Химическая пассивация как оптимальное покрытие жаропрочной стали. Химическое пассивирование нержавеющих сталей


Пассивация (пассивирование) металлов: технология и методы

Несмотря на то, что нержавеющая сталь отличается высокой устойчивостью к коррозии, дополнительная защита, которую позволяет получить такая технологическая операция, как пассивация, для нее желательна. В отдельных случаях, когда большому риску развития коррозии подвержены даже изделия, изготовленные из нержавеющей стали, необходимость в выполнении такой процедуры не вызывает сомнений.

Примеры нержавеющих поверхностей, подвергнутых коррозии, и результаты проведенной пассивации

Чем обусловлена высокая коррозионная устойчивость нержавеющих сталей

Суть такого явления, как коррозия, состоит в том, что поверхность металла под воздействием негативных внешних факторов и окружающей среды начинает разрушаться. Что характерно, коррозия из-за постоянного окисления поражает металл слой за слоем, постепенно разрушая внутреннюю структуру стали. Во многих случаях локализовать пораженные участки внутренней структуры металла уже не имеет смысла, поэтому стальные изделия приходится заменять на новые.

Пассивирование (или пассивация) как технология, позволяющая обеспечить надежную защиту стали от коррозии, лежит в основе создания такого уникального металла, каким является нержавеющая сталь. В химическом составе преимущественного большинства сталей, относящихся к нержавеющей категории, могут содержаться различные элементы:

  • никель;
  • молибден;
  • кобальт;
  • ниобий;
  • марганец.

Однако основным легирующим элементом таких сталей, количество которого в их составе может варьироваться в пределах 12–20%, является хром. Добавление различных легирующих элементов в состав нержавеющих сталей позволяет придать им требуемые физико-химические характеристики, но именно хром отвечает за коррозионную устойчивость стального сплава.

Влияние хрома на свойства нержавеющей стали

Нержавеющие стальные сплавы, в составе которых содержится 12% хрома, проявляют высокую коррозионную устойчивость только при взаимодействии с окружающим воздухом. Если количество хрома в химическом составе нержавеющей стали увеличить до 17%, то изделия из нее смогут спокойно взаимодействовать с азотной кислотой, не утрачивая при этом своих эксплуатационных характеристик.

Чтобы сделать металл устойчивым к еще более агрессивным средам, к числу которых относятся соляная, серная и другие кислоты, в нем не только увеличивают количественное содержание хрома, но и добавляют в его состав такие элементы, как медь, молибден, никель и др. Иными словами, выполняют пассивирование металла, то есть увеличивают его пассивность к коррозионным процессам.

В процессе пассивации зоны сварочного шва образуется прочная пленка

Пассивация, при которой в химический состав нержавеющей стали добавляют соответствующие легирующие элементы, – это не единственное условие высокой коррозионной устойчивости металла. Чтобы защитные свойства нержавеющей стали оставались на высоком уровне, оксидная пленка на ее поверхности, состоящая преимущественно из оксида хрома, должна быть целой, иметь однородный химический состав и толщину.

Причины возникновения коррозии

Несмотря на то, что в химическом составе нержавеющей стали должны содержаться пассиваторы, значительно повышающие ее коррозионную устойчивость, ее поверхность и внутренняя структура могут подвергаться коррозии.

Основной причиной, по которой нержавеющая сталь начинает разрушаться, является недостаточное или неравномерное содержание в ее химическом составе хрома. Вызвать коррозию также может контакт с металлом, который отличается значительно меньшей устойчивостью к окислению. Часто подвергаются разрушению изделия из нержавейки, которые были соединены между собой по технологии сварки.

Коррозия труб полотенцесушителя, возникшая по причине недобросовестного исполнения сварочного шва производителем

Что характерно, даже если нержавеющая сталь отличается очень высоким качеством, после сварки она может покрыться слоем ржавчины. Чтобы избежать таких негативных явлений, сварные швы, при помощи которых выполнено соединение изделий из нержавейки, необходимо тщательно зачищать и полировать. Такая процедура позволяет удалить с поверхности сварного шва и самих изделий из нержавейки остатки менее устойчивого к коррозии металла, который был использован для выполнения сварочных работ.

Очень часто на поверхность нержавейки частички менее устойчивого к коррозии металла попадают и в тех случаях, когда его обработка выполняется в непосредственной близости от стальных изделий. Так, если рядом пилят, шлифуют или выполняют другие виды обработки обычного металла, то его частички, попав на нержавеющую сталь, обязательно станут источниками ее коррозии. На нержавейке они могут появиться и в том случае, если вы решите выполнить ее обработку инструментом, который до этого взаимодействовал с обычным металлом. Именно поэтому инструменты, особенно относящиеся к режущему типу, желательно использовать для выполнения обработки только однотипных материалов.

Коррозия вытяжки из нержавеющей стали, произошедшая вследствие чистки изделия железной щеткой

Однако, конечно, наиболее критичным местом на поверхности изделий из нержавейки с точки зрения возникновения и развития коррозионных процессов является сварной шов. Именно поэтому важны не только тщательная зачистка, шлифовка и полировка места сформированного сварного соединения, но и его пассивация, для чего используются различные кислотные растворы.

Пассивация (химическое пассивирование), как правило, выполняется с применением раствора, основу которого составляет азотная кислота. Обработка таким раствором тщательно подготовленного участка изделия из нержавеющей стали позволяет сформировать оксидную пленку, отличающуюся высокой пассивностью к коррозионным процессам.

Обработка сварных соединений на нержавейке, после которой и выполняется химическое пассивирование, осуществляется при помощи металлической щетки и шлифовальной машинки. При этом, как уже говорилось выше, важно следить за тем, чтобы используемые при пассивации инструменты не реагировали до этого с обычным металлом, частички которого могут стать источником развития коррозионных процессов.

Чтобы проверить, не присутствует ли на поверхности нержавейки включений обычного металла, можно воспользоваться двумя способами.

Обработка водным раствором азотной кислоты и ферроцианида калия

Места на поверхности изделия, на которых присутствуют включения свободного железа, после выполнения такой обработки сразу окрасятся в синий цвет. Следует отметить, что такой способ проверки используют преимущественно в условиях производственных лабораторий.

Смачивание обычной водой

Изделие выдерживают в таком состоянии на протяжении нескольких часов. Если на нержавейке присутствуют включения свободного железа, то участки с такими включениями начнут покрываться ржавчиной.

Виды коррозии

Несмотря на то, что коррозионный процесс приводит практически к одинаковым последствиям, причины, ее вызывающие, могут быть различными. Наиболее частой причиной коррозии изделий из нержавейки, используемых в бытовых условиях, является применение для их чистки средств, содержащих в своем химическом составе значительное количество хлора. Такие средства активно способствуют разрушению оксидной пленки на металле, что приводит к развитию коррозионного процесса на всей его поверхности (т.е. общей коррозии).

Щелевая коррозия нержавейки возникает в тех случаях, когда детали из такого металла длительное время соприкасаются между собой. Коррозия данного типа, что характерно, часто начинает развиваться в местах крепежа. Различают также точечную коррозию, которую часто называют питтинговой. Она возникает в тех случаях, когда оксидная пленка на нержавейке повреждена механическим способом.

Коррозия нержавейки под водой проявляется в большей степени в местах соединения деталей

Если нержавейка контактирует с разнородным для нее металлом в токопроводящей среде, начинает развиваться коррозия, которая получила название гальванической. Этому процессу наиболее подвержены изделия из нержавеющих сталей, эксплуатируемые в морской воде и при этом контактирующие с металлами, отличающимися меньшей степенью легирования.

Межкристаллитная коррозия – очень распространенное явление, возникающее в тех случаях, когда изделие из нержавеющей стали было подвергнуто значительному перегреву. При сильном нагреве (свыше 500°) на границах кристаллической решетки нержавеющей стали формируются карбиды хрома и железа, которые и становятся причиной снижения прочности металла.

Коррозия нержавеющей стали может возникать из-за применения хлоросодержащих чистящих составов

Различают также эрозивную коррозию, которая возникает, если нержавейка постоянно находится под воздействием абразивной среды. Постоянно воздействуя на поверхность металла, частички такой среды разрушают защитную оксидную пленку, которая не успевает восстанавливаться.

Пассивирование нержавейки

Обеспечить такие условия эксплуатации изделий из нержавеющей стали, чтобы они не контактировали с другими металлами и агрессивными средами, а также не подвергались механическим повреждениям, практически невозможно. Именно поэтому необходима упомянутая выше технологическая операция – пассивирование. Дополнительную степень защиты, которую обеспечивает пассивирование (пассивация), часто стараются обеспечить:

  • трубным конструкциям из нержавейки;
  • крепежным элементам;
  • корпусным элементам конструкций и механизмов, эксплуатируемых в морской воде.

Между тем пассивация не всегда целесообразна даже для изделий подобного назначения.

Пассивирование сварочного шва нержавейки

Пассивирование, хотя и является методом обработки нержавеющей стали, способным обеспечить ее дополнительной защитой от коррозии, во многих случаях является нецелесообразным и даже может ухудшить защитные свойства стали. Поэтому прежде чем выполнять пассивацию, следует проанализировать условия, в которых будет эксплуатироваться изделие, чтобы однозначно решить, нужна ли его поверхности дополнительная защита.

Пассивация, если решение о ее выполнении принято, должна обеспечивать получение цельного и равномерного по толщине защитного слоя, что достигается строгим соблюдением технологического процесса. Как правило, пассивацию выполняют в тех случаях, когда дополнительная защита необходима внешней, а не внутренней поверхности изделия из нержавеющей стали.

Суть такого процесса, как пассивация, заключается в том, что поверхность изделия из нержавеющей стали обрабатывают специальным раствором, основу которого составляет азотная, а в некоторых случаях и лимонная кислота. Иногда такой раствор могут дополнять незначительным количеством (2-6%) бихромата натрия. Химический состав такого раствора, а также такие параметры, как температура нагрева и время выдержки, зависят от марки обрабатываемой нержавеющей стали.

Оценка статьи:

Загрузка...

Поделиться с друзьями:

met-all.org

Пассивация нержавеющей стали – когда и от чего защищаем сплав? + видео

Большинство уверено, что заниматься пассивацией нержавеющей стали – пустая трата времени, ведь поверхность изделий уже инактивирована. Однако в некоторых случаях это крайне необходимо, попробуем переубедить скептиков.

1 Почему нержавейка устойчива к коррозии?

Коррозия стали характеризуется разрушением ее поверхностного слоя под воздействием агрессивных сред, а иногда и при контакте с привычной нам атмосферой. Окисление происходит с каждым вновь открывающимся слоем, пробираясь вглубь. Постепенно деталь разрушается полностью. Чтобы не пытаться спасать такие изделия при появлении очагов коррозии, а то и вовсе не производить замену деталей, был разработан способ защиты – пассивирование. Именно так и появилась всем известная нержавейка.

Коррозия стали

Рекомендуем ознакомиться

Сталь содержит в себе множество добавок. Кобальт, никель, ниобий, титан, молибден, марганец – все они помогают добиться различных механических и физических свойств сплава. В составе в существенном количестве присутствует и хром (Cr), именно от него зависит коррозионная стойкость стали.

Хром – одна из главных легирующих добавок, содержание его варьируется от 12 до 20 %. Как раз эта цифра и определяет степень пассивности сплава.

Нержавейка с 12 % хрома будет устойчива только к атмосферным окислителям (в первую очередь кислороду воздуха). При 17 % сплав выдержит значительно более агрессивные среды, например, азотную кислоту. Если требуется еще более устойчивый материал, тогда увеличивают содержание никеля, молибдена, меди и прочих добавок, еще в некоторой степени усиливающих коррозионную пассивность. Высокоагрессивными средами считаются соляная, серная и прочие схожие по свойствам кислоты.

Листы нержавейки

Но содержание легирующих элементов в нужной пропорции не единственное требование к стали, чтобы она могла называться нержавеющей. Поверхность детали должна быть без повреждений, у внешнего слоя желателен однородный химический состав. Ведь устойчивость к коррозии определяется наличием оксидной пленки, в основном CrO. Ее прерывистость или различная толщина из-за неоднородности химического состава сплава сводит на нет защитные качества.

2 Почему коррозия все-таки одолевает нержавеющую сталь?

Несмотря на изложенную картину, нержавейка подвергается коррозии. Ржавчина на ее поверхности приводит в недоумение людей, кто не совсем знаком с химической природой этого явления. Многие начинают сомневаться, нержавейка ли это вовсе? Но даже вполне настоящая пассивированная сталь может подвергаться различного рода коррозии. И причин этому немало.

Первой и вполне очевидной будет недостаток хрома или его неравномерность в структуре сплава. Также контакты с менее устойчивыми разновидностями стали (углеродистой, например) вызовут процесс ржавления. Часто детали подвергаются сварке, и даже если изначально нержавейка была очень высокого качества, после такой обработки она начинает корродировать. Обычно это легко предупредить зачисткой и полировкой поверхности шва, чтобы там не осталось даже следовых количеств сварочных материалов, например, частичек железа (Fe).

Нержавейка высокого качества

Занести нежелательные количества железа в структуру нержавейки можно и другими способами. Если рядом с ней пилят, режут, шлифуют обычную сталь, то пыль с Fe обязательно достигнет ее и запустит процесс коррозии. Но даже все предусмотрев и изолировав ваши детали, вы можете забыть, что когда-то использовали для обычной стали определенный шлифовальный круг и решите им обработать нержавеющую. Это обернется коррозией. Да и любой другой инструмент должен применяться на однотипных материалах, например, только на нержавейке.

После сварки часто нужна очистка шва, делают это металлической щеткой, лучше завести такое приспособление для низколегированных сплавов и нержавейки отдельно. К слову, любые деструктивные поверхностные обработки существенно приближают появление коррозии, так что частить с этим не рекомендуется. Если все-таки пришлось заниматься механической очисткой, то проверьте, осталась ли на детали железная пыль и не появились ли повреждения оксидной пленки. На производстве при наличии лаборатории это можно сделать за пару минут с помощью химреактивов – воды, азотной кислоты и ферроцианида калия. Места с включениями свободного железа станут синие. В другом случае потребуется несколько часов и простая вода из крана. Нужно всего лишь смочить поверхность и дать постоять, проблемные зоны начнут ржаветь.

Очистка сварочного шва нержавеющей стали

Сварочный шов действительно слабое место у нержавеющей стали. Поэтому его обязательно зачищают, отмывают от остатков рабочих материалов (флюса, брызг и т.д.), полируют и пассивируют препаратами на основе кислот. Такие реактивы можно найти в продаже. Обычно основу их составляет азотная кислота, в определенной концентрации она приводит к образованию химически пассивной оксидной пленки.

3 Многоликая коррозия

Количество причин, по которым нержавеющая сталь начинает корродировать, кажется небольшим. Но на химическом уровне происходят куда более разнообразные процессы. Коррозия, оказывается, бывает разной природы. Рассмотрев основные виды, мы будем предупреждены обо всех слабых местах этого сплава. Самый частый и неожиданный способ испортить нержавейку – чистящие средства. Многие хозяйки не предполагают, что хлорсодержащая бытовая химия очень быстро разрушает защитную пленку на посуде из этого сплава. Так что следует иметь на вооружении специальное чистящее средство. Такая коррозия называется общей, потому что происходит по всей поверхности.

Посуда из нержавеющего сплава

Щелевой тип поражения сплава знаком тем, кто работает с конструкциями из этого материала. Если детали плотно соприкасаются, рано или поздно между ними начинается ржавление. Часто поражаются крепежи. Точечная или питтинговая коррозия возникает при механическом повреждении поверхности детали. Причина очевидна, сбитая пленка открывает доступ к незащищенной стали. Гальванические процессы вызывают одноименную коррозию. Для их возникновения нужна токопроводящая среда и разнородные металлы, одним из участников и будет нержавейка. Это очень частая причина порчи деталей в морской воде. Поэтому на конструкторов всегда ложится удвоенная ответственность, нужно исключить контакт нержавеющей стали с другими низколегированными сплавами.

Коррозия на поверхности детали

И опять сварка. Большая температура этого процесса запускает межкристаллитную коррозию. Это очень коварная разновидность ржавления, начинается она еще на уровне кристаллической решетки, двигаясь вдоль границ кристаллов. Она может быть и не так заметна со стороны, но внутри точит изделие, со временем приводя к потере прочности. Напоследок скажем об эрозивной коррозии. Это неизбежно происходит в тех случаях, когда деталь из нержавеющей стали находится под воздействием непрерывного потока абразивного раствора. Жидкость просто уносит частички пленки, а новая не успевает образовываться.

4 Зачем, когда и как пассивировать нержавейку?

Как видно, нержавеющая сталь идеально будет служить при отсутствии других материалов и без механических воздействий. Но это возможно разве только в музее. Конструкции всегда находятся в работе, а часто и в крайне агрессивной среде. Вот тогда даже нержавеющей стали нужно дополнительное пассивирование. Например, очень часто такую обработку просят сделать для труб, крепежей, обшивки погружных морских конструкций. Но всегда ли уместно это делать?

Пассивирование нержавеющей стали

Для успокоения совести, конечно, можно производить такие операции всегда, как только возникает подозрение на неспособность нержавейки противостоять будущим воздействиям рабочих сред. Но специалисты убеждены, что такая обработка будет лишней во многих случаях. Во-первых, нужно проанализировать возможные химические процессы, иногда вашим конструкциям ничего не грозит, а дополнительная пассивация только ухудшит состояние сплава.

Во-вторых, нужно иметь возможность контролировать процесс пассивирования нержавеющей стали, чтобы получить равномерное и цельное покрытие. Например, это очень проблематично в случае труб, ведь проверить состояние поверхности внутри почти невозможно. Может оказаться, что где-то участок был обработан недостаточно, и коррозия все равно произойдет. Поэтому пассивирование уместно в тех случаях, когда защитить нужно внешнюю сторону детали.

Пассивация труб

Сам процесс имеет, конечно, химическую природу. Состав обрабатывающего средства зависит от марки нержавеющей стали, вернее, ориентирован на процентное содержание хрома. Сплавы, где этого элемента 16 % и более, пассивируются раствором азотной кислоты (20–50 %). Выдерживать следует 30–60 минут при 40 °С. Не подходит такое пассивирование для сталей марки AISI 303. Если в нержавейке хрома менее 16 %, то условия и реагенты те же, только время выдержки должно быть не менее 60 минут. Такой режим не подходит для  стали AISI 416. Для перечисленных исключений (AISI 303 и 416) и марки 430F лучше использовать указанную азотную кислоту и раствор бихромата натрия (2–6 %), температура при этом не выше 50 °С, а время выдержки 25–40 минут.

tutmet.ru

Химическое пассивирование и его предназначение. Химическое пассивирование нержавеющих сталей

Сталь химическое пассивирование - Справочник химика 21

    Основной объем производства труб приходится на горячекатаные трубы и сварные. Химическая обработка горячекатаных труб из нержавеющих сталей включает травление с целью удаления окалины, травление для выявления дефектов, пассивирование труб, обезжиривание. [c.75]

    ХИМИЧЕСКОЕ ПАССИВИРОВАНИЕ СТАЛИ 8 ВОДЕ ВЫСОКОЙ ЧИСТОТЫ [c.122]

    Большое значение для коррозионных процессов имеет способность металла образовывать на поверхности прочные оксидные пленки. Так, алюминий окисляется легче железа, но он более стоек к коррозии, так как окисляясь кислородом воздуха, покрывается плотной пленкой оксида. На этом явлении основана пассивация металлов, заключающаяся в обработке их поверхности окислителями, в результате чего на поверхности металла образуется чрезвычайно тонкая и плотная пленка, препятствующая оррозии. Примером может служить пассивация железа концентрированной азотной кислотой, открытая еще М. В. Ломоносовым, или. воронение стали в щелочном растворе нитрата и нитрита натрия. Пассивированием объясняется также химическая стойкость нержавеющих сплавов и металлов, на поверхности которых под действием кислорода воздуха образуется защитный слой оксидов, [c.148]

    Однако нередко наблюдаются случаи, когда вновь образовавшееся химическое соединение образует на твердой поверхности сорбента столь прочную пленку, что через нее дальнейший доступ молекул газа вглубь сорбента совершенно прекращается, и таким образом хемосорбция приобретает кажущийся адсорбционный характер. В качестве примера можно привести процесс пассивирования стали путем азотирования ее поверхности, сопровождающегося образованием на этой поверхности тонкой и прочной пленки из нитрида железа. [c.74]

    Дальнейшее повышение химической стойкости хромоникелевых сталей в ряде агрессивных сред достигается введением молибдена. Характерной особенностью молибдена является его способность к пассивированию как в окислительных, так и в [c.119]

    Для химического пассивирования малоуглеродистой стали рекомендуется 9—10-процентный раствор бихромата калия. При комнатной температуре обработку ведут в течение 1 ч, а при 60° С — в течение 20 мин. Лучшие результаты дает последовательная обработка изделий сначала в течение 10 мин в 20-процентном растворе хромового ангидрида при комнатной температуре и затем после промывки в 10-процентном растворе бихромата калия при 60° С. [c.15]

    Пассивирование поверхности стальных изделий с целью кратковременной защиты их от воздействия окружающей среды проводят химической или электрохимической обработкой в кислых или щелочных растворах. Эффективность такого метода защиты от коррозии определяется условиями пассивирования, составом металла, а также состоянием его поверхности. Наибольшее повышение стойкости против коррозии достигает

pellete.ru

Пассивация нержавеющей стали | Inoxgrup

ПОЧЕМУ ПАССИВАЦИЯ

Процесс пассивации возвращает нержавеющую сталь или другие металлы обратно к своим первоначальным спецификациям, удаляя ненужные вкрапления и масла с поверхности. При механической обработки детали из нержавеющих сталей, различные частицы могут проникать в поверхность основного металла, ослабляя его устойчивость к коррозии и делая деталь более восприимчивой к факторам окружающей среды. Искры, грязь и другие частицы и остатки, такие как свободное железо, смазка и обрабатывающие масла, влияют на прочность естественной поверхности и могут проникать в поверхность в процессе обработки. Они остаются невидимыми для человеческого глаза и часто являются причиной коррозии.  «Пассивный» определяется — как менее подверженный влиянию факторов окружающей среды. Процесс улучшает и очищает поверхность детали. Восстановленная поверхность действует как защитное покрытие для таких факторов окружающей среды, как воздух, вода и другие экстремальные условия. Важно отметить, что пассивация не меняет внешний вид основного металла.

Преимущества пассивации

  • Улучшенное сопротивление коррозии
  • Равномерное сглаживание
  • Удаление заусенцев
  • чистота
  • Долгий срок службы изделий
  • Пассивация остается важным этапом в максимизации коррозионной стойкости деталей и компонентов из нержавеющей стали.Процесспозволяет существенно увеличить срок эксплуатации деталей.Неправильно выполненная пассивация может фактически вызвать коррозию.
  • Пассивация представляет собой метод позволяющий максимизировать присущую коррозионную стойкость нержавеющего сплава, из которого изготовлена заготовка
  • Нет универсального способа относительно точной механики работы пассивации.Но несомненно, что на поверхности пассивной нержавеющей стали присутствует защитная оксидная пленка. Эта невидимая пленка считается чрезвычайно тонкой, толщиной менее 0,0000001 дюйма, что составляет около 1/100 000 толщины человеческого волоса!
  • На практике загрязняющие вещества, такие как грязь или частицы железа из режущих инструментов, могут быть перенесены на поверхность деталей из нержавеющей стали во время обработки.Если их не удалить, эти посторонние частицы могут снизить эффективность исходной защитной пленки.
  • Во время процесса обработки микроскопическое количество свободного железа может быть стерто с режущего инструмента и перенесено на поверхность заготовки из нержавеющей стали.При определенных условиях на этих частицах может появиться тонкое покрытие ржавчины. Это фактически коррозия стали из инструмента, а не основного металла. Иногда частицы стали из режущего инструмента или продуктов его коррозии может вызвать повреждение самой детали.
  • Точно так же мелкие частицы железосодержащей грязи могут прилипать к поверхности детали.Несмотря на то, что металл может выглядеть блестящим в условиях механической обработки, невидимые частицы свободного железа могут привести к ржавлению на поверхности после воздействия воздуха.
  • Проблемой могут быть и открытые сульфиды.Они исходят от добавления серы к нержавеющим сталям для улучшения обрабатываемости.  Если деталь не будет правильно пассивирована, сульфиды могут выступать в качестве центров инициации для коррозии на поверхности продукта.
  • В всех случаях требуется пассивация, чтобы максимизировать естественную коррозионную стойкость нержавеющей стали.Онапоможет удалить поверхностное загрязнение, такие как частицы железосодержащей цельной грязи и частиц железа из режущих инструментов, которые могут образовывать ржавчину или действовать как места инициации для коррозии. Пассивация также может удалять сульфиды, открытые на поверхности нержавеющих сплавов без механической обработки.
  • Двухступенчатая процедура может обеспечить наилучшую коррозионную стойкость: 1. чистка, (обезжиривание, травление), но в некоторых случаях не выполняемая процедура 2. кислотная ванна или пассивирующая обработка.

·         Первая очистка

  • Смазка, охлаждающая жидкость или другие загрязнения должны быть тщательно удалены от поверхности, чтобы получить наилучшую коррозионную стойкость.. Коммерческий обезжириватель или моющее средство можно использовать для очистки механических масел или охлаждающих жидкостей. Посторонние вещества, такие как термические оксиды, возможно, должны быть удалены путем измельчения или такими методами, как кислотное травление.
  • Иногда оператор может пропустить основную очистку, предполагая ошибочно, что просто погружая смазку в кислотную ванну, одновременно чистка и пассивирование будут происходить одновременно.Этого не происходит. Вместо этого загрязняющая жир реагирует с кислотой с образованием пузырьков газа. Эти пузырьки собираются на поверхности заготовки и мешают пассивации.
  • Хуже того, загрязнение пассивирующего раствора, иногда высоким содержанием хлоридов, может вызвать «вспышку» коррозии. Вместо того, чтобы получить желаемую оксидную пленку с блестящей, чистой, коррозионностойкой поверхностью, вспышка вызывает сильно протравленную или затемненную поверхность — ухудшает саму поверхности, что пассивация предназначена для оптимизации.
  • Части, изготовленные из мартенситных нержавеющих сталей [которые являются магнитными, с умеренной коррозионной стойкостью и с пределом текучести до (1930 МПа)], на квадратный дюйм затвердевают при высокой температуре и затем отжигаются для обеспечения требуемой твердости и механических свойств.Осаждающие упрочняемые сплавы (которые обеспечивают лучшее сочетание прочности и коррозионной стойкости, чем мартенситные сорта) могут обрабатываться в растворе, частично обрабатываться, выдерживаться при более низких температурах, а затем заканчиваться механической обработкой.
  • В таких случаях детали необходимо тщательно очистить обезжиривающим или очищающим средством для удаления следов режущей жидкости перед термообработкой.В противном случае режущая жидкость, остающаяся на деталях, вызовет чрезмерное окисление. Это условие может привести к тому, что нижние слои остаются  с крапчатой да же после удаления окалины кислотными или абразивными методами. Разрезающие жидкости могут оставаться на деталях и затвердевать в вакуумной печи или защитной атмосфере, может произойти науглероживание поверхности, что приведет к потере коррозионной стойкости.
  • Травление
  • Травление — это удаление смежного низко хромистого слоя металла с поверхности нержавеющей стали химическими средствами.
  • Там, где сталь нагревается путем сварки, термической обработки или других средств, до такой степени, что можно увидеть цветной слой оксида, на поверхности стали под оксидным слоем имеется обедненный хромом слой.Более низкое содержание хрома дает более низкую коррозионную стойкость. Чтобы восстановить наилучшую коррозионную стойкость, необходимо удалить поврежденный металлический слой, обнажив полностью легированную поверхность из нержавеющей стали. Механическое удаление может привести к образованию абразивных или других частиц (препятствующих коррозии) или может быть непрактичным, поэтому обычно используются химические средства.
  • Процедуры, включающие травильные растворы азотной (HNO 3) и фтористоводородной (HF) кислот, удаляют масштаб и нижний слой, обедненный хромом, и восстанавливают коррозионную стойкость. Растворы травления также удаляют загрязняющие вещества, такие как частицы железа и железа. Растворы травления, отличные от смесей азотной и фтористоводородной кислот, существуют и могут использоваться для специализированных применений.
  • Травильные пасты, где раствор смешивают с инертным носителем, обычно используются для обработки выбранных областей, таких как сварные швы.
  • Травление включает удаление металла и изменение в визуальной яркости металла.
  • Электрополирование — полезная альтернатива травлению.Металлическое удаление достигается, но обычно приводит к яркой, гладкой и более стойкой к коррозии поверхности.

·         Пассивные ванны

  • После тщательной очистки деталь из нержавеющей стали готова для погружения в пассивирующую кислотную ванну. Можно использовать любой из трех методов — пассивацию азотной кислоты, азотную кислоту с пассивацией дихромата натрия и пассивацию лимонной кислоты. Какой метод к использованию зависит от класса нержавеющей стали и заданных параметров.
  • Более устойчивые хромоникелевые марки могут пассивироваться в ванне с азотной кислотой (20% по объему) . Менее стойкие марки нержавеющей стали могут быть пассивированы путем добавления дихромата натрия в ванну с азотной кислотой, чтобы сделать раствор более окисленным и способным образовывать пассивную пленку на поверхности. Другой вариант, используемый вместо азотной кислоты плюс дихромат натрия, заключается в увеличении концентрации азотной кислоты до 50% по объему. Добавление дихромата натрия, и более высокая концентрация азотной кислоты снижают вероятность нежелательной коррозии.

Исторически сложилось, что азотная кислота использовалась для пассивации нержавеющей стали, но в последнее время распространение получило более безопасное и эффективное средство с использованием лимонной кислоты. В отличие от азотной кислоты, составы для пассивирования лимонной кислотой имеет много преимуществ:

  • Лимонная кислота НЕ удаляет другие элементы в сплаве, эффективно ограничивая глубину конечного слоя оксида хрома
  • Лимонная кислота НЕ вводит тяжелые металлы (опасные отходы) в ванну
  • Лимонная кислота удаляет только железо
  • Лимонная кислота намного безопаснее и безвредна для окружающей среды

По материалам зарубежных изданий TERRY A. DEBOLD AND JAMES W. MARTIN

inoxgrup.ru

Сталь химическое пассивирование - Справочник химика 21

    Основной объем производства труб приходится на горячекатаные трубы и сварные. Химическая обработка горячекатаных труб из нержавеющих сталей включает травление с целью удаления окалины, травление для выявления дефектов, пассивирование труб, обезжиривание. [c.75]

    ХИМИЧЕСКОЕ ПАССИВИРОВАНИЕ СТАЛИ 8 ВОДЕ ВЫСОКОЙ ЧИСТОТЫ [c.122]

    Большое значение для коррозионных процессов имеет способность металла образовывать на поверхности прочные оксидные пленки. Так, алюминий окисляется легче железа, но он более стоек к коррозии, так как окисляясь кислородом воздуха, покрывается плотной пленкой оксида. На этом явлении основана пассивация металлов, заключающаяся в обработке их поверхности окислителями, в результате чего на поверхности металла образуется чрезвычайно тонкая и плотная пленка, препятствующая оррозии. Примером может служить пассивация железа концентрированной азотной кислотой, открытая еще М. В. Ломоносовым, или. воронение стали в щелочном растворе нитрата и нитрита натрия. Пассивированием объясняется также химическая стойкость нержавеющих сплавов и металлов, на поверхности которых под действием кислорода воздуха образуется защитный слой оксидов, [c.148]

    Однако нередко наблюдаются случаи, когда вновь образовавшееся химическое соединение образует на твердой поверхности сорбента столь прочную пленку, что через нее дальнейший доступ молекул газа вглубь сорбента совершенно прекращается, и таким образом хемосорбция приобретает кажущийся адсорбционный характер. В качестве примера можно привести процесс пассивирования стали путем азотирования ее поверхности, сопровождающегося образованием на этой поверхности тонкой и прочной пленки из нитрида железа. [c.74]

    Дальнейшее повышение химической стойкости хромоникелевых сталей в ряде агрессивных сред достигается введением молибдена. Характерной особенностью молибдена является его способность к пассивированию как в окислительных, так и в [c.119]

    Для химического пассивирования малоуглеродистой стали рекомендуется 9—10-процентный раствор бихромата калия. При комнатной температуре обработку ведут в течение 1 ч, а при 60° С — в течение 20 мин. Лучшие результаты дает последовательная обработка изделий сначала в течение 10 мин в 20-процентном растворе хромового ангидрида при комнатной температуре и затем после промывки в 10-процентном растворе бихромата калия при 60° С. [c.15]

    Пассивирование поверхности стальных изделий с целью кратковременной защиты их от воздействия окружающей среды проводят химической или электрохимической обработкой в кислых или щелочных растворах. Эффективность такого метода защиты от коррозии определяется условиями пассивирования, составом металла, а также состоянием его поверхности. Наибольшее повышение стойкости против коррозии достигается при пассивировании легированных сталей, причем длительность защитного действия пассивных пленок значительно больше, чем при обработке углеродистых сталей. [c.14]

    Кислород в качестве агента для химического пассивирования стали имеет ряд преимуществ перед пероксидом водорода а именно эффективность действия пероксида водорода значительно ниже из-за быстрого термического разложения его при температуре 100—120 °С, в присутствии пероксида водорода значительно интенсивнее корродируют стеллитовые облицовки внутренних поверхностей промышленного оборудования, применение кислорода более экономично. [c.125]

    При подготовке металла к окраске могут применяться многие способы очистки механический, химический, электрохимический, с применением ультразвука и др. Наряду с этим хорошей подготовкой под окраску стали является фосфатирование, для алюминия — оксидирование, для медных и покрытых медью изделий — пассивирование в растворах — пассиваторах. [c.264]

    Основные виды хромовых покрытий молочное, блестящее, матовое и черное. Покрытия характеризуются высокой химической стойкостью, термостойкостью, склонностью к пассивированию на воздухе, устойчивостью в условиях тропического климата, способностью к растрескиванию в виде сетки и неравномерностью распределения по поверхности. Они неустойчивы к воздействию атмосферы, загрязнений галоидоводородными соединениями. Хромовые покрытия рекомендуется применять для защиты от коррозии деталей из стали, меди и ее сплавов, для повышения поверхностной твердости и износоустойчивости деталей, а также в декоративных целях. [c.91]

    Кривая / соответствует режиму растворения железо (II) — активное . Процесс начинается при потенциале около —350 мВ, по достижении этого потенциала кривая резко поднимается вверх. Железо переходит в раствор в виде Ре , Кривая 3 характеризует режим растворения железо (И) — частично пассивированное , Поскольку проба пассивирована, то для ее растворения требуется значительно больший потенциал, а именно 500 мВ, Железо и в этом случае переходит в раствор в виде Ре , Некоторые химически стойкие сорта стали пассивируются в такой сильной степени, что для их растворения требуются очень высокие потенциалы (кривая 5). Железо по мере его растворения окисляется до железа (П1)—так называемый процесс железо (П1) — активное растворение . Более сложный процесс растворения описывает кривая 2. При низких значениях потенциала железо переходит в раствор в виде железа (П). При увеличении потенциала происходит пассивация поверхности пробы, плотность тока уменьшается и только увеличение потенциала обеспечивает режи.м растворения железо (П) — частично пассивированное . [c.270]

    Никелевые покрытия. Химическая устойчивость никеля в различных средах обусловлена сильно выраженной способностью его к пассивированию. Никелевые покрытия защищают стальные изделия от коррозии только механически при отсутствии в них пор. Эти покрытия используют для защиты от коррозии деталей из стали и цветных металлов (медь и ее сплавы), декоративной отделки поверхности, а также для повышения износостойкости трущихся поверхностей. Никелевые покрытия нашли широкое применение в машиностроении, приборостроении, радиотехнической и автомобильной промышленности. [c.88]

    Скорость растворения сплавов зависит главным образом от их состава, электрохимической активности и электрохимических эквивалентов компонентов, составляющих сплав, а также от физико-химических параметров электролита. При увеличении содержания в сплаве хрома затрудняется нарущение его пассивного состояния при воздействии галоидных анионов [193]. Вследствие различия электрохимических эквивалентов компонентов сплава, их потенциалов растворения и способности к пассивированию во многих случаях при ЭХО происходит увеличение в поверхностном слое содержания более электроположительных составляющих (например, никеля, меди, молибдена). При этом в анодной поляризационной характеристике сплава может наблюдаться несколько участков, соответствующих пассивации его различных компонентов [178]. Это обусловливает необходимость обеспечения приблизительно одинаковой скорости растворения всех основных компонентов сплава при подборе электролита. Определенное влияние на процесс анодного растворения кроме химического состава сплава оказывает и его структура. Связь производительности электрохимической обработки сталей с их микроструктурой показана в работе [127]. При анодном растворении жаропрочных сплавов на никелевой основе отмечалось преимущественное растворение (растравливание) границ зерен вследствие их относительно более высокой активности. В зависимости от природы фаз, составляющих данный сплав, существенно различаются параметры возникающих на них пленок [117]. [c.34]

    Химическое пассивирование металлов как метод предупреждения кислородной коррозии в воде высокой чистоты, теоретически обоснованный и разработанный Я. М. Колотыркиным, Т. X. Маргуловой, Г. М. Флорианович и О. И. Мартыновой [32, 47, 66], представляет практический интерес для защиты оборудования из стали и алюминия на химических производствах. Этот метод борьбы с коррозией применяется на многих объектах промышленности, использующих в качестве рабочей среды воду высокой чистоты [67]. Метод позволяет снижать концентрацию гидроксидов железа в теплоносителе с 20 до 4— 7 М кг/кг и ликвидировать коррозию как при низких, так и при высоких температурах. [c.122]

    Наконец, в процессах хемосорбции возможны, как это установил Н. А. Шилов, случаи образования так называемых поверхностных соединений, когда между поверхностными атомами адсорбента и атомами адсорбтива устанавливается химическая связь однако в результате ее не образуется новой фазы и нового химического соединения, которое можно было бы выделить особо, так как поверхностные атомы адсорбента продолжают сохранять связь и с остальными глубже лежащими его атомами. Такие поверхностные соединения в виде своеобразных окислов, по-видимому, образуются на границе соприкосновения угля и стали с кислородом воздуха, обусловливая в последнем случае пассивирование металла. Вопрос этот, еще мало разработанный, имеет большое будущее как в теоретическом, так и особенно в практическом отношении. [c.74]

    Стали типа 18-8 устойчивы в азотной кислоте до 60%-ной концентрации при температурах кипения. Кроме растворов азотной кислоты, эти стали устойчивы в химически чистой фосфорной кислоте до 15%-ной концентрации, 1в большинстве органических соединений, не содержащих ионов хлора в сернокислых и других солях. Коррозионная стойкость хромо никелевых сталей может быть повышена путем легирования их молибденом, медью, кремнием и другими элементами. При легировании молибденом склонность сталей к пассивированию увеличивается (снижается ток пассивации и ток в пассивном состоянии), повышается устойчивость пассивного состояния. Стали типа 18-12, легированные молибденом, устойчивы в средах, содержащих хлор-ионы (при невысоких температурах), в органических кислотах (уксусной, муравьиной), в средах целлюлозно-будмажной промышленности и др. Л. И. Посысаевой, А. А. Бабаковым и В. А. Петровской [86, с.623] было показано, что введение 2,7% Мо в стали, содержащие 20, 24, 28% N1 и 18, 21 и 24% Сг повышает их стойкость в растворах фосфорной кислоты и в экстракционной фосфорной кислоте (Р2О5—32%, Р-—2%, 50Г—1,6%) при 68—70°С. [c.207]

    Защита от коррозии имеет исключительно важное значение для черных металлов—железа, чугуна и стали, так как эти металлы имеют наибольшее распространение в технике и быту, но в силу своих физико-химических свойств наиболее подвержены действию коррозии. Ряд цветных металлов и сплавов — алюминий, магний, медь, бронза, латунь и другие также подвергаются коррозии, но в значительно меньшей мере, чем черные металлы, и тоже в некоторых случаях подвергаются защитным покрытиям более стойкими металлами, бесцветными или цветными лаками, а также оксидированию и пассивированию. [c.50]

    Борьба с коррозией является народнохозяйственной задачей, поэтому исследования теории коррозии и проведение мероприятий по защите металлов от разрушения имеют первостепенное значение. Защита металлов от коррозии производится путем нанесения металлических покрытий из более стойких в данной среде металлов, нанесения лаков, красок, пластмасс и т. д. Среди различных методов защиты все большее значение приобретает пассивирование металлов. Некоторые металлы (Ре, N1, Сг, А1 и др.) в определенных условиях (состава и концентрации среды, Г, р) переходят в состояние высокой химической устойчивости, тогда как в исходных условиях ведут себя, как химически неустойчивые. Так, если железо погрузить в раствор разбавленной НМОз, то наблюдается интенсивное растворение металла. Однако при достижении некоторого предельного значения концентрации кислоты растворение металла прекращается и наблюдается переход его в пассивное состояние. При этом потенциал железа становится более положительным. Железо после пребывания в концентрированной азотной кислоте очень медленно растворяется при погружении его в разбавленную кислоту. Необходимые условия пассивирования зависят от состава и структуры металла. Небольшие добавки к железу никеля, хрома, ванадия способствуют его переходу в пассивное состояние на воздухе. Это свойство лежит в основе получения нержавеющих сталей. Пассив- ное состояние вызывают окислители и окислительные процессы. [c.270]

    В настоящее время переход металла в пассивное состояние чаще всего объясняют образованием на его поверхности хемосорбнрованного слоя атомов кислорода, т. е. химически соединенного с поверхностными атомами металла. При этом атомы кислорода могут покрывать как всю поверхность металла, так и часть ее. При пассивации потенциал металла сильно облагораживается, т. е. делается более положительным. Пассивированием объясняют коррозионную стойкость нержавеющих сталей (сплавов). [c.249]

    Для химического полирования хромистых и хромоникелевых нержавеющих сталей, а также углеродистых сталей готовят раствор фосфорной кислоты, который медленно нагревают до 250° С, при этом фосфорная кислота частично переходит в пирофосфорную. Реакция продолжается 1,5 ч (ее окончание определяют по прекращению выделения газа). Затем кислоту быстро охлаждают и добавляют около 10% серной кислоты. Чем больше содержание углерода в стали, тем меньше добавляют кислоты. Полирование проводят при 200° С в течение 1—10 мин. После пассивирования, электролитического или химического полирования необходима нейтрализация остатков кислоты на деталях, которую производят в 1—3 % -ном растворе кальцинированной соды с последующей промывкой и сушкой. [c.105]

    Неметаллические неорганические покрытия, наносимые на детали нз коррэзионностойких сталей. Химические пассивные покрытия. Коррозионная стойкость деталей из коррозионностойких сталей определяется качеством пассивных покрытий. Качество пассивного покрытия определяется полнотой удаления окалины, содержанием хрома в поверхностном слое и технологие пассивирования. [c.705]

    Применение анодной защиты позволяет в качестве конструкционного материала для оборудования химической промышленности использовать различные нержавеющие стали и титан, хорошо пассивирующиеся во многих средах. Приложенный анодный ток ускоряет наступление пассивности, способствует ее сохранению продолжительное время, позволяет подобрать условия оптимального пассивирования, а в ряде случаев использовать более низколегированные стали. [c.69]

    По сравнению с покрытиями Со—Р, которые используют главным образом при изготовлении магнитных полуфабрикатов, сплав Ni—Р оказывается значительно менее пригодным для таких целей. Однако он имеет очевидное преимущество при решении вопроса об антикоррозионной защите деталей. Пористость покрытия толщиною 8—10 мкм такая же, как электролитического никеля толщиною 18—20 мкм. Антикоррозионные свойства сплавов, формированных в кислых растворах, лучше, чем в щелочных. Для уменьшения пористости и повыщения защитной способности покрытий рекомендуется применять двухслойное никелевое покрытие, причем перед осаждением второго слоя — проводить протирку поверхности никеля кашицей венской извести и активацию в НС1 (1 1). Таким путем число пор уменьшается в 42—45 раз [141, с. 100]. Весьма эффективной является пассивация однослойного покрытия в растворе, содержащем 60 мл/л Н3РО4 (плотность 1,7 кг/дм ) и 50 г/л СгОз, при 50—60 °С в течение 6 мин [143]. Дополнительной защитой может служить гидрофобизация пассивированного покрытия препаратом ГФЖ 136-41 по технологии, указанной далее применительно к оксидным покрытиям на стали. Стойкость против коррозии деталей, имеющих покрытие химическим никелем толщиною 3 мкм, подвергшейся пассивации, не уступает стойкости образцов с таким же покрытием толщиною 24 мкм, не подвергавшимся дополнительной обработке. [c.209]

    В некоторых случаях процесс поглощения вещества, начавшись на поверхности, распространяется в глубь поглотителя. Такие процессы можно разделить на три класса абсорбция, хемосорбция и капиллярная конденсация. Примером абсорбции может служить поглощение платиной или палладием водорода-При хемосорбции происходит химическое взаимодействие сорбтива с сорбентом с образованием нового химического вещества. Например, СОг, приведенное в соприкосновение с порошком СаО, химически взаимодействует с последним с образованием новой твердой фазы — СаСОз. Этот процесс постепенно распространяется в глубину зерен порошка, давая там то же самое химическое соединение — СаСОз. При хемосорбции новая фаза может и не появляться, например, при взаимодействии газообразного аммиака с водой образуется гидроокись аммония, но число фаз в системе не изменяется. Наконец, в процессах хемосорбции возможны, как это установил Н. А. Шилов, случаи образования так называемых поверхностных соединений, когда между поверхностными атомами адсорбента и атомами адсорбтива устанавливается химическая связь, однако новой фазы и нового химического соединения, которое можно было бы выделить, не возникает. Такие поверхностные соединения образуются на границе соприкосновения угля и стали с кислородом воздуха, обусловливая в последнем случае пассивирование металла. Капиллярная конденсация наблю 1ается при контакте пористых сорбентов с парами легко конденсирующихся веществ. Капиллярная конденсация может происходить только при определенной температуре, давлении и при достаточном смачивании жидким сорбтивом поверхности стенок капилляра. Из курса физики известно, что, если жидкость смачивает стенки капилляра, то при одной и той же температуре, давление насыщенного пара над вогнутой поверхностью жидкости меньше давления пара над плоской поверхностью той же жидкости. В результате этих различий, пар, ненасыщенный по отношению к плоской поверхности, может оказаться насыщенным и даже пересыщенным по отношению к вогнутой поверхности, тогда пар начнет конденсироваться над мениском и капилляры будут заполняться жидкостью. Таким образом, капиллярная конденсация происходит не под действием адсорбционных сил, а является результатом притяжения молекул пара к поверхности мениска жидкости в мелких порах, где имеется пониженное давление пара. Капиллярная конденсация играет значительную роль в водном режиме почв. [c.281]

    Футеровку из пентапласта применяют для защиты ванн хромирования, химического никелирования, травления, пассивирования. На ряде предприятий используют ванны, изготовленные из листового пентапласта толщиной 2—3 мм (ТУ 6-05-041-707—79). Пентапластовую емкость помещают в обрешетку из полос нержавеющей стали и опускают в пароводяную рубашку. [c.300]

    Химическая устойчивость сплавов железо — хром и, в частности, нержавеющих сталей целиком основана на их пассивировании. Из компонентов нержавеющий сталей легче гхего лассивируется хром, заметно слабее никель и железо. Хром, находясь в твердом растворе с железом, в значительной мере повышает стойкость железа к шаосивированию. Чем больше в сплаве хрома, тем легче наступает пассивность и тем труднее сталь переходит в активное состояние. [c.476]

chem21.info

Химическая пассивация как оптимальное покрытие жаропрочной стали

Пассивация металла — процесс, в результате которого на поверхности металла образуется оксидная плёнка, препятствующая образованию коррозии. Название метода покрытия происходит от слова «пассивность». Цель пассивации — снизить химическую активность металла при взаимодействии с другими металлами или агрессивными условиями окружающей среды.

В своём роде, появление плёнки — то же разрушение металла. Но, разрушая верхний слой материала на несколько десятков нанометров, пассивация спасает нижние слои от появления ржавчины.

Таким образом, химическая пассивация — взаимодействие окислителя с обрабатываемой поверхностью.

Этапы химической пассивации

1. Если предварительно не подготовить металлическое изделие, то окислитель вступит в реакцию не со сплавом, а с посторонними элементами. Поэтому, перед пассивацией необходимо зачистить поверхность. Очистку выполняют 2 способами: мытьём или ошкуриванием изделия при помощи наждачной бумаги. Теперь можно приступить к пассивации.

2. Сам процесс представляет нанесение на изделие химического реагента. На сплаве образуется защитная плёнка, состоящая в основном из солей и окислов. Плёнка делает структуру изделия наиболее крепкой и долговечной. Эффективность процедуры зависит от следующих факторов:

  • состав раствора;
  • состав сплава;
  • состояние поверхности обрабатываемой детали.

Лучше всего поддаются химической пассивации высоколегированные стали, особенно хромникелевые. А вот углеродистые стали следует обрабатывать только для кратковременной защиты, так как уровень защитного слоя на них существенно слабее.

3. Очистка при помощи воды. Соли, которые могли остаться на изделии, могут вызвать коррозию. Поэтому промывку следует проводить тщательно.

4. Остатки кислоты необходимо нейтрализовать с помощью 2-3 % раствора аммиака или раствора, состоящего из 25-30 г/л олеиновой кислоты и 2-4 г/л гидроксида натрия. Обработка проводится при 80 - 90 °С на протяжении 2-3 минут.

Какой раствор используется?

Использование различных растворов зависит от свойств сплава. Рассмотрим, какие растворы применяются для пассивирования различного класса черных металлов:

Высоколегированные сплавы, устойчивые к коррозии — азотная и серная кислоты.

  • Сплавы ферритного класса — калий двухромовокислый, азотная кислота.
  • Углеродистые стали — калий двухромовокислый, хромовый ангидрид, фосфорная кислота, гидроксид натрия.
  • Среднелегированные стали — хромовый ангидрид, фосфорная кислота.

Температура и время пассивирования также зависят от класса сплава. Температура составляет диапазон от 18 до 90 °С, а время — от 3 до 60 минут.

Чем выше температура раствора, тем быстрее протекает процесс.

Применение пассивации

  • Пассивация используется для металлических деталей под покраску. Она не только защищает от коррозии, но и обезжиривает изделия. Применяется в сфере машиностроения.
  • Пассивация паровых турбин. Но зачем нужна пассивация нержавеющей стали, ведь она и так не поржавеет? Оказывается, если сплав находится в непрекращающемся контакте с агрессивной средой, то он может разрушиться. В качестве примера выступает сварной шов. Иногда на нём присутствуют частички железа. И тогда подвергается коррозии даже нержавейка.
  • Стоматологическая область. Обрабатываются нижняя часть имплантов — винты, которые вмонтируются в челюсть. Пассивация используется для исключения разрушения импланта в челюстной кости.
  • Химическая пассивация часто проводится с декоративной целью. При кратковременной обработке на поверхности появляется радужная плёнка. Яркие предметы использования — краны, дверные ручки.
  • Пассивация украшений из бижутерии используется во избежание аллергических реакций.

Химическая пассивация заметно продлевает срок службы изделий из металла и заслуживает широкого применения в самых разнообразных областях.

metizmash.ru

Травление и пассивация нержавеющей стали » Forstex

Почему пассивация

Процесс пассивации возвращает нержавеющую сталь или другие металлы обратно к своим первоначальным спецификациям, удаляя ненужные вкрапления и масла с поверхности. При механической обработки детали из нержавеющих сталей, различные частицы могут проникать в поверхность основного металла, ослабляя его устойчивость к коррозии и делая деталь более восприимчивой к факторам окружающей среды. Искры, грязь и другие частицы и остатки, такие как свободное железо, смазка и обрабатывающие масла, влияют на прочность естественной поверхности и могут проникать в поверхность в процессе обработки. Они остаются невидимыми для человеческого глаза и часто являются причиной коррозии. «Пассивный» определяется — как менее подверженный влиянию факторов окружающей среды. Процесс улучшает и очищает поверхность детали. Восстановленная поверхность действует как защитное покрытие для таких факторов окружающей среды, как воздух, вода и другие экстремальные условия. Важно отметить, что пассивация не меняет внешний вид основного металла.

Преимущества пассивации

  • Улучшенное сопротивление коррозии
  • Равномерное сглаживание
  • Удаление заусенцев
  • Чистота
  • Долгий срок службы изделий

Пассивация остается важным этапом в максимизации коррозионной стойкости деталей и компонентов из нержавеющей стали.Процесспозволяет существенно увеличить срок эксплуатации деталей.Неправильно выполненная пассивация может фактически вызвать коррозию.

Пассивация представляет собой метод позволяющий максимизировать присущую коррозионную стойкость нержавеющего сплава, из которого изготовлена заготовкаНет универсального способа относительно точной механики работы пассивации.Но несомненно, что на поверхности пассивной нержавеющей стали присутствует защитная оксидная пленка. Эта невидимая пленка считается чрезвычайно тонкой, толщиной менее 0,0000001 дюйма, что составляет около 1/100 000 толщины человеческого волоса!

На практике загрязняющие вещества, такие как грязь или частицы железа из режущих инструментов, могут быть перенесены на поверхность деталей из нержавеющей стали во время обработки.Если их не удалить, эти посторонние частицы могут снизить эффективность исходной защитной пленки.

Во время процесса обработки микроскопическое количество свободного железа может быть стерто с режущего инструмента и перенесено на поверхность заготовки из нержавеющей стали.При определенных условиях на этих частицах может появиться тонкое покрытие ржавчины. Это фактически коррозия стали из инструмента, а не основного металла. Иногда частицы стали из режущего инструмента или продуктов его коррозии может вызвать повреждение самой детали.Точно так же мелкие частицы железосодержащей грязи могут прилипать к поверхности детали.Несмотря на то, что металл может выглядеть блестящим в условиях механической обработки, невидимые частицы свободного железа могут привести к ржавлению на поверхности после воздействия воздуха.

Проблемой могут быть и открытые сульфиды.Они исходят от добавления серы к нержавеющим сталям для улучшения обрабатываемости. Если деталь не будет правильно пассивирована, сульфиды могут выступать в качестве центров инициации для коррозии на поверхности продукта.

В всех случаях требуется пассивация, чтобы максимизировать естественную коррозионную стойкость нержавеющей стали.Онапоможет удалить поверхностное загрязнение, такие как частицы железосодержащей цельной грязи и частиц железа из режущих инструментов, которые могут образовывать ржавчину или действовать как места инициации для коррозии. Пассивация также может удалять сульфиды, открытые на поверхности нержавеющих сплавов без механической обработки.Двухступенчатая процедура может обеспечить наилучшую коррозионную стойкость: 1. чистка, (обезжиривание, травление), но в некоторых случаях не выполняемая процедура 2. кислотная ванна или пассивирующая обработка.

Первая очистка

Смазка, охлаждающая жидкость или другие загрязнения должны быть тщательно удалены от поверхности, чтобы получить наилучшую коррозионную стойкость.. Коммерческий обезжириватель или моющее средство можно использовать для очистки механических масел или охлаждающих жидкостей. Посторонние вещества, такие как термические оксиды, возможно, должны быть удалены путем измельчения или такими методами, как кислотное травление.

Иногда оператор может пропустить основную очистку, предполагая ошибочно, что просто погружая смазку в кислотную ванну, одновременно чистка и пассивирование будут происходить одновременно.Этого не происходит. Вместо этого загрязняющая жир реагирует с кислотой с образованием пузырьков газа. Эти пузырьки собираются на поверхности заготовки и мешают пассивации.Хуже того, загрязнение пассивирующего раствора, иногда высоким содержанием хлоридов, может вызвать «вспышку» коррозии. Вместо того, чтобы получить желаемую оксидную пленку с блестящей, чистой, коррозионностойкой поверхностью, вспышка вызывает сильно протравленную или затемненную поверхность — ухудшает саму поверхности, что пассивация предназначена для оптимизации.Части, изготовленные из мартенситных нержавеющих сталей [которые являются магнитными, с умеренной коррозионной стойкостью и с пределом текучести до (1930 МПа)], на квадратный дюйм затвердевают при высокой температуре и затем отжигаются для обеспечения требуемой твердости и механических свойств.Осаждающие упрочняемые сплавы (которые обеспечивают лучшее сочетание прочности и коррозионной стойкости, чем мартенситные сорта) могут обрабатываться в растворе, частично обрабатываться, выдерживаться при более низких температурах, а затем заканчиваться механической обработкой.В таких случаях детали необходимо тщательно очистить обезжиривающим или очищающим средством для удаления следов режущей жидкости перед термообработкой.В противном случае режущая жидкость, остающаяся на деталях, вызовет чрезмерное окисление. Это условие может привести к тому, что нижние слои остаются с крапчатой да же после удаления окалины кислотными или абразивными методами. Разрезающие жидкости могут оставаться на деталях и затвердевать в вакуумной печи или защитной атмосфере, может произойти науглероживание поверхности, что приведет к потере коррозионной стойкости.

Травление

Травление — это удаление смежного низко хромистого слоя металла с поверхности нержавеющей стали химическими средствами.

Там, где сталь нагревается путем сварки, термической обработки или других средств, до такой степени, что можно увидеть цветной слой оксида, на поверхности стали под оксидным слоем имеется обедненный хромом слой.Более низкое содержание хрома дает более низкую коррозионную стойкость. Чтобы восстановить наилучшую коррозионную стойкость, необходимо удалить поврежденный металлический слой, обнажив полностью легированную поверхность из нержавеющей стали.

Механическое удаление может привести к образованию абразивных или других частиц (препятствующих коррозии) или может быть непрактичным, поэтому обычно используются химические средства.

Процедуры, включающие травильные растворы азотной (HNO 3) и фтористоводородной (HF) кислот, удаляют масштаб и нижний слой, обедненный хромом, и восстанавливают коррозионную стойкость. Растворы травления также удаляют загрязняющие вещества, такие как частицы железа и железа. Растворы травления, отличные от смесей азотной и фтористоводородной кислот, существуют и могут использоваться для специализированных применений.

Травильные пасты, где раствор смешивают с инертным носителем, обычно используются для обработки выбранных областей, таких как сварные швы. Травление включает удаление металла и изменение в визуальной яркости металла. Электрополирование — полезная альтернатива травлению.Металлическое удаление достигается, но обычно приводит к яркой, гладкой и более стойкой к коррозии поверхности.

Пассивные ванны

После тщательной очистки деталь из нержавеющей стали готова для погружения в пассивирующую кислотную ванну. Можно использовать любой из трех методов — пассивацию азотной кислоты, азотную кислоту с пассивацией дихромата натрия и пассивацию лимонной кислоты. Какой метод к использованию зависит от класса нержавеющей стали и заданных параметров.

Более устойчивые хромоникелевые марки могут пассивироваться в ванне с азотной кислотой (20% по объему) . Менее стойкие марки нержавеющей стали могут быть пассивированы путем добавления дихромата натрия в ванну с азотной кислотой, чтобы сделать раствор более окисленным и способным образовывать пассивную пленку на поверхности. Другой вариант, используемый вместо азотной кислоты плюс дихромат натрия, заключается в увеличении концентрации азотной кислоты до 50% по объему. Добавление дихромата натрия, и более высокая концентрация азотной кислоты снижают вероятность нежелательной коррозии.

Исторически сложилось, что азотная кислота использовалась для пассивации нержавеющей стали, но в последнее время распространение получило более безопасное и эффективное средство с использованием лимонной кислоты. В отличие от азотной кислоты, составы для пассивирования лимонной кислотой имеет много преимуществ:

  • Лимонная кислота НЕ удаляет другие элементы в сплаве, эффективно ограничивая глубину конечного слоя оксида хрома
  • Лимонная кислота НЕ вводит тяжелые металлы (опасные отходы) в ванну
  • Лимонная кислота удаляет только железо
  • Лимонная кислота намного безопаснее и безвредна для окружающей среды

forstex.ru