Принцип работы гидронасоса, неисправности. Гидравлический насос принцип работы


Как работает гидравлический насос?

  1. Статьи
  2. Как работает гидравлический насос?

Гидравлический насос используется во множестве видов областей. Например, он часто встречается в гидравлических машинах, обеспечивая поставку воды и масла. Также он используется в конструкции экскаваторов, в тяжелой технике при строительстве. Насос, осуществляющий функцию торможения, можно увидеть в механизмах разных машин.

Принцип работы гидравлического насоса

Такой вид оборудования используется, чтобы преобразовывать механическую энергию в гидравлическую. При его работе крутящий момент или частота вращения превращаются в подачу или усиление давление. Его основной принцип действия – это вытеснение жидкости. Кинетическая энергия двигающегося вещества производит требуемый поток, который затем применяется для создания давления внутри гидравлического устройства.

Насосы, в которых реализован принцип вытеснения, называются объемными. В устройстве создаются изолированные камеры, в которых вещество будет передвигаться из области всасывания в область нагнетания. Между такими полостями нет прямого соединения, так что эти устройства легко могут использоваться в условиях повышенного давления в системе (уровень давления соответствует ее нагрузке).

Можно также сказать, что принцип работы подобного насоса держится на взаимной работе механических сил и создаваемого атмосферного давления. Благодаря их взаимодействию жидкость передвигается между разными внутренними частями гидравлического насоса.

Какими бывают гидравлические насосы?

Они могут быть непоршневыми и поршневыми. Последние получили наиболее распространение, так как они могут производить давление до пяти тысяч МПа.

Все виды гидравлических насосов:

  1. Шестеренные насосы с внешними зубами. Отличаются компактностью, доступной ценой, надежностью и простотой конструкции. Однако имеют высокий уровень шума и ограничение в давлении.
  2. Роторные насосы. Имеют достаточную прочность и высокий уровень давления. При этом стоят довольно дорого из-за сложной конструкции.
  3. Аксиально-Поршневые. Обладают высоким уровнем коэффициента полезного действия. Имеют переменную структуру. Продаются по достаточно высокой цене. Неустойчивы к загрязнениям.
  4. Радиально-Поршневые. Громоздкие и дорогие устройства, известные также своей надежностью, эффективностью, высоким уровнем давления и бесшумностью.

jcbpro.ru

Гидронасосы:общие сведенья,основные параметры,классификация

Гидронасос всасывает рабочую жидкость из бака и перекачивает ее по гидравлическим трубопроводам гидросистемы к исполнительным механизмам – гидроцилиндрам или гидромоторам, которые осуществляют перемещение рабочих органов машин. Насос приводится во вращение чаще всего электродвигателем, а на подвижных установках – двигатели внутреннего сгорания.

Если жидкость не встречает на своем пути значительного сопротивления, то давления жидкости не будет, но как только такое сопротивление появится, насос начнет повышать давление в ней до тех пор, пока это сопротивление не будет преодолено. Таким образом, насос предназначен для нагнетания жидкости в гидросистему и повышения в ней давления для совершения полезной работы и преодоления имеющихся сопротивлений, и является устройством, преобразующим механическую энергию первичного источника в энергию сжатой жидкости.

В гидронасосах объёмного типа всасывание рабочей жидкости и ее вытеснение в систему происходит в результате последовательного увеличения и уменьшения геометрического объёма V их рабочих камер, причем давление в вытесняемой жидкости при этом повышается настолько, насколько это нужно в данной системе для выполнения полезной работы. Для того, чтобы жидкость могла заполнять камеру, а затем вытесняться из нее, камера должна сообщатся попеременного то с всасывающей магистралью, то – с нагнетательной.

Основные параметры насоса

Одним из основных параметров для гидронасоса любой конструкции является его рабочий объём V, - это количество жидкости, которое насос может вытеснить за один полный цикл, совершаемый за один оборот его приводного вала. Рабочий объём обычно выражается в см3, а подача насоса это произведение его рабочего объёма V на число оборотов приводного вала, совершаемое в единицу времени, т.е. подача насоса – это расход жидкости, подаваемой насосом в систему:

Q=(V n)/1000,л⁄мин;

В действительности, подача насоса будет несколько меньшей из-за перетекание жидкости внутри насоса из полостей находящихся под давление в полости, где давления нет. Это так называемые потери, которые характеризуются объёмным КПД насоса. Эти потери составляют в разных насосах от 3% до 15% подачи. В зависимости от конструкции насоса, форма рабочих камер, их количество и способ сообщения с магистралями всасывания и нагнетания,- различны, а сами насосы существенно различаются величинами подач и давлений, при которых они могут длительно и надежно работать.

www.metalstanki.com.ua

Как работает гидронасос, основные поломки

Принцип работы гидравлических насосов заключается в преобразовании механической энергии в гидравлическую и вырабатываемого двигателем крутящего момента. В результате образуется давление или подача.

Эффективность работы гидронасосов зависит от их рабочего давления (V), расхода жидкости (Q) и потерь (%), которые неизбежны. Они могут быть в пределах нормы или превышать её. При высоких потерях агрегат считается неисправным и подлежит ремонту.

Рабочий объём – количество жидкости, которое обрабатывается за 1 полный цикл. Для того, чтобы узнать расход жидкости, следует умножить рабочий объём на количество производимых оборотов за единицу времени (смена, час, день).

Потери образуются за счёт полостей насоса, где давление отсутствует, в результате чего часть жидкости расходуется вхолостую. Норма потерь может составлять от 3 до 15 процентов, в зависимости от модели и производителя гидронасоса. Эти данные имеются в технической документации, где указывает максимально допустимый уровень, превышение которого означает неисправность необходимость её устранения.

Краткая классификация гидронасосов

Основным признаком классификации гидронасоса является его рабочий объём, который может быть постоянным или переменным. Постоянный объём у шестерённых насосов, переменный – у пластинчатых. Аксиально-поршневые насосы могут обладать и переменным, и постоянным рабочим объёмом, в зависимости от модели.

Гидронасосы бывают следующих видов:

  • Аксиально-поршневыми;
  • Шестерёнными;
  • Героторными;
  • Пластинчатыми;
  • Ручными;
  • Радиально-поршневыми.

Каждый вид обладает определёнными свойствами, преимуществами и сферами, где их применение является наиболее эффективным.

Наиболее распространёнными гидронасосами являются аксиально-поршневые (прямые и наклонные). Их популярность обусловлена наибольшим КПД и производительностью. В тоже время, они являются самыми дорогими. Их разновидностью является плунжерные, в которых плунжер выполняет роль поршня.

Основные неисправности

Основными причинами возникновения неисправностей является несоблюдение правил эксплуатации оборудованием, несвоевременное или некачественное техобслуживание, использование рабочей жидкости масла, комплектующих, неподходящих к используемой модели, неправильная настройка гидронасоса.

В результате могут возникнуть ряд следующих неисправностей.

1. Нестабильность при работе

Причины:

  • Износ, повреждение седла или штифтов седла подшипника;
  • Образование зазора в механизме управления;
  • Загрязнение канала между золотником управления и поршнем;
  • Задиры поверхности поршня или золотника, препятствующие плавному передвижению механизма;
  • Поломка элементов компенсатора давления;
  • Повышенное сопротивление компенсатора давления;
  • Пониженное давление управления.

2. Малый расход насоса

Причины:

  • Задиры цилиндра и поверхностей на тарелке клапана;
  • Износ шлиц приводного вала, подшипников, поршней или его элементов (башмаков, отверстий блока цилиндра).

3. Возникновение вибраций при низком давлении

Причины:

  • Неправильная настройка максимального объема насоса;
  • Повреждение пружины золотника или цилиндра управления;
  • Задиры на золотнике или в отверстии;
  • Проблемы с компенсатором (неправильно выставлен, неисправности элементов в контуре, уровень компенсаторного давление слишком близок к уровню рабочего).

4. Сильные перепады давления

Причины:

  • Попадание воздуха в систему;
  • Рабочее давление превышало максимальный уровень в течение длительного времени;
  • Загрязнение канала между поршнем и золотником, нарушена плавность хода;
  • Износ опорных конечностей и седла подшипников;
  • Низкое давление на входе в гидравлический насос.

5. Периодический перегрев насоса

Причины:

  • Износ опор блока цилиндра или поршней, поверхностей между цилиндрами и распределителем; опоры поршней и блока цилиндров;
  • Неисправность предохранительного клапана;
  • Слабое охлаждение теплообменника;
  • Недостаточный объем бака, низкий уровень жидкости в резервуаре.

6. Повышенный уровень шума при работе гидронасоса

Причины:

  • Наличие воздуха при всасывании;
  • Износ роторной группы;
  • Повышенная вязкость жидкости;
  • Неправильное вращение входного вала насоса.

Компания ООО «Велес-Гидравлика» осуществляет ремонт отечественных и импортных гидронасосов любых видов, моделей и серий. В наличии необходимая материально-техническая база – мастерские, склады запчастей, опытный техперсонал. Это позволяет производить техобслуживание гидравлических насосов с максимальной эффективностью в минимальные сроки.

vhydro.ru

Радиально поршневой насос: устройство, принцип работы, достоинства

Радиально поршневой насос – это объемный насос, в конструкции которого, ось ведущего вала перпендикулярна осям движения рабочих поршней или угол между ними составляет величину не меньше 45°. Механизмы, угол которых меньше 45° относят к аксиальному типу.

Радиально поршневые насосы

Радиально поршневой насос часто называют радиально-плунжерным.

Такие насосы применяю в гидравлических системах с большим давлением. Наиболее часто они применяются в установках с давлением до 32 МПа, бывают и агрегат работающие на большем давлении и достигают значений в 100 МПа. Агрегаты радиально поршневого типа ограничены в частоте вращения вала до 1500 об/мин. Это обусловлено большой инерционностью вращающихся частей.

Устройство

Можно выделить два вида конструкции, таких гидравлических систем:

Схема радиально поршневых насосов

  • Гидронасос с эксцентричным ротором. На схеме под буквой А
  • Гидронасос с эксцентричным валом. На схеме под буквой Б

Устройство с эксцентричным ротором

Главной частью является ротор со встроенными в него поршнями. Поршней может быть много и располагаться они могут в несколько рядов. Ротор вращается в корпусе(Статоре). Ось ротора установлена со смещением центра относительно оси статора на величину «е» как показано на рисунке. Системы забора и нагнетания расположены в центре и отделяются друг от друга специальной перемычкой.

Устройство с эксцентричным валом

В данном устройстве гидравлической системы, поршни располагаются в статоре насоса. Ось статора и вала совпадают, но на вале есть специального рода кулачек, смещенный по отношению к статору на расстояние «е». Такие гидравлические установки имеют клапанное распределение. При сжимании рабочей камеры клапан всасывания закрывается и открывается клапан нагнетания. При расширении рабочей камеры происходит обратная ситуация.

Принцип работы

Принцип работы радиально поршневого насоса

Ротор вращается в статоре (корпусе) вместе с поршнями, поршни скользят по корпусу, плотно прижимаясь к нему за счет пружин. В результате вращения ротора, поршни совершают возвратно-поступательные движения. Поршни двигаясь по кругу переключаются между двумя фазами:

  • Фаза всасывания. Поршень совершает выдвижение, рабочая камера увеличивается,клапан нагнетания закрывается и открывается клапан всасывания,  он соединён с отверстием забора жидкости. Поршень движется по кругу до максимальной точки его выдвижения.
  • Фаза нагнетания. Поршень переключается на отверстие нагнетания, и начинает вдвигаться, клапан всасывания закрывается и открывается клапан нагнетания, рабочая камера уменьшается в результате чего создается давление и жидкость вытесняется из насоса. Поршень находится в данной фазе до максимальной точки сжатия рабочей камеры, а затем переключается на фазу всасывания.

Радиально поршневой насос может быть двух и более кратного действия. Это означает что один плунжер совершает несколько рабочих ходов за одно вращение ротора. Такой эффект достигается за счет специального изменения поверхности статора.

Вычисление производительности

 

Q = hSna = 2eSna

 

Q – производительность насоса;

e – эксцентриситет, смещение относительно оси вращения вала на рисунках выше также обозначался как «е»;

L – ход плунжера в цилиндре, в стандартной ситуации L=2*e;

S – площадь плунжера;

a – число плунжеров в блоке;

n – частота вращения блока;

Производительность в регулируемых насосах, регулируется изменение величины отклонения оси «e».

Достоинства и недостатки радиально поршневых насосов

Положительные стороны:

  1. Производят высокое давление в гидравлической системе;
  2. Есть модели с опцией регулирования рабочего объема подачи;
  3. КПД находится на достаточно высоком уровне при большом давлении;
  4. Высокая энергоемкость на единицу массы;

Отрицательные стороны:

  1. Сложное устройство, небольшая надежность;
  2. Необходимость специфичной обработки деталей, а также сложное строение самого насоса приводит к высокой цене на данные агрегаты;
  3. Нужна тонкая фильтрация рабочей жидкости;
  4. Высокая пульсация подачи и расхода;
  5. Занимают много места;
  6. Низкий вращающий момент основного вала;

Видео радиально поршневого насоса с клапанным распределением

То что вам предлагает Яндекс

То что вам предлагает Google

gidropnevm.ru

Пластинчатый насос (Шиберный): устройство, принцип работы

Пластинчатый насос – это роторная объемная гидромашина вытеснителями в которой являются две и более лопасти (шиберов). Его часто называют шиберным или роторно-пластинчатым. Имея не плохие характеристики и практичную конструкцию, он завоевал большой спектр применения в различных промышленных секторах. Его конструкция используется в пищевой, фармацевтической и косметической промышленности.

Пластинчатый насос

Технические данные:

  • Используются в различных станках и гидравлических усилителях рулевого управления;
  • Номинальное давление на выходе до 12,5 МПа;
  • КПД до 85 %;
  • Вращающий момент 30 оборотов в секунду;

Устройство

Существуют два вида гидравлических пластинчатых насосов:

  1. Однократного действия – за одно полное вращение вала совершается одно событие забора рабочей жидкости и одно нагнетание. Регулируемые, за счет смещения центра вращения ротора на величину e, относительно центра статора.
  2. Двукратного действия – за полное вращение совершается два события забора жидкости и два нагнетания. Не регулируемы так как центры ротора и статора объединены и не могут быть смещены.

Схема устройства однотактного и двухтактного насосов.

1 – Ротор; 2 – Вал, передающий вращение привода; 3 – Пластины; 4 – Статор (неподвижный корпус насоса) 5 – Распределитель; 6 – Отверстие всасывания в распределителе; 7 – Подвод рабочей жидкости; 8 – Отверстие нагнетания в распределителе; 9 – Линия выдавливания рабочей жидкости;

Как видно на рисунке, в строение пластинчатого насоса входит вращающийся ротор (1), который в свою очередь закреплен на валу (2). Ротор обеспечен специальными выемками – пазами, расположение которых радиально. В пазах располагаются специальные пластины (3). В однотактных роторах происходит смещение центра ротора и статора на величину e. Это делается чтобы при событии вращения основного вала (2) пластины могли вдвигаться и выдвигаться. В двухтактных машинах этот эффект достигается за счет изменения формы статора.  К торцевой области ротора, а также и статора прикрепляются распределители (5) с отверстиями в виде серпа. Отверстие (6) соединено с каналом всасывания (7), а отверстие (8) с гидролинией нагнетания (9). Между отверстиями в распределителе присутствуют специальные перемычки (10), задачей которых является обеспечение герметичности частей, отвечающих за втягивание рабочей жидкости и ее нагнетание. Угол ξ > β что обеспечивает изоляцию зон всасывания и нагнетания.

Принцип работы гидравлического пластинчатого насоса

Принцип работы пластинчатого насоса

Понять принцип работы пластинчатого насоса можно используя рисунок выше. Вращаясь ротор перемещает пластины. Они в свою очередь под действием центробежной силы или пружины начинают выходить из пазов, плотно жмется к внутренней стенке статора. Благодаря тому, что центр ротора смещен относительно статора, объем рабочей камеры по мере движения растет – это событие всасывания (а). Ротор продолжая движение переходит в фазу уменьшения рабочей камеры – это событие нагнетания (с). Итак жидкость переносится между лопастями из системы всасывания в систему нагнетания.

Теоретическая производительность

Есть два типа насосов однократного и двукратного действия как мы уже определили ранее, по этому и формул по вычислению производительности будет две.

Производительность шиберного насоса однократного действия

Производительность роторно-пластинчатого агрегата однократного действия определяется по формуле:

Как видно из формулы производительность зависит от величины e, которая определяет отклонение оси ротора от оси статора. Из чего следует что, если поместить ротор внутрь кольца, перемещением которого мы сможем управлять, мы получим регулируемый роторно-пластинчатый насос.

Производительность шиберного насоса двукратного действия

Производительность роторно-пластичного устройства определяется по следующей формуле:

Исходя из формулы можно сделать некоторый вывод. Мощность насоса невозможно повысить кроме как увеличением вращений ротора (n). Из чего следует вывод что агрегаты двукратного действия являются не регулируемыми.

Достоинства и недостатки

Сравнение с другими типами насосов:

  • В отличии от шестеренных, роторно-пластинчатые агрегаты производят наиболее равномерную подачу рабочей жидкости;
  • У роторно-поршневых типов пластичные устройства выигрывают тем что требования к загрязнению рабочей жидкости весьма низкие, а конструкция самого агрегата проще и дешевле;

Общие достоинства:

  1. Относительно низкая пульсация выходного потока;
  2. Низкий уровень шума
  3. Регулируемый рабочий объем

Общие недостатки:

  1. Устройство насоса достаточно сложное и плохо ремонтопригодное;
  2. Не большие рабочие давления;
  3. Залипание пластин, случается при низких температурах;
  4. Заклинивание пластин при высоких температурах;

То что вам предлагает Яндекс

То что вам предлагает Google

gidropnevm.ru

Регуляторы гидронасосов с переменным рабочим объемом

В силовых гидроприводах при регулировании потока рабочей жидкости потери мощности становятся актуальной задачей. Дроссельное регулирование генерирует большое количество тепла, которое тратится впустую. При этом дизельное топливо в строительной спецтехнике и потребляемая электроэнергия стационарного оборудования расходуются весьма неэффективно.

Гидронасосы с переменным рабочим объемом позволяют изменять расход рабочей жидкости, затрачивая на это незначительную мощность. При длительных технологических операциях, когда изменение скоростей исполнительных механизмов машин требуется выполнять нечасто, оператор в состоянии отслеживать ход выполнения работ и управлять производительностью насоса.

Но динамичная работа машины требует очень быстрого регулирования расхода рабочей жидкости или поддержки его постоянного значения в условиях скачкообразного изменения давления. Оператору также трудно управлять гидравлическим насосом при выполнении точных работ.

В качестве примеров можно привести работу экскаватора, движение бульдозера или погрузчика в условиях строительной площадки, а также крана при монтаже тяжелых строительных конструкций.

Ограниченную физиологическую реакцию человека заменяет автоматика. Механическое управление насосами с переменным рабочим объемом выполняют различные регуляторы. Зарубежные специалисты часто называют эти устройства компенсаторами.

При изменении внешней нагрузки в зависимости от требуемых функций регуляторы (компенсаторы) обеспечивают постоянную мощность, потребляемую насосом от первичного двигателя, выработку им постоянного расхода или поддержание постоянного давления. Регуляторы выполняют и более сложные функции, оптимизируя работу гидропривода машины.

Регуляторы устанавливаются на насосы для открытых и закрытых гидросхем, управляют наклонной шайбой или наклонным блоком цилиндров аксиально-поршневых гидромашин. Конструкции их несколько различаются, но принцип работ одинаков.

Регуляторы используются на аксиально-поршневых гидронасосах с широкой линейкой рабочих объемов от 10 см3 и более с давлением до 35,0 МПа (350 бар). Регуляторы монтируются непосредственно на корпусе насоса.

Очень часто используются типовые регуляторы на аксиально-поршневых насосах с наклонной шайбой и наклонным блоком цилиндров, а также на гидронасосах с наклонной шайбой, оснащенный регулятором потока. Этот тип насоса предназначен для открытых гидросхем.

Он широко используется в различных гидравлических машинах и оборудовании и является одним из самых распространенных на мировом рынке машиностроительной гидравлики. Его максимальное рабочее давление обычно составляет 28,0 МПа, а пиковое давление – 35,0 МПа.

Рис. 1. Конструктивная схема регулятора потока

Регулятор потока обеспечивает постоянный расход рабочей жидкости при изменении давления нагрузки. Типовой регулятор монтируется на корпусе аксиально-поршневого насоса и управляет двумя пилотными потоками. На рис. 1 показана принципиальная конструкция такого регулятора потока, а его гидравлическая схема приведена на рис. 2.

Регулятор потока состоит из двух дросселирующих золотников (пропорциональных клапанов 3/2), установленных в корпусе. С одного торца каждый золотник поджат пружиной. Пружина пилотного (верхнего на рис. 1) золотника имеет небольшую жесткость, а пружина золотника ограничения максимального давления (нижнего на рис. 1) – силовая.

Рис. 2. Гидравлическая схема регулятора

Пружинная полость пилотного золотника (левая на рис. 1) соединена с противоположной (правой на рис. 1) через дроссель, выполненный внутри его шейки. Пружинная полость золотника ограничения давления соединена со сливом.

Противоположные торцевые полости золотников (правые на рис.1) связаны с линией нагнетания аксиально-поршневого насоса. В корпусе регулятора выполнены стабилизирующие дроссели. Рабочая жидкость из регулятора поступает в управляющий плунжер насоса, который перемещает наклонную шайбу (рис. 2).

Противоположный возвратный подпружиненный плунжер всегда стремится вернуть наклонную шайбу в исходное положение, соответствующее максимальному рабочему объему насоса. Жесткость пружины пилотного золотника регулятора очень маленькая.

Но чтобы сдвинуть этот золотник, помимо небольшого сопротивления пружины необходимо преодолеть гидравлическую силу, действующую на его торец. Эта сила зависит от величины давления в пружинной полости, которое меньше, чем в противоположной. Его значение определяется величиной перепада давления на дросселе внутри шейки золотника.

 

Пилотный клапан с учетом действия на его золотник слабой пружины и разницы давления настраивается на 1,0-3,0 МПа, в зависимости от условий применения аксиально-поршневого насоса. Пружина золотника ограничения давления силовая и настроена на 25,0-28,0 МПа. Рассмотрим работу регулятора потока, у которого пилотный клапан настроен на давление 2,0 МПа.

Гидронасос при пуске вырабатывает максимальный расход. Рост давления в гидросистеме перемещает дросселирующий пилотный золотник влево, и рабочая жидкость, поступая в управляющий плунжер, отклоняет шайбу, уменьшая рабочий объем насоса, снижая его расход.

При достижении величины давления 2,0 МПа пилотный золотник полностью открывает свои рабочие окна. Рабочая жидкость отклоняет шайбу в положение, соответствующее установленной величине расхода насоса. Расход резко падает. В этот момент в насосе возникает гидроудар.

На рис. 3 показана схема регулятора, позволяющая плавно осуществлять пуск гидронасоса. В этом устройстве при отключенном электромагнитном клапане Y1 давления в торцевых камерах верхнего золотника р1 и р3 равны, поэтому при его росте до величины настройки клапана ограничения давления пружина пилотного золотника удерживает его от перемещения влево.

Рис. 3. Схема управления регулятором

При включении электромагнитного клапана Y1 подпружиненная полость пилотного золотника регулятора изолируется от линии нагнетания аксиально-поршневого гидронасоса. Перемещение пилотного золотника в левую сторону сдерживает только слабая пружина. Он вытесняет рабочую жидкость из подпружиненной торцевой полости через дроссель на слив.

Такое демпфирование позволяет очень быстро, но равномерно, без колебаний, перемещаться пилотному золотнику. Он сразу же открывает доступ рабочей жидкости в управляющий плунжер, который мгновенно перемещает наклонную шайбу в положение, соответствующее выбранной величине расхода. Таким образом, обеспечивается плавный пуск насоса, без гидравлических ударов.

Рассмотрим принцип двухступенчатого управления регулятором потока. На рис. 4 показана схема такого регулятора. При выключенных электромагнитных клапанах Y1, Y2, Y3 на пилотный золотник действует управляющее давление величиной не выше 2,0 МПа, т.е. регулятор работает по вышеописанному принципу.

Рис. 4. Схема регулятора с двухступенчатым управлением

Первая ступень управления регулятором осуществляется следующим образом. При вращении аксиально-поршневого насоса включается электромагнитный клапан Y1. Пропорциональный электрический сигнал Y2, управляющий предохранительным клапаном, увеличивается до максимума, ограничивая пилотное давление значением 25,0 МПа.

Управляющий поток от насоса проходит через внутренние отверстия пилотного золотника в его правую торцевую полость и одновременно через дроссель в левую подпружиненную. Из нее по внутренним каналам управляющий поток через предохранительный клапан под давлением 25,0 МПа направляется на слив. В правой торцевой полости пилотного золотника давление больше, чем в левой (за счет потери на дросселе), поэтому он смещается влево.

Проходное сечение уменьшается, перепад давления на кромках пилотного золотника увеличивается, в управляющем плунжере давление становится меньше, и возвратный плунжер отклоняет шайбу в положение уменьшения рабочего объема, соответствующее небольшому расходу. Аксиально-поршневой насос работает при давлении 25,0 МПа, но при малом расходе.

Включение электромагнитного клапана Y3 приводит в действие вторую ступень управления регулятором. При таких условиях регулятор устанавливает наклонную шайбу в положение, соответствующее половине рабочего объема, т.е. насос вырабатывает половину потенциального расхода.

Когда включается электромагнит Y3, давление в правой торцевой камере пилотного золотника будет немного падать, позволяя ему перемещаться вправо, уменьшая перепад давления на дросселирующих кромках. В управляющем плунжере давление увеличится, и он отклонит шайбу, увеличив рабочий объем на величину, соответствующую половине производительности аксиально-поршневого гидронасоса.

Описанные регуляторы потока во многом используются в гидросистемах с практически постоянным давлением нагрузки. Но существует большое количество типов машин и оборудования, в гидросистемах которых давление нагрузки всегда меняется в широком диапазоне. В таких случаях используются регуляторы, чувствительные к изменениям нагрузки.

Они эффективно сохраняют мощность машин, особенно при минимальных значениях давлений нагрузки. Такие регуляторы не являются слишком сложными и работают по известным принципам. Мы знаем, что величина потока, проходящего через дроссель, определяется перепадом давления (Δр = р1 – р2).

Разность давления между р1 и р2 преобразовывается в расход рабочей жидкости, который, воздействуя на регулятор, будет изменять скорость гидродвигателя. Поэтому регулятор должен поддерживать перепад давления постоянным независимо от изменения давления нагрузки.

Тогда и расход, поступающий в гидродвигатель, сохранится постоянным. Обратимся к схеме регулятора на рис. 5, на котором ясно видны изменения. Здесь подпружиненная полость пилотного золотника через Х-порт регулятора соединена с линией нагнетания, снабжающей рабочей жидкостью гидродвигатель (на схеме – гидромотор).

Рис. 5. Регулятор с LS системой управления

Отметим, что на приведенной схеме показан сам принцип соединения канала LS с регулятором. Сигнал LS, получаемый регулятором, может подаваться из различных точек гидросистемы в зависимости от особенностей конструкции машины.

В исходном положении насос будет разгружен. При подаче электросигнала Y2 на пропорциональный клапан рабочий поток от гидронасоса направится в гидродвигатель. Давление р2 будет интенсивно расти до величины, необходимой гидродвигателю. Одновременно растет давление в LS канале и,следовательно, в пружинной полости пилотного золотника.

Смещаясь вправо, он заставляет давление р1 повышаться. В результате на пропорциональном электроуправляемом клапане Y1 установится перепад давления (Δр = р1 – р2), равный величине настройки пилотного клапана регулятора, т.е. в нашем примере 2,0 МПа.

Вне зависимости от роста или падения давления в гидродвигателе перепад давления на клапане Y1сохранится постоянным, поэтому расход рабочей жидкости в гидродвигатель не будет изменяться. Но чтобы увеличить или уменьшить расход, т.е. скорость гидродвигателя, необходимо изменить величину перепада давления на пропорциональном клапане Y1.

Это достигается изменением величины электрического сигнала управления, подаваемого на пропорциональный электроуправляемый клапан Y1. Изменение площади проходного сечения клапана приводит к изменению величины перепада давления на нем (Δр), в результате изменяется расход (Q) в гидродвигатель.

Рис. 6. Распределение мощности в насосе с LS регулятором

Рисунок 6 иллюстрирует распределение мощности в гидронасосе с LS регулятором. Графики показывают, что при управлении насоса LS регулятором экономится большое количество мощности.

Потери возникают только при перепаде давления на электроуправляемом пропорциональном клапане. Но они незначительны по сравнению с общей мощностью насоса. Помимо описанных существуют и другие типы регуляторов: давления, мощности и т.п., которые реализовывают различные характеристики управления насосами. Но принцип работы всех регуляторов идентичен.

 

cdmteh.ru

Всё о гидравлике

Гидравлические насосы предназначены для преобразования механический энергии (крутящий момент, частоту вращения) в гидравлическую (подача, давление). Существует большое разнообразие типов и конструкций гидравлических насосов, но всех их объединяет единый принцип действия – вытеснение жидкости. Насосы использующие принцип вытеснения называются объемными. Во время работы внутри насоса образуются изолированные камеры, в которых рабочая жидкость перемещается из полости всасывания в полость нагнетания. Поскольку между полостями всасывания и нагнетания не существует прямого соединения, объемные насосы очень хорошо приспособлены для работы в условиях высокого давления в гидросистеме. Основными параметрами гидронасосов являются:

• Рабочий объем (удельная подача) [см3/об] – это объем жидкости вытесняемый насосом за 1 оборот вала. • Максимальное рабочее давлени [МПа, bar] • Максимальная частота вращения [об/мин]

Классификация объемных насосов по типу вытесняющего элемента показана на Схеме 1.

При выборе типа насоса для гидросистемы необходимо учитывать ряд факторов свойственных определенным типам насосов и особенности разрабатываемой гидросистемы. Основными критериями выбора насоса являются:

Диапазон рабочих давлений Интервал частот вращения Диапазон значений вязкости рабочей жидкости Габаритные размеры Доступность конструкции для обслуживания Стоимость Далее будут рассмотрены различные типы насосов с описанием их конструктивных преимуществ и недостатков.

1.Поршневые Насосы

2. Шестеренные насосы

Шестеренные насосы относятся к типу роторныхгидромашин. Рабочими элементами (вытеснителями) являются две вращающиеся шестерни. Различают два основных типа таких насосов: Насосы внешнего зацепления Насосы внутреннего зацепления. Частным случаем шестеренных насосов с внутренним зацеплением являются героторные насосы. Шестеренные насосы широко распространены в гидросистемах с невысокими (до 20 МПа) давлениями. Они широко применяются в сельскохозяйственной, дорожной технике, мобильной гидравлике, системах смазки. Используются для обеспечения гидравлической энергией гидроприводов вспомогательных механизмов в сложных гидросистемах. Столь широкое распространение шестеренные насосы получили за простоту конструкции, компактность и малый вес. Платой за простоту конструкции стало довольно низкое значение КПД (не более 0,85), низкое рабочее давление, и небольшой ресурс (особенно на давлениях ≈20МПа). Шестеренные насосы могут работать на частотах вращения до 5000об/мин.

3. Пластинчатые насосы.

Пластинчатые гидронасосы это гидромашины в которых роль вытеснителя рабочей жидкости выполняют радиально расположенные пластины, которые совершают возвратно-поступательные движения при вращении ротора. В российской литературе пластины часто называют – шиберами, а насосы – шиберными.

Различают пластинчатые гидронасосы однократного действия и двойного действия. У насосов однократного действия за один оборот вала гидромашины процесс всасывания и нагнетания осуществляется один раз, в машинах двойного действия - два раза.

Пластинчатые насосы имеют низкий уровень шума и хорошую равномерность подачи. Также эти насосы имеют сравнительно большие рабочие объемы при небольших габаритах. Пластинчатые гидронасосы могут работать на давлениях до 21МПа при частотах вращения до 1500 об/мин.

3.1 Насос однократного действия

3.2 Насос двойного действия

Рекомендации по выбору насоса для гидросистемы.

Выбор типа и насоса нужно осуществлять исходя из условий работы гидросистемы, ее назначения и требований к параметрам потребного потока рабочей жидкости.

Основными параметрами при выборе типа насоса являются:

Уровень действующих давлений рабочей жидкости; Класс чистоты рабочей жидкости; Диапазон вязкостей рабочей жидкости; Экономическое обоснование применения. При выборе насоса для гидросистемы следует учитывать большое количество определяющих факторов. Основными критериями с которых необходимо начать выбор насоса являются необходимая подача Qи давлениеp. Также в начале процедуры подбора необходимо четкое представление о типе приводного двигателя. В зависимости от предназначения и базирования механизма приводимого в действие гидросистемой приводной двигатель может быть электрическим или двигателем внутреннего сгорания. При выборе мощности приводного двигателя следует определить необходимую для гидросистемы гидравлическую мощность, которую можно приблизительно определить по зависимости (1).

где Q – подача насоса [л/мин]

p – давление в гидросистеме [МПа]

ɳ - КПД насоса (шестеренного и пластинчатого ɳ=0,85, для роторно-поршневого ɳ=0,9)

После определения мощностивыбирается тип гидронасоса исходя из характеристик свойственных для каждого из типов насосов и рабочего давления. Необходимый рабочий объем гидронасоса определяется как:

и проверяем насос на совместимость с выбранным двигателем по мощности (см. выражение (1)).

При необходимости наличия регулируемой подачи насоса, помимо установки регулируемого насоса, можно применить насос постоянного рабочего объема при этом подачу регулировать оборотами приводного двигателя. Данный способ регулирования может быть осуществлен в ограниченных характеристиками двигателя пределах.

Для ступенчатой регулировки скорости гидродвигателя в гидросистеме можно применять два насоса илимногосекционные насосы, фактически представляющие собой несколько насосовконструктивно выполненных одним блоком. Для регулировки скорости в этом случае необходимо подключать или отключать секции насоса изменяя тем самым суммарную подачу насоса. Способы коммутации секций будут описаны в следующих статьях.

Причины отказа насосов.

При эксплуатации насоса следует обращать внимание на условия его работы. Наиболее часто неисправность насоса бывает вызвана:

Попаданием посторонних частиц (грязи) Масляным голоданием Работой на водно-масляной эмульсии Работой на воздушно-масляной смеси Работой с перегрузкой по давлению Превышением допустимых оборотов Превышение давления в корпусе Перегревом рабочей жидкости

vneshgidromash.ru