Изоляционные материалы в электротехнике: классификация, свойства и сфера применения. Рынок Электротехники. Отраслевой портал

Содержание

Виды электроизоляционных материалов, все о видах электроизоляционных материалов

Электроизоляционные материалы или диэлектрики – это материалы, которые используют для изоляции электрического тока или препятствуют его утечке между разными токопроводящими частями. Все виды электроизоляционных материалов характеризуются высоким электрическим сопротивлением.

Какие существуют виды электроизоляционных материалов

В зависимости от химического состава существуют следующие основные виды электроизоляционных материалов:

В молекулах органических диэлектриков основной составляющей является углерод, соответственно в неорганических материалах его нет. Неорганические диэлектрики, такие как слюда и керамика, обладают наибольшей нагревостойкостью.

В зависимости от способа получения диэлектрики делятся на естественные и синтетические. Синтетические используются более часто, потому что создаются с необходимыми физико-химическими свойствами, которые можно менять в зависимости от потребности.

Еще одним фактором, который делит виды электроизоляционных материалов на неполярные и полярные, является строение молекул. Материалы с электрически нейтральными атомами и молекулами, до воздействия на них электрического поля не обладают никакими подобными свойствами. К таким относится фторопласт-4 и полиэтилен. В пределах нейтральных электроизоляционных материалов выделяют ионные кристаллические диэлектрики, такие как кварц и слюда, в составе которых каждая пара ионов представляет собой электрически нейтральную частицу. Полярные диэлектрики имеют начальный электрический элемент до начала воздействия на него электричества и по сравнению с нейтральными у них повышенная проводимость и большое значение диэлектрической проницаемости. К ним относится поливинилхлорид и бакелит.

Подробнее о свойствах эбонита вы можете прочитать здесь.

Классификация видов электроизоляционных материалов по происхождению

Агрегатное состояние, в котором находится электроизоляционный материал, делит его на следующие основные виды:

Газообразные материи имеют естественное происхождение, и к ним относится:

  • Азот;
  • Атмосферный воздух;
  • Углекислый газ;
  • Гелий;
  • Неон;
  • Аргон;
  • Криптон.

Используют такие вещества крайне редко, даже в взрывозащищенном электрооборудовании.

Жидкие электроизоляционные материалы обладают высокими электрофизическими свойствами. Они делятся на невысыхающие растительные масла, нефтяные масла и синтетические жидкие диэлектрики. Главным недостатком является то, что все нефтяные масла пожароопасные, а синтетические жидкости очень токсичные. Поэтому, как диэлектрики, их практически не используют.

Количество твердых диэлектриков — самое большое, и они наиболее часто используются по назначению. Твердые электроизоляционные материалы делятся на следующие группы:

Органические твердые диэлектрики представлены природными (шеллак, янтарь, канифоль), искусственными (этилцеллюлоза, шелк, бетоилцеллюлоза) и синтетическими (полиамиды, эпоксидные смолы) материалами. Все перечисленные твердые материалы могут использоваться для производства электроизоляционных деталей и конструкций не только в чистом виде, но и как производные. К производным материалам принадлежат слоистые пластики, пластмассы, лаки, слоистые пластики, микалекс и другие.

Важно заметить, что в производстве качественных продуктов используется одновременно несколько видов электроизоляционных материалов для достижения максимального эффекта. Единственной или классической формулы для сочетания пропорций разных материалов не существует, чтобы создать новый продукт проводят эксперименты.

классификация, применение, свойства и характеристики

Любое электрическое оборудование, включая генераторы, силовые установки и распределительные устройства, состоит из токоведущих частей. Для надежной и безопасной эксплуатации последние должны быть защищены друг от друга и от воздействия окружающих компонентов. В этих целях используются электроизоляционные материалы.

Важно, чтобы обмотка на якоре была отделена от его сердечника, виток возбуждения – от аналогичной детали, полюсов и каркаса агрегата. Материалы, которые применяются для изоляции чего-либо от воздействия электрического тока, называются диэлектриками. Стоит отметить, что такие изделия бывают двух типов – одни абсолютно не пропускают ток, другие – хоть и делают это, но в мизерных количествах.

При создании подобных материалов применяют органические и неорганические элементы вкупе с различными добавками, необходимыми при пропитке и склеивании. В последнее время широкую популярность набирает жидкая изоляция для проводов, часто используемая в выключателях и трансформаторах (например, трансформаторное масло). Не реже в электротехническом оборудовании применяют газообразные диэлектрики, вплоть до обычного воздуха.

Содержание

  • Электроизоляционные материалы и сферы их применения
  • Свойства диэлектриков
  • Параметры изоляции
  • Классификация диэлектрических материалов
    • Классификация по агрегатному состоянию
    • Классификация по происхождению
  • Классы нагревостойкости электроизоляционных материалов

Электроизоляционные материалы и сферы их применения

К основным областям применения электроизоляционных материалов можно отнести различные промышленные ветви, радиотехнику, приборостроение и монтаж электрических сетей. Диэлектрики – это основные элементы, от которых зависит безопасность и стабильность работы любого электроприбора. На качество и функциональность изоляции влияют различные параметры.

Таким образом, главная причина применения электроизоляции – соблюдение правил безопасности. В соответствии с ними строго запрещено эксплуатировать оборудование с частично или полностью отсутствующей изоляцией, поврежденной оболочкой, поскольку даже малые токи могут нанести вред человеческому организму.

Свойства диэлектриков

Для того чтобы гарантировать выполнение важных функций, электроизоляционные изделия должны обладать необходимыми свойствами. Основное отличие диэлектрика от проводника – намного большее удельное сопротивление (100-1100 Ом*см). С другой стороны, их электрическая проводимость в 14-15 раз ниже токоведущих жил. Связано это с природным происхождением изоляционных материалов, в составе которых намного меньше свободных отрицательных электронов и положительно заряженных ионов, влияющих на токопроводимость.

Важно! Несмотря на последнее высказывание, при нагревании любого диэлектрика количество ионов и электронов существенно возрастает, из-за чего повышается электрическая проводимость и возникает риск пробоя током.

Все свойства диэлектриков можно разделить на две основные группы – активные и пассивные, при этом вторая является наиболее важной. К пассивным относится диэлектрическая проницаемость: чем меньше ее значение, тем более надежным и качественным является изолятор, поскольку он не оказывает негативного влияния на электрическую схему и не добавляет паразитные емкости. С другой стороны, если изделие эксплуатируется в роли диэлектрического конденсатора, то проницаемость должна быть максимально высокой (паразитные емкости в данном случае важны).

Параметры изоляции

К числу основных относятся:

  • электропрочность;
  • удельное электрическое сопротивление;
  • относительная проницаемость;
  • угол диэлектрических потерь.

Оценивая качество и эффективность диэлектриков, и сравнивая их свойства, нужно выявить зависимость перечисленных параметров от значений тока и напряжения. По сравнению с проводниками электроизоляционные компоненты имеют повышенную электрическую прочность. Учитывая сказанное выше, не менее важным является то, насколько хорошо изоляторы сохраняют свои полезные свойства и удельные величины при нагревании, увеличении напряжения и других воздействиях.

Классификация диэлектрических материалов

Выбор того или иного изоляционного материала зависит от мощности тока, протекающего по проводникам оборудования. Существует несколько критериев для классификации диэлектриков, но наиболее важными являются два – агрегатное состояние и происхождение. Для изоляции шнуров бытовых электроприборов используют твердые изоляторы, трансформаторов и прочего высокомощного оборудования – жидкие и газообразные.

Классификация по агрегатному состоянию

По агрегатному состоянию выделяют три типа диэлектрических материалов – твердые, жидкие и газообразные.

Твердые диэлектрики

Электроизоляционные материалы данного типа считаются наиболее распространенными и популярными, используются практически во всех сферах, где присутствует оборудование с токоведущими частями. Их качество зависит от некоторых химических свойств, при этом диэлектрическая проницаемость может быть совершенно разной – 10-50 000 (безразмерная величина).

Твердые изоляторы бывают полярными, неполярными и сегнетоэлектрическими. Главное отличие трех разновидностей – принцип поляризации. Основными свойствами данных материалов являются химическая стойкость, трекингостойкость и дендритостойкость. От химической стойкости зависят возможности диэлектрика противостоять воздействию агрессивной среды – кислотам, щелочам, активным жидкостям. Трекингостойкость влияет на защиту от электрической дуги, дендритостойкость – от появления дендритов.

Керамические изоляторы эксплуатируют как линейные и проходные диэлектрики в составе подстанций. Для защиты бытовых электрических приборов могут применяться текстолиты, полимеры и бумажные изделия, промышленного оборудования – лаки, картон и различные компаунды.

Сочетая несколько разных материалов, производителям диэлектриков удается получить особые свойства изделия. Благодаря этому повышается устойчивость к нагреву, воздействию влаги, экстремально низких температур и даже радиации.

Наличие нагревостойкости говорит о том, что изолятор способен выдерживать высокие температуры, но в каждом отдельном случае максимальная планка будет разной (она может достигать и 200, и 700 град. Цельсия). К числу таковых относятся стеклотекстолитовые, органосиликатные и некоторые полимерные материалы. Фторопластовые диэлектрики устойчивы к воздействию влаги, могут эксплуатироваться в тропиках. Вообще фторопласт не только гидрофобен, но еще и негигроскопичен.

Если в состав электротехнического оборудования включены атомные элементы, то важно использовать изоляцию, устойчивую к радиоактивному фону. На помощь приходят неорганические пленки, часть полимеров, стеклотекстолиты и различные слюдинитовые изделия.

К морозостойким диэлектрикам относятся компоненты, сохраняющие свои удельные свойства при температуре до -90 град. Цельсия. Наконец, в электроприборах, эксплуатируемых в космосе, применяются изоляционные материалы с повышенной вакуумной плотностью (например, керамика).

Жидкие диэлектрики

Диэлектрики в подобном агрегатном состоянии зачастую эксплуатируются в промышленном электрооборудовании. Наиболее ярким примером являются трансформаторы, для безопасной работы которых требуется специальное масло. К числу жидких диэлектриков можно отнести сжиженный газ, парафиновое или вазелиновое масло, спреи, дистиллированную воду, которая была очищена от солей и других примесей.

Жидкие электроизоляционные материалы описываются следующими технико-эксплуатационными характеристиками:

  • диэлектрическая проницаемость;
  • электропрочность;
  • электропроводность.

Величина физических параметров жидких диэлектриков зависит от степени их чистоты (загрязнения). Наличие твердых примесей в воде или масле приводит к существенному повышению электрической проводимости, что связано с увеличением числа свободных электронов и ионов. Жидкости очищаются разными методами, начиная от дистилляции и заканчивая ионным обменом. После выполнения данного процесса повышается электропрочность материала и снижается его электропроводность.

Жидкие электроизоляторы можно разделить на три основные группы:

  1. Из нефти изготавливают трансформаторное, конденсаторное и кабельное масла.
  2. Синтетические жидкости активно применяются в промышленном приборостроении. К их числу можно отнести соединения на основе фтор- и кремнийорганики. Кремнийорганические материалы способны выдерживать сильные морозы, они относятся к числу гигроскопичных, поэтому могут применяться в малых трансформаторах. С другой стороны, стоимость таких соединений намного выше, чем у нефтяных масел.
  3. Растительные жидкости крайне редко используются при изготовлении электроизоляции. Речь идет о касторовом, льняном, конопляном и других маслах. Все перечисленные вещества считаются слабополярными диэлектриками, поэтому могут применяться только для пропитки бумажных конденсаторов или для образования пленки в электроизоляционных лаках и красках.
Газообразные диэлектрики

Самыми популярными газообразными диэлектриками считаются электротехнический газ, азот, водород и воздух. Все они могут быть разделены на две категории – естественные и искусственные. К первым относится воздух, который часто эксплуатируют в качестве диэлектрика для защиты токоведущих частей линий электрической передачи и машин.

Наряду с преимуществами, есть у воздуха недостатки, из-за чего он не подходит для эксплуатации в герметичном оборудовании. Поскольку в его состав входит большое содержание кислорода, то данный газ является окислителем, поэтому в неоднородном поле существенно снижается электрическая прочность.

Азот – отличный вариант для изоляции силовых трансформаторов и высоковольтных линий электропередач. Помимо хороших изоляционных свойств, водород способен принудительно охлаждать оборудование, поэтому зачастую применяется в высокомощных электромашинах. Для герметизированных установок подойдет электротехнический газ, при использовании которого снижается взрывоопасность любых агрегатов. Электротехнический газ часто эксплуатируется в высоковольтных выключателях, что обусловлено способностью к гашению электрической дуги.

Классификация по происхождению

По происхождению диэлектрики делятся на органические и неорганические.

Органические диэлектрики

Органические электроизоляционные изделия можно разделить на естественные и синтетические. Все материалы, относящиеся к первой категории, в последнее время практически не эксплуатируются, что связано с увеличением производственных мощностей синтетических диэлектриков, стоимость которых намного ниже.

Естественными диэлектриками являются растительные масла, парафин, целлюлоза и каучук. К синтетическим материалам можно отнести пластмассы и эластомеры разных типов, применяемые в бытовых приборах и другой электротехники.

Неорганические диэлектрики

Электроизоляционные материалы неорганического типа бывают естественные и искусственными. Из компонентов природного происхождения можно выделить слюду с большой устойчивостью к воздействию химически активных веществ и высоких температур. Не менее популярными являются мусковит и флогопит.

Искусственные диэлектрики – стекло в чистом или разбавленном видах, фарфор и керамика. Материалам данной категории зачастую придают особые свойства, добавляя в их состав различные компоненты. Если изолятор проходной, то нужно применять полевошпатовую керамику с большим тангенсом диэлектрических потерь.

Волокнистые электроизоляционные материалы

Волокнистые диэлектрики эксплуатируются для защиты различного оборудования. К числу таковых относятся каучук, целлюлоза, различные ткани, нейлоновые и капроновые изделия, полистирол и полиамид.

Органические волокнистые диэлектрики имеют высокую гигроскопичность, поэтому практически никогда не используются без специальной пропитки. В последние годы вместо органических изоляторов применяют синтетические волокнистые изделия с ярко выраженной нагревостойкостью.

В качестве примера можно выделить стеклянные волокна и асбест: первые пропитываются лаками и смолами, улучшающими гидрофобность, вторые характеризуются минимальной прочностью, поэтому в их состав добавляют хлопчатобумажные элементы. Речь идет о материалах, которые не плавятся при нагреве.

Классы нагревостойкости электроизоляционных материалов

Класс нагревостойкости диэлектриков указывается буквой латинского алфавита. Перечислим основные из них:

  • Y – максимальная температура 90 град. Цельсия. К данной категории относятся различные волокнистые изделия из хлопка, натуральных тканей и целлюлоза. Они не пропитываются и не дополняются жидкими электроизоляторами.
  • A – 105 град. Цельсия. Все материалы, перечисленные выше, и синтетический шелк, пропитываемые жидкими диэлектриками (погружаемые в них).
  • E – 120 град. Цельсия. Синтетические изделия, включая волокна, пленки и компаунды.
  • B – 130 град. Цельсия. Слюдинитовые диэлектрики, асбест и стекловолокно вкупе с органическим связующим и пропиткой.
  • F – 155 град. Цельсия. Слюдинитовые материалы, в качестве связующего звена которых выступают синтетические компоненты.
  • H – 180 град. Цельсия. Слюдинитовые диэлектрики с кремнийорганическими соединениями, выступающими в качестве связующего.
  • C – более 180 град. Цельсия. Все перечисленные выше изделия, в которых не используется связующее или применяются неорганические адгезивы.

Выбор электроизоляционных материалов зависит не только от мощностей оборудования, но и от условий его эксплуатации. Например, для высоковольтных линий электропередач должны использоваться диэлектрики с повышенной морозостойкостью и защитой от воздействия ультрафиолетовых лучей.

Таким образом, информация выше может использоваться только в качестве ознакомительных целей, а окончательное решение должен принимать профессиональный, квалифицированный специалист.

Электрические изоляторы — изоляционные материалы и различные типы

Целью изолятора является предотвращение нежелательного протекания тока от проводника под напряжением или проводящих частей. Электрическая изоляция играет жизненно важную роль в любой электрической системе. Электрический изолятор обеспечивает очень высокое сопротивление, так что через него практически не может протекать ток.

Изоляционные материалы

В основном изолирующий материал или изолятор содержит очень небольшое количество свободных электронов (носителей заряда) и, следовательно, не может проводить электрический ток. Но идеального изолятора не существует, потому что даже изоляторы содержат небольшое количество носителей заряда, которые могут нести ток утечки (пренебрежимо малый). Кроме того, все изоляторы становятся проводящими при приложении достаточно большого напряжения. Это явление называется пробой изоляции и соответствующее напряжение называется напряжением пробоя .

Изоляционный материал должен иметь высокое удельное сопротивление и высокую диэлектрическую прочность. Дополнительные  желательные свойства изоляционного материала зависят от типа применения. Изоляционный материал, используемый для изготовления изолированных кабелей/проводов, должен быть гибким, например, резина или ПВХ. С другой стороны, изолятор, используемый для поддержки воздушных линий электропередач, должен быть механически прочным, например, фарфоровые или стеклянные изоляторы .

Важные свойства изоляционных материалов

  • Удельное сопротивление (удельное сопротивление) — это свойство материала, которое количественно определяет, насколько сильно материал сопротивляется протеканию электрического тока. Удельное сопротивление хорошего изолятора очень велико.
  • Диэлектрическая прочность материала — это способность выдерживать электрические напряжения без разрушения. Диэлектрическая прочность обычно указывается в киловольтах на миллиметр (кВ/мм).
  • Относительная диэлектрическая проницаемость (или диэлектрическая проницаемость) представляет собой отношение плотности электрического потока, создаваемого в материале, к плотности электрического потока, создаваемого в вакууме.
  • Коэффициент электрических потерь (диэлектрические потери) представляет собой отношение мощности, теряемой в материале, к общей мощности, передаваемой через него. Он определяется тангенсом угла потерь и, следовательно, также известен как тангенс дельта

Некоторыми из обычно используемых электроизоляционных материалов являются бумага, слюда, тефлон, резина, пластик, поливинилхлорид (ПВХ), стекло, керамика, фарфор и т. д.

Типы электрических изоляторов

  • Штыревые изоляторы
  • Подвесные изоляторы
  • Деформационные изоляторы
  • Изоляторы скобовые

Вышеуказанные типы изоляторов обычно используются в воздушных линиях электропередач. Подробнее об этих изоляторах ВЛ вы можете прочитать, перейдя по этой ссылке.

Еще несколько типов изоляторов.

Изоляторы опорные

Штыревой изолятор более или менее похож на штыревой изолятор. В нем относительно больше нижних юбок и навесов от дождя. Изоляторы опорного типа в основном используются на подстанциях, но в некоторых случаях их можно использовать и для воздушных линий. Таким образом, существует два типа опорных изоляторов: (i) Изоляторы станционных опор и (ii) Изоляторы линейных опор .

Источник изображения: Wikimedia commons

Линейно-опорный изолятор может применяться на напряжение до 132 кВ (штыревые изоляторы применяются до 33 кВ). Станционные опорные изоляторы используются на подстанциях как низкого, так и очень высокого напряжения. Для более высоких уровней напряжения несколько изоляторов опор станции сложены вместе.

[Также читайте: Основы системы передачи электроэнергии]

Изоляторы стеклянные

Стеклянные изоляторы штыревого типа ранее использовались в 18 веке в основном для телеграфных / телефонных линий. Использование керамических и фарфоровых изоляторов распространилось в 19 веке. Они доказали более высокие защитные свойства, чем стекло, и получили широкое распространение. Однако сегодня становится популярным использование изоляторов из закаленного стекла . В отличие от фарфора или некерамических материалов, закаленное стекло никогда не стареет и, таким образом, обеспечивает более длительный срок службы. Диски изолятора из закаленного стекла могут использоваться в подвесных изоляторах.

Стеклянный изолятор

Полимерные изоляторы

Полимерные изоляторы состоят из стержня из стекловолокна, покрытого полимерными навесами. Полимерные защитные навесы обычно изготавливаются из силиконового каучука. Некоторые другие материалы также могут использоваться для защиты от непогоды, такие как политетрафторэтилен (PTFE или тефлон), EPM, EPDM и т. д. Полимерный изолятор иногда также называют композитными изоляторами или 9.0003 изоляторы из силиконовой резины . Они почти на 90% легче, чем фарфоровые изоляторы, и при этом обладают почти такой же или даже большей прочностью.

Полимерные изоляторы

Изоляторы с длинными стержнями

Изолятор с длинным стержнем в основном представляет собой фарфоровый стержень с наружным навесом и металлическими концевыми фитингами. Основным преимуществом конструкции с длинными стержнями является отсутствие металлических деталей между блоками, что увеличивает прочность изолятора. Изоляторы с длинными стержнями можно использовать в местах подвески, а также в местах натяжения.

Длинный стержневой изолятор
Источник изображения: Wikimedia commons

Изоляторы вантовые

Изолятор, используемый в растяжках, называется изолятором . Он обычно изготавливается из фарфора и устроен так, что в случае обрыва изолятора ванту не упадет на землю. Он также называется яйцевидным изолятором штамма .

Остаточный изолятор
Источник изображения: Wikimedia commons

Стандартные изоляционные материалы, используемые в электротехнике.

Материал, который оказывает очень высокое сопротивление потоку электрического тока или полностью сопротивляется электрическому току, называется изоляционным материалом. В изоляционных материалах валентные электроны прочно связаны со своими атомами.

В области электротехники любой изоляционный материал предназначен для разделения электрических проводников без прохождения через них тока. Такие материалы, как ПВХ, стекло, асбест, жесткий ламинат, лак, смола, бумага, тефлон и резина, являются очень хорошими электрическими изоляторами. Изоляционный материал используется в качестве защитного покрытия на электрических проводах и кабелях.

Наиболее важным изоляционным материалом является воздух. Кроме того, в электрических системах используются твердые, жидкие и газообразные изоляторы.

Для чего требуется электрическая изоляция

Поражение электрическим током, вызванное прохождением тока через тело человека, может привести к физиологическим последствиям, начиная от смертельных травм, вызванных непроизвольными моментами, и заканчивая смертью от фибрилляции желудочков (прекращается ритмичная насосная деятельность сердца) или мышечное сокращение.

Напряжение постоянного тока до 40 вольт и напряжение переменного тока до 60 вольт считаются безопасными пределами при наилучших обстоятельствах для человеческого тела, но выше этого считается опасностью, и для ее предотвращения требуется электрическая изоляция. Сопротивление электрическому току измеряется в омах. Металлы реагируют с очень небольшим сопротивлением на протекание электрического тока и называются проводниками. Как упоминалось ранее, такие материалы, как асбест, фарфор, ПВХ, сухая древесина, реагируют с высоким сопротивлением потоку электрического тока и называются изоляторами.

Сухая древесина обладает высоким сопротивлением, но при намокании водой ее сопротивление падает, и может пропускать электричество. То же самое применимо и к коже человека. Когда кожа сухая, она имеет высокое сопротивление электрическому току, но когда она влажная, сопротивление падает. Поэтому любой электрик должен принимать меры предосторожности при наличии воды в окружающей среде или на коже и использовать необходимые изоляционные материалы. Лучшим средством защиты людей от проводов и деталей, находящихся под напряжением, является изоляция.

Применение изоляционных материалов

Кабели и линии электропередачи :

Изоляционный материал обычно используется в качестве защитного покрытия на электрических проводниках и кабелях. Жилы кабеля, соприкасающиеся друг с другом, должны быть разделены и изолированы с помощью изоляционного покрытия на каждой жиле, т.е. полиэтилен, сшитый полиэтилен-XLPE, поливинилхлорид-ПВХ, тефлон, силикон и т. д. Подвесные дисковые изоляторы (втулки) используются в неизолированных кабелях высокого напряжения, где они поддерживаются электрическими столбами. Втулки изготавливаются из стекла, фарфора или композиционных полимерных материалов.

Электронные системы:

Все электронные устройства и инструменты содержат печатные платы (печатные платы) с различными электронными компонентами. Печатные платы изготавливаются из эпоксидного пластика и стеклопластика. Все электронные компоненты закреплены на изолированной печатной плате. В SCR (полупроводниковых выпрямителях), транзисторах и интегральных схемах кремниевый материал используется в качестве проводящего материала и может быть преобразован в изоляторы с использованием процесса нагревания и кислорода.

Энергетические системы:

Трансформаторное масло широко используется в качестве изолятора для предотвращения искрения в трансформаторах, стабилизаторах, автоматических выключателях и т. д. Изоляционное масло может сохранять изоляционные свойства до определенного напряжения электрического пробоя. Вакуум, газ (гексафторид серы), керамическая или стеклянная проволока — другие методы изоляции в системах высокого напряжения. Небольшие трансформаторы, электрогенераторы и электродвигатели содержат изоляцию на витках проводов с помощью полимерного лака. Изоляционная лента из стекловолокна также используется в качестве разделителя обмотки катушки.

Бытовые переносные электроприборы:

Все ручные электроприборы изолированы, чтобы защитить пользователя от поражения электрическим током.

  • Изоляция класса 1 содержит только основную изоляцию на проводе, а металлический корпус заземлен в основной системе заземления. Третий контакт вилки питания предназначен для заземления.
  • Изоляция класса 2 обозначает устройство с «двойной изоляцией». Все внутренние электрические компоненты должны быть полностью заключены в изолированный корпус, что предотвратит короткое замыкание на токопроводящие части.

Изоляционная лента для электрических кабелей:

Поливинилхлоридные ленты широко используются для изоляции электрических проводов и других токопроводящих частей. Он изготовлен из винила, так как он хорошо растягивается и обеспечивает эффективную и долговечную изоляцию. Изолента для изоляции класса Н изготавливается из стеклоткани.

Средства индивидуальной защиты:

СИЗ защищают людей от опасности поражения электрическим током. СИЗ, такие как изолирующая защита головы, защита глаз и лица, а также изолирующие перчатки, необходимы для защиты от всех распространенных опасностей, связанных с электричеством. Для безопасной работы электрика необходимы изолированные инструменты и защитные экраны. Диэлектрическая обувь (неметаллическая защитная обувь) или электроопасная обувь изготавливается с непроводящими, устойчивыми к электрическому удару подошвой и каблуками.

Коврики резиновые электрические:

Коврики электроизоляционные имеют широкое применение на различных подстанциях, электростанциях и т. п. возможная утечка тока.

Список некоторых распространенных изоляционных материалов

  • A.B.S.
  • АЦЕТАТ
  • АКРИЛ
  • ОКСИД БЕРИЛИЯ
  • КЕРАМИКА
  • ДЕЛЬРИН
  • EPOXY/FIBERGLASS
  • GLASS
  • KAPTON
  • KYNAR
  • LEXAN
  • MERLON
  • MELAMINE
  • MICA
  • NEOPRENE
  • NOMEX
  • NYLON
  • P.E.T. (Полиэтилентерефталат)
  • Фенолики
  • Полиэстер (милар)
  • Полиолефины
  • Полистирол
  • Полиуретан
  • PVC (PolyvinylCloride)
  • Silicase/Fibercelshore/Fibercelsallase/Fibercelsally/Fiberslaslass/Fiberslaslass/Fiberslaslaslass/Fibercelsallashne/Fiberslaslass/Fiberslaslas0024
  • TFE (TEFLON)
  • THERMOPLASTICS
  • ELECTRICAL INSULATING PAPERS, TAPES, and FOAMS
  • NEOPRENE
  • POLYSTYRENE
  • POLYURETHANE
  • SILICONE
  • VINYL
  • LAMINATES

Electrical Insulating Material Standards

ASTM’s insulating material standards играют важную роль в определении, оценке и тестировании электрических и физических свойств материалов, используемых в основном в качестве электрической изоляции в устройствах и сопутствующем оборудовании.