканью или стеклосеткой. В качестве клеящих лаков используют масляно-битумные, масляно-глифталевые, кремнийорганические и растворы каучуков.
Микашелк — рулонный электроизоляционный материал, гибкий при комнатной температуре. Микашелк представляет собой одну из разновидностей микаленты, но с повышенной механической прочностью на разрыв. Он состоит из одного слоя листочков щипаной слюды, склеенных между собой и оклеенных с одной стороны полотном из натурального шелка, а с другой — микалентной бумагой. В качестве клеящих лаков использованы масляно-глифталевые или масляно-битумные лаки, образующие гибкие пленки.
Микаполотно — рулонный или листовой электроизоляционный материал, гибкий при комнатной температуре. Микаполотно состоит из нескольких слоев щипаной слюды, склеенных между собой и оклеенных с двух сторон хлопчатобумажной тканью (перкаль) или микалентной бумагой с одной стороны и тканью — с другой.
Микалекс представляет собой слюдяную пластмассу, изготовляемую прессованием из смеси порошкообразной слюды и стекла. После прессования изделия подвергают термической обработке (сушке). Микалекс выпускают в виде пластин и стержней, а также в виде электроизоляционных изделий (панели, основания для переключателей, воздушных конденсаторов и пр.). При прессовании микалексовых изделий в них могут быть добавлены металлические части. Данные изделия поддаются всем видам механической обработки.
Слюдинитовые электроизоляционные материалы
При разработке природной слюды и при изготовлении электроизоляционных материалов на основе щипаной слюды остается большое количество отходов. Их утилизация дает возможность получить новые электроизоляционные материалы — слюдиниты. Такого рода материалы изготовляют из слюдинитовой бумаги, предварительно обработанной каким-либо клеящим составом (смолы, лаки). Из слюдяной бумаги путем склеивания с помощью клеящих лаков или смол и последующего горячего прессования получают твердые или гибкие слюдинитовые электроизоляционные материалы. Клеящие смолы могут быть введены непосредственно в жидкую слюдяную массу — слюдяную суспензию. Среди наиболее важных слюдинитовых материалов нужно сказать о следующих.
Слюдинит коллекторный — твердый листовой материал, калиброванный по толщине. Получается горячим прессованием листов слюдинитовой бумаги, обработанной шеллачным лаком. Коллекторный слюдинит выпускается в листах размером от 215 х 400 мм до 400 х 600 мм.
Слюдинит прокладочный — твердый листовой материал, получаемый горячим прессованием листов слюдинитовой бумаги, пропитанных клеящими лаками. Прокладочный слюдинит выпускается в листах размером 200 х 400 мм. Из него изготовляют твердые прокладки и шайбы для электрических машин и аппаратов с нормальным и повышенным перегревом.
Стеклослюдинит формовочный — твердый листовой материал в холодном состоянии и гибкий — в нагретом. Получается при склеивании слюдинитовой бумаги с подложками из стеклоткани. Формовочный нагревостойкий стеклослюдинит — твердый листовой материал, формуемый в нагретом состоянии. Его изготовляют путем склеивания листов слюдинитовой бумаги со стеклотканью при помощи нагревостойкого кремнийорганического лака. Он выпускается в листах размером 250 х 350 мм и более. Данный материал имеет повышенную механическую прочность при растяжении.
Слюдинит гибкий — листовой материал, гибкий при комнатной температуре. Его получают путем склеивания листов слюдинитовой бумаги с последующим горячим прессованием. В качестве связующего применяется полиэфирный или кремнийорганический лак. Большинство видов гибкого слюдинита оклеивается стеклотканью с одной или двух сторон. Стеклослюдинит гибкий (нагревостойкий) — листовой материал, гибкий при комнатной температуре. Производится в результате склеивания одного или нескольких листов слюдинитовой бумаги со стеклотканью или стеклосеткой при помощи кремнийорганических лаков. После склеивания материал подвергается горячему прессованию. Он оклеен стеклотканью с одной или двух сторон с целью повышения механической прочности.
Слюдинитофолий — рулонный или листовой материал, гибкий в нагретом состоянии, получаемый склеиванием одного или нескольких листов слюдинитовой бумаги с телефонной бумагой толщиной 0,05 мм, применяемой в качестве гибкой подложки. Область применения этого материала та же, что и микафолия на основе щипаной слюды. Слюдинитофолий выпускается в рулонах шириной 320—400 мм.
Слюдинитовая лента — рулонный нагревостойкий материал, гибкий при комнатной температуре, состоящий из слюдинитовой бумаги, оклеенной с одной или обеих сторон стеклосеткой или стеклотканью. Слюдинитовые ленты выпускают преимущественно в роликах шириной 15, 20, 23, 25, 30 и 35 мм, реже — в рулонах.
Стеклобумослюдинитовая лента — рулонный, гибкий в холодном состоянии материал, состоящий из слюдинитовой бумаги, стеклосетки и микалентной бумаги, склеенных и пропитанных эпоксидно-полиэфирным лаком. С поверхности ленту покрывают липким слоем компаунда. Выпускают ее в роликах шириной 15, 20, 23, 30, 35 мм.
Стеклослюдинитоэлектрокартон — листовой материал, гибкий при комнатной температуре. Он получается в результате склеивания слюдинитовой бумаги, электрокартона и стеклоткани при помощи лака. Выпускается в листах размером 500 х 650 мм.
Слюдопластовые электроизоляционные материалы
Все слюдопластовые материалы изготовляются путем склеивания и прессования листов слюдопластовой бумаги. Последнюю получают из непромышленных отходов слюды в результате механического дробления частиц упругой волной. По сравнению со слюдинитами слюдопластовые материалы обладают большей механической прочностью, но менее однородны, т. к. состоят из частиц большей величины, чем слюдиниты. Важнейшими слюдопластовыми электроизоляционными материалами являются следующие.
Слюдопласт коллекторный — твердый листовой материал, калиброванный по толщине. Получается горячим прессованием листов слюдопластовой бумаги, предварительно покрытых слоем клеящего состава. Выпускается в листах размером 215 х 465 мм.
Слюдопласт прокладочный — твердый листовой материал, изготавливаемый горячим прессованием листов слюдопластовой бумаги, покрытых слоем связующего вещества. Выпускается в листах размером 520 х 850 мм.
Слюдопласт формовочный — прессованный листовой материал, твердый в холодном состоянии и способный формоваться в нагретом. Выпускается в листах размером от 200 х 400 мм до 520 х 820 мм.
Слюдопласт гибкий — прессованный листовой материал, гибкий при комнатной температуре. Выпускается в листах размером от 200 х 400 мм до 520 х 820 мм. Стеклослюдопласт гибкий — прессованный листовой материал, гибкий при комнатной температуре, состоящий из нескольких слоев слюдопластовой бумаги, оклеенных с одной стороны стеклотканью, а с другой — стеклосеткой или с обеих сторон стеклосеткой. Выпускается в листах размером от 250 х 500 мм до 500 х 850 мм.
Слюдопластофолий — рулонный или листовой материал, гибкий и формуемый в нагретом состоянии, получаемый склеиванием нескольких листов слюдопластовой бумаги и оклеенный с одной стороны телефонной бумагой или без нее.
Слюдопластолента — гибкий при комнатной температуре рулонный материал, состоящий из слюдопластовой бумаги, оклеенной микалентной бумагой с обеих сторон. Этот материал выпускается в роликах шириной 12, 15, 17, 24, 30 и 34 мм.
Стеклослюдопластолента нагревостойкая — гибкий при комнатной температуре материал, состоящий из одного слоя слюдопластовой бумаги, оклеенной с одной или с двух сторон стеклотканью или стеклосеткой с помощью кремнийорганического лака. Материал выпускается в роликах шириной 15, 20, 25, 30 и 35 мм.
Электрокерамические материалы и стекла
Электрокерамические материалы представляют собой искусственные твердые тела, получаемые в результате термической обработки (обжига) исходных керамических масс, состоящих из различных минералов (глины, талька и др.) и других веществ, взятых в определенном соотношении. Из керамических масс получают различные электрокерамические изделия: изоляторы, конденсаторы и др.
В процессе высокотемпературного обжига данных изделий между частицами исходных веществ происходят сложные физико-химические процессы с образованием новых веществ кристаллического и стеклообразного строения.
Электрокерамические материалы делят на 3 группы: материалы, из которых изготовляют изоляторы (изоляторная керамика), материалы, из которых изготовляют конденсаторы (конденсаторная керамика), и сегнетокерамические материалы, обладающие аномально большими значениями диэлектрической проницаемости и пьезоэффектом. Последние получили применение в радиотехнике. Все электрокерамические материалы отличаются высокой нагревостойкостыо, атмосферостойкостью, стойкостью к электрическим искрам и дугам и обладают хорошими электроизоляционными свойствами и достаточно высокой механической прочностью.
Наряду с электрокерамическими материалами, многие типы изоляторов изготовляют из стекла. Для производства изоляторов применяют малощелочное и щелочное стекла. Большинство типов изоляторов высокого напряжения изготовляют из закаленного стекла. Закаленные стеклянные изоляторы по своей механической прочности превосходят фарфоровые изоляторы.
material.osngrad.info
Характеристика - электроизоляционный материал - Большая Энциклопедия Нефти и Газа, статья, страница 1
Характеристика - электроизоляционный материал
Cтраница 1
Характеристики электроизоляционных материалов измеряются вполне определенными, предписываемыми государственными стандартами и техническими условиями, способами. Некоторые из этих способов будут описаны ниже. [1]
Свойства и характеристики конкретных электроизоляционных материалов рассматриваются в курсе электрических материалов. Здесь мы остановимся на рассмотрении тех процессов в изоляции, которые имеют решающее значение в пробое твердых диэлектриков. Наиболее важными в отношении пробоя являются электропроводность, поляризационные явления и связанные с ними диэлектрические потери в твердых диэлектриках. [2]
Важную в электротехнике характеристику электроизоляционного материала - пробивную напряженность - в приложении к фарфору, как правило, определяют сопротивлением материала тепловому проплавлению. Это явление связано с быстрым нарастанием силы тока и нагреванием изолятора вследствие прогрессирующего повышения электропроводности с повышением температуры. Изолятор работает безотказно, если выделяющееся в нем тепло уравновешивается теплоотдачей изолятора в окружающую среду. [3]
При нагревании и воздействии повышенной влажности характеристики электроизоляционных материалов претерпевают значительные изменения, причем наиболее существенные показатели электрической изоляции, как правило, ухудшаются. [4]
Под влиянием колебаний температуры в достаточно широких пределах характеристики электроизоляционных материалов и изделий претерпевают существенные изменения, ставящие под сомнение возможность использования материалов. Практически важные показатели электрической изоляции с повышением температуры в большинстве случаев ухудшаются. Поэтому исключительное значение приобретает способность материала выдерживать повышенную температуру без существенного уменьшения эксплуатационной надежности; иными словами, исключительно важен вопрос о наивысшей допустимой рабочей температуре изоляции. К тепловым характеристикам относятся удельная теплопроводность, температуры размягчения и воспламенения материалов, иагревостойкость, стойкость к термоударам, холодостойкость. [5]
Под влиянием колебаний температуры в достаточно широких пределах характеристики электроизоляционных материалов и конструкций претерпевают существенные изменения, определяющие самую возможность использования этих материалов. Практически важные качественные показатели электрической изоляции при повышении температуры в большинстве случаев ухудшаются. Поэтому исключительное значение приобретает вопрос о способности электрической изоляции в том или ином конкретном выполнении выдерживать повышенную температуру без существенного уменьшения эксплуатационной надежности, иными словами, вопрос о наивысшей допустимой рабочей температуре изоляции. [6]
Как показано в предыдущем разделе, при повышении температуры характеристики электроизоляционных материалов существенно изменяются. [7]
Таким образом, электрическая прочность является одной из наиболее важных практически характеристик электроизоляционного материала. Следует обратить внимание на то, что рабочее напряжение, которое прикладывается к изоляции во время ее эксплуатации, всегда должно быть меньше пробивного напряжения, иначе говоря, изоляция всегда должна иметь некоторый запас электрической прочности. [8]
При намотке статора шпалоподбоек ( табл. 23) следует руководствоваться соответствующей таблицей, в которой приведены обмоточные данные и характеристики электроизоляционных материалов. [9]
Электроизоляционную стабильность С предлагается определить отношением электроизоляционной нагревостойкости к электроизоляционной эластичности. Предлагаемые характеристики электроизоляционных материалов дают возможность более объективно и количественно оценить как технологичность и нагревостойкость, так и стабильность изоляции в конструкциях обмотки. [10]
Температура в очень большой степени влияет на самые разнообразные качества: электрические свойства, механическую прочность, твердость, вязкость, эластичность, растворимость и растворяющую способность, способность вступать в те или иные химические реакции и многие другие характеристики любого вещества или тела. В частности, характеристики электроизоляционных материалов и конструкций при изменении в достаточно широких пределах температуры претерпевают существенные изменения, определяющие самое возможность использования этих материалов, причем практически важные качественные показатели электрической изоляции при повышении температуры в большинстве случаев ухудшаются. Поэтому-то исключительное значение приобретает вопрос о способности электрической изоляции в том или ином конкретном выполнении выдерживать повышенную температуру без существенного уменьшения эксплуатационной надежности, иными словами вопрос о наивысшей допустимой рабочей температуре изоляции. [11]
Стеклотекстолиты электроизоляционного назначения выпускаются промышленностью в виде листовых заготовок, из которых затем механической обработкой изготавливают детали электрических машин. В СССР организовано крупное промышленное производство электроизоляционных стеклотекстолитов, однако потребность в этих материалах все время опережает их выпуск. Необходимость в стеклотекстолитах определяется все возрастающими требованиями к ресурсу и надежности электрических машин и аппаратов, работающих в условиях повышенной температуры и влажности. В табл. 9.1 приведены характеристики типовых электроизоляционных материалов и для сравнения - характеристики стеклотекстолита СТЭФ, имеющего средние для стеклотекстолитов показатели. [12]
Пробивное напряжение является характеристикой слоя изоляции определенной толщины или, в более общем случае, электроизоляционной конструкции. Так, мы говорим о пробивном напряжении изолятора, изоляции кабеля, изоляции электрической машины и пр. Электрическая же прочность характеризует электроизоляционный материал, например, фарфор или гетинакс, независимо от конструктивного оформления изоляции из этого материала. Ясно, что высокое пробивное напряжение изоляции может быть получено двумя способами: или путем увеличения толщины изоляции между находящимися под напряжением токове-дущими частями, или путем выбора более высококачественного электроизоляционного материала, обладающего более высокой электрической прочностью. Таким образом, электрическая прочность является одной из наиболее важных практически характеристик электроизоляционного материала. Следует обратить внимание на то, что рабочее напряжение, которое прикладывается к изоляции во время ее эксплуатации, всегда должно быть меньше пробивного напряжения, иначе говоря, должен иметься некоторый з а-пас электрической прочности изоляции. [13]
Страницы: 1
www.ngpedia.ru
Электроизоляционные материалы свойства - Справочник химика 21
БАКЕЛИТ — техническое название фенолформальдегидной смолы, которую получают при взаимодействии фенола или крезолов с формальдегидом. Плавится при нагревании и растворяется в спирте и ацетоне. При нагревании до 140° С Б. переходит в нерастворимую и неплавкую форму. Смеси бакелитовых растворов или эмульсий с древес1юй мукой, бумагой, асбестом, тканями и т. п. применяют для производства прессованием различных изделий, обладающих высокими механическими и электроизоляционными свойствами, а также стойких против действия воды, кислот, органических растворителей. Б. широко используются как конструкционный н электроизоляционный материал, для [c.37] Химические свойства поливинилового спирта определяются его функциональными гидроксильными группами, реагирующими так же, как гидроксильные группы низкомолекулярных спиртов. Подобно последним, поливиниловый спирт образует сложные эфиры, алкоголяты, непредельные соединения и др. Поливиниловый спирт стоек к ароматическим углеводородам, но абсолютно неустойчив в воде полностью в ней растворяется, образуя гелеобразный раствор. Вследствие этого он в качестве электроизоляционного материала непосредственно неприменим и имеет лишь значение как промежуточный продукт в производстве полиацеталей. [c.160]В начале 70-х годов фирмой Du Pont (США) разработан низкомолекулярный этиленпропиленовый термополимер марки Nardel-2722 и ряд термостойких электроизоляционных композиций на его основе, которые не распространяют горение, обладают высокой термостойкостью, механической прочностью, радиационной стойкостью и высокой стабильностью электрических характеристик, что позволяет успешно использовать их в качестве электроизоляционного материала и огнестойкого покрытия одновременно. Высокие огнезащитные и другие свойства этого термополимера [c.144]
Высокие диэлектрические характеристики термоэластопластов [25, 35], особенно в области высоких частот (до 10 Гц), дают возможность применять их в качестве электроизоляционного материала, перерабатывающегося в изделия методом экструзии. В этом случае для улучшения тепло-и температуростойкости при удовлетворительных диэлектрических и физико-механических свойствах необходимо в качестве наполнителя применять мелкодисперсную двуокись кремния [36]. [c.291]
Во всех случаях надежность электрических устройств определяется способностью материалов противостоять действию рабочих температур без существенного изменения электроизоляционных и других эксплуатационных характеристик. Способность электроизоляционного материала без повреждения и существенного изменения практически важных его свойств выдерживать действие повышенных температур кратковременно и в течение времени, сравнимом со сроком эксплуатации изоляции, называется нагревостойкостью. Нагревостойкость электроизоляционных полимерных материалов тесно связана со строением макромолекул и структурой полимера. [c.73]
Методы получения полистирола. Благодаря исключительным электроизоляционным свойствам и весьма высокой водостойкости, полистирол — ценный электроизоляционный материал, особенно для производства радиоаппаратуры и кабелей дальней связи. [c.115]
Политетрафторэтилен, называемый фторопластом-4, используется при температурах от +300 до —200°С. Он обладает исключительной химической стойкостью, превосходящей стойкость золота и платины, и высокими диэлектрическими свойствами. Фторопласт-4 применяется как электроизоляционный материал для высокочастотных кабелей, эксплуатируемых в [c.331]
Конечно, не только форма, но и химическая природа макромолекулы влияет на физико-механические свойства соответствующего полимерного материала. Если между макромолекулами линейного полимера не возникает значительного взаимодействия (а это значит, что в макромолекуле нет сильно взаимодействующих друг с другом полярных групп), то макромолекулы могут легко передвигаться относительно друг друга, соответствующий материал оказывается тягучим таков невулканизированный каучук, полиэтилен (особенно при нагревании). Эластичность (способность восстанавливать первоначальную форму после снятия нагрузки) таких материалов ограниченна. По мере того как возрастает взаимодействие между макромолекулами линейного полимера (т. е. по мере накопления в полимере полярных, взаимодействующих друг с другом групп), его свойства постепенно приближаются к свойствам трехмерного полимера. Того же результата можно достигнуть, химически сшивая макромолекулы. В каучуке это происходит при нагревании с серой при малом содержании серы получается мягкая, эластичная резина, когда же число серных мостиков растет, материал постепенно становится все более твердым, а эластичность его падает. При содержании серы 30—50 , о получается твердый эбонит, который до появления пластмасс имел большое значение как электроизоляционный материал. [c.317]
Электроизоляционный материал с высокой электрической прочностью и стабильностью диэлектрических свойств [c.49]
Цепь растет до тех пор, пока случайная встреча с частицей, несущей неспаренный электрон (молекула кислорода, себе подобная частица, свободный радикал), не оборвет рост цепи. Здесь также справедлива сказанное об исчезающе малой роли концевых групп в столь больших молекулах, где свойства определяются характером цепи. Полученный таким путем полиэтилен — твердая рогообразная масса, размягчающаяся при температуре 120° С и имеющая молекулярный вес 18 000—50 000, прочная механически, химически инертная, как парафин, — широко применяется в качестве электроизоляционного материала, для изготовления посуды, упаковочных и оранжерейный пленок и др. [c.276]
Цианэтилцеллюлоза обладает специфическими свойствами. Она устойчива к действию микроорганизмов, имеет высокую термостойкость и хорошие диэлектрические свойства. Частичное цианэтилирование целлюлозы (СЗ 0,3...0,4) увеличивает стойкость хлопчатобумажных тканей к биологической деструкции и термостойкость, но снижает гигроскопичность. Цианэтилцеллюлоза с высокой степенью замещения (СЗ 2,0...2,9) термопластична. Пленки и волокна из такой цианэтилцеллюлозы применяют как электроизоляционный материал для конденсаторов и люминесцентных приборов. [c.616]
Полиэтилен применялся преимущественно в качестве электроизоляционного материала, так как из всех высокомолекулярных органических материалов полиэтилен имеет лучшие электроизоляционные свойства. [c.64]
При отверждении не наблюдается выделения побочных низкомолекулярных продуктов. Усадка очень мала и не превышает 2%. Отливка весьма точно воспроизводит конфигурацию и размеры формы. Отвержденная смола отличается большой механической прочностью, высокой стойкостью к действию атмосферных факторов, воды, растворителей и агрессивных сред, а также очень хорошими электроизоляционными свойствами. Заливочные эпоксидные смолы находят широкое применение в технике в качестве электроизоляционного, конструкционного и коррозионностойкого материала. Свойства заливочных смол можно модифицировать добавляя в исходную жидкую композицию наполнители, пластификаторы, разбавители и т. д. [c.190]
Кремнийорганич. А. марки К-41-5 — композиция на основе полифенилсилоксана марки КМК-218 — на основе полиметилсилоксана. Эти А. отличаются высокой механич. прочностью, исключительной теплостойкостью и хорошими диэлектрич. свойствами. Для повышения прочностных и диэлектрич. свойств отпрессованные изделия из кремнийорганич. А. дополнительно подвергают термообработке. А. марки К-41-5 используют как жаростойкий электроизоляционный материал для изготовления оборудования, корпусов и деталей приборов, электроаппаратуры, подвергающихся постоянному нагреву до 200 °С и выше. Материал марки КМК-218 обладает максимальной дуго- и тропикостойкостью, устойчив при продолжительном воздействии высоких темп-р применяется для изготовления лабиринтных дугогасящих камер, контакторов постоянного тока большой мощности, клеммных колодок и др. [c.104]
Полиэтиленовое волокно благодаря хорошим диэлектрическим свойствам используют в качестве электроизоляционного материала, а его инертность по отношению ко многим химикатам дает возможность применять это волокно для изготовления фильтровальных материалов и защитной одежды. [c.366]
Поверхность некоторых полимеров, подвергаемых действию электрического разряда, может обуглиться и стать причинои появления тока проводимости. Дугостойкость — мера такого свойства материала — оказывается весьма важным показателем при использовании полимеров в качестве электроизоляционного материала, например в системах зажигания двигателей внутреннего сгорания. К сожалению, никакой корреляции этой характеристики с химическим строением найти пока не удалось. [c.221]
Полиэтилен — предельный углеводород с молекулярной массой от 10 000 до 400 000. Он представляет собой бесцветный полупрозрачный в тонких и белый в толстых слоях, воскообразный, но твердый материал с температурой плавления 110—125°С. Обладает высокой химической стойкостью и водонепроницаемостью, малой газопроницаемостью. Его применяют в качестве электроизоляционного материала, а также для изготовления пленок, используемых в качестве упаковочного материала, для изготовления легкой небьющейся посуды, шлангов и трубопроводов для химической промышленности. Свойства полиэтилена зависят от способа его получения например, полиэтилен высокого давления обладает меньшей плотностью и меньшей молекулярной массой (10 000— 45 000), чем полиэтилен низкого давления (молекулярная масса 70000—400 000), что сказывается иа технических свойствах. Для контакта с пищевыми продуктами допускается только полиэтилен высокого давления, так как полиэтилен низкого давления может содержать остатки катализаторов — вредные для здоровья человека соединения тяжелых металлов. [c.485]
Политетрафторэтилен — твердьи" бесцветный материал, от,дичаю-и нйся искл]очптельной химической стойкостью — на него не действуют ни самые сильные кислоты и щелочи, ии самые сильные окислители, т. е. по своей химической стойкости политетрафторэтилен превосходит золото и платиновые метал.лы. В связи с такими исключительными свойствами он в виде пластической массы под назваинем тефлон или фторопласт применяется для изготовления изделий, иредназначенных для работы н сильно агрессивных средах, а также в качестве электроизоляционного материала. [c.379]
Политэн — белое воскоподобное вещество, весьма устойчивое к действию кислот, отличается прочностью, эластичностью и высокими электроизоляционными свойствами. Политэн применяется как электроизоляционный материал и как материал для изготовления защитных покрытий, [c.309]
Исключительно высокие диэлектрические свойства политетрафторэтилена, практически не зависящие от частоты и температуры в пределах от —60 до -1-200°С, позволяют широко использовать его в высокочастотных и ультравысокочастотных установках. Фторопласт-4 как электроизоляционный материал применяется при изготовлении высокочастотных кабелей, работающих при температурах до 250 °С, и печатных плат для электронных приборов. Провода с фторопластовой изоляцией используются в электромоторах, трансформаторах, радарных установках, контрольно-измерительных приборах. В химической аппаратуре фто-ропласт-4 применяется для изготовления труб, прокладок, сальниковых набивок, манжет и других уплотнительных устройств, сильфонов, деталей насосов и фильтрующих перегородок. Низкий коэффициент трения позволяет применять фторопласт-4 в качестве антифрикционного материала для вкладышей подшипникоа. [c.119]
Свойства основных отечественных полимерных материалов представлены на стр. 148—154. В таблице на стр. 148 приведены физикомеханические показатели пластмасс, изготовленных на основе фенолформальдегидных смол, содержащих различные наполнители, введение которых позволяет значительно улучшить водо-, теплостойкость, диэлектрические показатели и другие свойства материалов. Свойства стеклопластиков, высокопрочных конструкционных материалов представлены на стр. 149. Стеклопластики, полученные на основе полиамидов или поликарбонатов, используют для изготовления лопаток компрессоров, конструкционных деталей. Они позволяют значительно уменьшить вес аппаратов. Стекловолокнистый анизотропный материал (СВАМ) используют в качестве высокопрочного конструкционного материала. Свойства легких газонаполненных полимерных материалов представлены на стр. 150. Легкость, высокие механические и электроизоляционные свойства обусловливают их применение в качестве тепло- и звукоизоляционных материалов в строительстве, су-до- и самолетостроении, а также при изготовлении различных бытовых приборов. На стр. 151 приводятся свойства наиболее распространенных синтетических волокон, которые находят широкое применение в технике и при изготовлении предметов широкого потребления. Физико-механичекие свойства резин и свойства материалов на основе кремнийорганических соединений сведены в таблицах на стр. 152—154. [c.146]
Полиизобутилен применяется как электроизоляционный материал — им пропитывают изоляционную бумагу или волокни-СТЫ6 мнтвризлы. Хорошим злзстичным электроизоляционным материалом является сплав полиэтилена и полиизобутилена, в низкомолекулярные сорта полиизобутилена добавляют наполнители— смолы, воска, парафины для получения высококачественных изоляционных замазок. Высокомолекулярные полиизобутилены применяются как добавки к изоляционным лакам, для улучшения их электроизоляционных и адгезионных свойств, а также для повышения влагоустойчивости и предотвращения образования трещин. Полиизобутилены могут быть использованы для получения клеев, защитных покрытий, в качестве мяг-чителей для синтетических материалов (полистирола, поливинилхлорида и др.), как вяжущее средство в печатных пастах и красителях и т. д. [c.80]
Фторлон — белая, в тонких слоях прозрачная пластмасса, плотность которой 2,2—2,3. Это — самый тяжелый из известных в настоящее время полимеров. Является химически исключительно устойчивым веществом, противостоящим действию концентрированных кислот, даже при повышенной температуре, кипящих щелочей, расплавленного металлического натрия, нагретого до 250°С, и действию всех органических растворителей. Фторлон без изменения выдерл ивает нагревание до 350°С обладает хладо-стойкостью. Пленки из этой пластмассы не теряют пластичности даже при температуре —150°С. Высокая химическая стойкость фторлона обусловливает его применение для изготовления химической аппаратуры, предназначенной для работы с наиболее агрессивными веществами. Исключительные диэлектрические свойства фторлона объясняют его применение в качестве электроизоляционного материала при больших напряжениях и высоких частотах. [c.263]
Свойства. П.— твердый роговидный кристаллич. полимер белого цвета, без заиаха мол. масса составляет 15 ООО—25 ООО. В обычных растворителях (напр., спиртах, сложных эфирах, кетонах, алифатич. и ароматич. углеводородах) П. нерастворим растворяется в конц. h3SO4, уксусной и муравьиной к-тах, фторированных спиртах и фенолах. При нагревании к-ты (папр., серная, соляная, муравьиная) вызывают гидролиз П. Полимер устойчив к действию масе.т, разб. и конц. р-ров щелочей. При темп-рах выше 350 °С П. разлагается с выделением газообразных продуктов окиси и двуокиси углерода, аммиака. П. сильно поглощает влагу (поглощение воды нри насыщении составляет 9—10%). П.— самозатухающий полимер. Он обладает высокой прочностью, абразивостойкостью и значительно более высокой тер. остойкостью, чем большинство др. алифатич. полиамидов. При низкой влажности П.— хороший электроизоляционный материал. Ниже приведены нек-рые свойства П. [c.405]
Высокие диэлектрические свойства полистирола определяют его широкое применение в качестве электроизоляционного материала (труб, кабелей, высокочастотной изоляции), для изготовления различных деталей, применяемых в электропромышленности, радио- и телетехнике [1205, 350—354, 334, 338]. [c.230]
Из-за исключительной химической и термической устойчивости политетрафторэтилен находит все более широкое применение в разнообразных отраслях промышленности [689, 800, 1287, 1288]. Политетрафторэтилен успешно применяется в качестве электроизоляционного материала [706, 709, 1289—1294], в кабельной промышленности [706, 1295], при производстве изоляторов, в телефонном и телеграфном деле [695], электромашино-и аппаратуростроении [1292, 1296]. Кроме того, политетрафторэтилен используется в качестве добавок для улучшения механических и диэлектрических свойств масляно-лаковой изоляции [1297]. Инертность политетрафторэтилена к различным агрессивным средам [1298] делает его ценным материалом для химической промышленности [1299]. [c.311]
Резина из кремнийорганического каучука, модифицированного тефлоном (стр. 320), имеет механическую прочность 100—180 т см и сохраняет эти свойства от минус 75 до плюс 350°С. Резина нз кремнийорганического каучука в указанном интервале тегаератур имеет незначительную остаточную деформацию, так как после снятия нагрузки почти полностью восстанавливает свои первоначальные размеры, в то время как органические резины при длительном воздействии высокой температуры становятся хрупкими. Поэтому кремнийорганическую резину применяют в качестве прокладок, труб, шлангов и уплотнителей в механизмах, работающих при высоких температурах, например в гидросистемах самолетов, авиационных и автомобильных двигателях и т. д. Хорошие диэлектрические свойства позволяют использовать их в различном электротехническом оборудовании. В сочетании с найлоновой и стеклянной тканью кремнийорганическая резина образует эластичный электроизоляционный материал, который применяется для получения теплостойкой изоляции электричезких машин, проводов , кабелей. [c.350]
В табл. ЗЛ представлены электрические характеристики полимера тефзел. Как электроизоляционный материал сополимер ЭТФЭ обладает превосходной способностью к формованию путем литья под давлением, исключительно хорошими механическими свойствами и, как следует из табл 3,7, высокой пробивной прочностью изоляции. [c.188]
Другие фторсодержащие смолы. Из других фторсодержащих смол, не упомянутых выше, следует упомянуть сополимер винилиден-фторида с гексафторизобутиленом, поливинилфторид и сополимер фторсульфонилвинилового эфира с тетрафторэтиленом. Каждое из этих соединений имеет характерные свойства и находит в соответствии с ними свою область применения, В настоящее время, однако, среди них нет соединения, которое можно было бы использовать в качестве электроизоляционного материала. Вместе с тем, учитывая, [c.197]
Силиконовые каучуки (состоят из полимера, наполнителя и вулканизатора) представляют собой обычные линейные полидиметил-силоксаны с молекулярной массой 250 ООО — 450 ООО. Нагревание приводит к сшивке линейных полимеров поперечными связками. Наполнители, например различные типы аэрогелей двуокиси кремния, улучшают механические свойства полимеров, повышают их прочность при растяжении и придают способность к удлинению до 60%. Вулканизацию проводят в присутствии перекисей.Силиконо-вые каучуки применяют в качестве электроизоляционного материала, прокладок различной аппаратуры и электродвигателей. [c.330]
Гигроскопичность. Полиэфирное волокно негигроскопично, что является ценным свойством прп использовании его в качестве электроизоляционного материала и существенным недостатком ири крашеппн и отделке в производстве предметов народного Ботреблелпя. Водоноглощенпе полиэфирного волокпа прп относительной влажности 65% воздуха составляет 0,4%. [c.149]
Нитрид алюминия — высокотемпературный электроизоляционный материал, обладающий рядом ценных свойств высоким электрическим сопротивлением, возможностью работы при температурах до 1400° К без потери изоляционных характеристик, высокой прочностью, твердостью, износостойкостью. Из имеющихся немногочисленных работ известно, что нитрид алюминия имеет гексагональную структуру типа вюртцита с периодами рещетки а = 3,1 И А, [c.168]
В технич. отношении большой интерес представляют электрич. свойства НК. Диэлектрич. прони1 ае-мость его (и неиаполненных вулканизатов) составляет ок. 2,5. В качестве электроизоляционного материала применяют мягкие вулканизаты, а также эбонит. Широко используется также газо- и водонепроницаемость НК. Чистый каучук практически для води непроницаем, коэфф. диффузии паров воды через пленку НК нри 20° составляет 8 10 г/час. Коэфф. диффузии воздуха 1,21 10 " г/час. Основные физич. константы НК приведены в табл. 1. [c.248]
chem21.info