Плита перекрытия пустотная: Пустотные плиты перекрытия. Купить железобетонные пустотные плиты перекрытия ПК ПБ в Москве по выгодным ценам

Содержание

Допустимая нагрузка на пустотные плиты перекрытия

ОТГРУЗИЛИ ИЗДЕЛИЙ
с 2008 года:

тонн
по чертежам

тонн
по сериям и ТУ

тонн
из артбетона

Допустимая нагрузка на плиты перекрытия пустотные – важнейшая характеристика изделия для строителей и ремонтников. От верного проектирования перекрытия зависит итоговая прочность сооружения. Как читать маркировку, определять допустимый вес и хранить плиты без ущерба устойчивости к нагрузке?

Что означает маркировка плит?

Сортамент плит перекрытия пустотных составлен с учетом их размеров и прочности.

Маркировка начинается с аббревиатуры ПК, то есть «плита круглопустотная», и содержит описание продукции.

Разберем значение цифр на примере названия ПК-30-12-8:

  • 30 — длина пустотной плиты перекрытия в дециметрах
  • 12 — ширина изделия в дм
  • 8 — максимальная нагрузка на 1 дм2 в кг, то есть 800 кг на м2, в которые входит и вес самой плиты

В маркировке цифры округляются, в приведенном примере реальная длина плит перекрытия пустотных составит около 1180 см, а ширина – 1190 см.

Указанные параметры нагрузки используются чаще всего, однако возможны и другие значения – от 500 до 1500 кг на м2. В планировке жилых и офисных помещений стандартная нагрузка на плиты перекрытия пустотные 800 кг/м2, как правило, отвечает эксплуатационным требованиям.

Как рассчитывать допустимую нагрузку

Для проверки, выдержит ли выбранная плита внутренние элементы, вычитают из проектных значений разные виды нагрузок:

  • собственную массу изделия на м2
  • оформление напольного покрытия (стяжки, утеплители, декор)
  • привнесенную статическую нагрузку (мебель, техника)
  • динамическую нагрузку (люди, животные)

Сортамент пустотных плит перекрытия содержит множество изделий, нужно рассчитать оптимальное заполнение проема с учетом массы плит и нагрузок.

Пример расчета веса внутренней стены:

800 кг/м2 — 300 кг/м2 (вес конкретной плиты по ГОСТу) — 150 кг/м2 (максимальный вес стяжки, утеплителя и напольного покрытия по СНиП) – 150 кг/м2 (минимальные нормы на привнесенную статическую и динамическую нагрузку) — 200 кг/м2.

Итоговая цифра означает максимально допустимый вес планируемых конструкций. Располагать их следует ближе к торцам плит. Важно помнить, что постоянные статические нагрузки скапливаются и могут привести к прогибу изделия, поэтому лучше не достигать максимума.

Правильное хранение плит перекрытия

Чтобы не допустить уменьшения проектной прочности пустотных плит еще до монтажа, следует выполнять основные правила их складирования:

  • Укладываются петлями вверх на твердую ровную поверхность, лучше асфальт или щебень, без контакта с землей, на перегородки от 15 см высотой.
  • Между плитами в районе петель строго друг под другом – деревянные бруски толщиной 2,5-3 см.
  • Высота штабеля – не более 2,5 м
  • Сверху накрыть водонепроницаемой пленкой или рубероидом

Точное соблюдение условий хранения плит перекрытия и грамотный монтаж позволят легко выйти на расчетные показатели нагрузок.

Также рады Вам предложить:

  • Особенности водоотводных лотков
  • Наземные системы водоотвода
  • Стеклопластиковые лотки для водоотвода

виды, марки и особенности монтажа

Содержание

  • 1 Определение
  • 2 Назначение
  • 3 Преимущества изделий
  • 4 Виды
  • 5 Размеры и вес
  • 6 Материалы и особенности конструкции
  • 7 Марки пустотных плит перекрытия
  • 8 Особенности монтажа
  • 9 Нагрузки на пустотную железобетонную конструкцию
  • 10 Заключение

Бетонные перекрывающие плиты являются наиболее востребованными в строительстве. Такой материал необходим при возведении жилых, промышленных и административных зданий любой этажности. Особенно популярны пустотные перекрытия. Их конструкция имеет меньшую массу, чем у сплошных, без потерь в прочности и надежности. Наличие пустот также не сказывается на несущих способностях конструкции. При этом тепло- и звукоизоляция намного выше.

Определение

Плиты перекрытий железобетонные многопустотные представляют собой несущие бетонные перегородки, располагаемые горизонтально в строящихся объектах. Их устанавливают между этажами, под чердаками или в качестве несущих перегородок. В конструкции предусмотрено наличие нескольких полостей разного сечения: овального, круглого, полукруглого. При их производстве используется легкий и тяжелый бетон. Армирование применяется для увеличения прочности конструкций.

Вернуться к оглавлению

Назначение

Основное назначение пустотных плит — монтаж перекрытий на стыках этажей при строительстве домов из кирпича, стеновых блоков и бетона.  Благодаря преимуществам, этот вид перекрытий стал популярным среди всех ЖБИ. Пустотной плитой сооружают перекрытия в многоэтажных, частных и монолитных объектах. Часто такие изделия применяются в качестве несущих каркасов. В промышленности чаще применяют многопустотные армированные модификации из тяжелых бетонов.

Вернуться к оглавлению

Преимущества изделий

Главным фактором, определяющим преимущества перекрывающих конструкций, является наличие пустот:

  1. На изготовление конструкции требуется меньше стройматериала.
  2. За счет заполнения пустот воздухом перекрытия отличаются повышенной тепло- и шумоизоляцией.
  3. Отверстия в плитах применяются для прокладки инженерных коммуникаций.
  4. Пустоты снижают массу изделия, поэтому изделие оказывает меньшие нагрузки на фундамент.
  5. Использование предварительно-напряженного арматурного каркаса повышает прочностные и эксплуатационные показатели перекрывающего изделия.
  6. Применение многопустотного стройматериала экономически оправданно и позволяет в сжатые сроки возводить каркас дома.

Вернуться к оглавлению

Виды

Виды многопустотных плит перекрытия в сечении.

Многопустотные межэтажные изделия отличаются широким видовым ассортиментом. Изделия отличаются размерами, особенностями конструкции, сферой применения. По форме отверстий к пустотным железобетонным изделиям относятся:

  • плиты с круглыми пустотами;
  • конструкции с овальными полостями;
  • изделия с грушевидными отверстиями;
  • перекрытия с овальными пустотами.

По назначению:

  • кладка по одной стороне;
  • по двум торцевым сторонам;
  • по трем сторонам;
  • по двум боковым и двум торцевым.

Отдельным видом пустотных железобетонных перекрытий является плита ПБ, полученная путем непрерывного безопалубочного формования на длинных стендах. Ее назначение — обеспечение опоры по двум сторонам.

Вернуться к оглавлению

Размеры и вес

От размеров пустот зависят эксплуатационные характеристики перекрывающего элемента.  Диаметр круглых отверстий в плите колеблется в диапазоне от 140 мм до 203 мм. Чем меньше эта величина, тем прочнее изделие. На прочность влияет толщина перекрытия. Это значение равно 22 см. Есть более массивные продукты, например, плита 6ПК, толщина которой 30 см. Облегченные модификации производятся из легкого бетона и имеют толщину 160 мм. Такими плитами сооружают межэтажные перегородки для газоблочных или пенобетонных стен.

Стандартные размеры:

  • длина варьируется в пределах 1,5—16 м;
  • ширина бывает 1, 1,2, 1,5 и 1,8 м;
  • масса колеблется в диапазоне от 500 кг до 4 тонн.

Несущая способность таких изделий имеет стандартную величину, равную 800 кг/м2. Но встречаются межэтажные перегородки, рассчитанные на нагрузку 1200—1250 кг/м2.

Глубина опирания железобетонных пустотных плит составляет 9—25 см.

Вернуться к оглавлению

Материалы и особенности конструкции

Данную марку цемента используют для производства плит с отверстиями.

Для получения плит с отверстиями нужен бетонный раствор на цементе М300 и М400. Эти две марки обеспечивают готовое изделие высокими показателями прочности и пластичности. Цемент М400 придает стойкость перекрытию к моментальной нагрузке 400 кг на 1 см3/сек, а 300-я марка наделяет плиту способностью не проламываться при прогибах.

С целью повышения прочностных характеристик и для повышения несущей способности бетонных перекрытий в изделия монтируют стальные пруты. С этой целью используется арматура из нержавеющей стали класса А3 и А4. Материал отличается повышенной коррозионной стойкостью и устойчивостью к колебаниям температур в диапазоне «– 40 °C»—« 50 °C».

Практикуется применение натяжной арматуры. Процесс армирования происходит в четыре стадии:

  • натяжение стальных прутьев в форме;
  • укладка арматурной сетки в форму;
  • заливка бетоном;
  • обрезка излишка арматурных элементов, выступающих из затвердевшего бетона.

Натяжение придает плитам способность выдерживать максимальное динамическое и статическое давление без провисания и прогибов. При этом в торцы, опирающиеся о стены, дополнительно монтируют двойную арматуру, что наделяет изделие стойкостью к нагрузкам от своей массы и веса верхних стен без деформации. Таким перекрытием сооружаются высотные промышленные здания.

Вернуться к оглавлению

Марки пустотных плит перекрытия

Существующие марки пустотных перекрывающих плит: 1ПК (ПК), 2ПК, 3ПК, 4ПК, 5ПК, 6ПК, 7ПК, ПГ, ПБ. Буквами обозначается:

  • тип изделия — пустотная плита перекрытия;
  • форма отверстия — круглое, грушевидное и т. п.;
  • количество сторон опирания, например, Т или Ч — три или четыре стороны, соответственно.

Цифрами обозначаются:

  • реальная длина (дм), которая меньше ГОСТовской на 20 мм;
  • реальная ширина (дм), которая меньше стандарта на 10 мм;
  • несущая способность, например, цифра 3 соответствует 300 кг/м2.

Последние буквы в маркировке обозначают:

  • АтV — армирование нижней рабочей части изделия осуществлено преднапряженной арматурой категории АтV;
  • т — при изготовлении применялся тяжелый бетон;
  • а — имеются уплотняющие вкладыши в отверстиях на торцах.

Вернуться к оглавлению

Особенности монтажа

Главным требованием при надежном монтаже пустотных перекрывающих плит является соблюдение рассчитанных параметров опоры на стены, внесенных в чертеж. Если площадь опирания будет недостаточной, произойдет деформация стены. Если площадь будет больше — увеличится теплопроводность, что не всегда желательно.

При монтаже перекрывающих конструкций следует учитывать минимально допустимую глубину опирания в соответствии со структурой стройматериалов здания. Например, для постройки из кирпича эта величина составляет 9 см, для газобетона и пенобетона — 15 см, а для стальных каркасов — 7,5 см.

Максимально допустимое заглубление при заделке панелей в стены не должно превышать 16 см при использовании в качестве основного стройматериала легких блоков или кирпича, и 12 см — при строительстве из железобетонных и бетонных изделий.

Вернуться к оглавлению

Нагрузки на пустотную железобетонную конструкцию

Пустотное перекрытие включает три составные части:

  • верхняя, предназначенная для кладки напольного покрытия, утеплителей;
  • нижняя, используемая для декорирования потолка и навешивания подвесных элементов;
  • конструкционная, расположенная между первыми двумя частями и удерживающая все железобетонное изделие в воздухе.

На среднюю часть изделия оказывают постоянную нагрузку отделочные элементы пола и потолка: люстры, подвесные потолки, колонны, ванны, перегородки и прочие подвесные элементы. К статике добавляется динамика, а именно давление от перемещающихся по поверхности объектов: люди, домашние животные и т. п.

Нагрузки различают: точечные (подвесные элементы, например, люстра) и распределенные (подвесной потолок). Бывают еще сложные в расчете комплексные нагрузки, например, давление, оказываемое ванной. В этом случае полная воды ванна оказывает распределенную нагрузку, а каждая ее ножка — точечную.

При расчете общего давления, оказываемого на железобетонное изделие с отверстиями, учитываются все возможные нагрузки. По полученным результатам выбирается конкретная плита, которая будет максимально подходить под требования.

Вернуться к оглавлению

Заключение

Многолетняя строительная практика показывает, что плиты перекрытия являются неизменным материалом, вне зависимости от типа сооружения — торговый комплекс, жилое здание или производственный цех.

Выбирая перекрытия в виде пустотных плит, существенно удешевляется и облегчается процесс строительства, улучшаются тепло- и звукоизоляционные параметры, повышается прочность и надежность здания.

Полый сердечник | Flexicore & Extruded Hollow Core Slab

Columns

Hollow Core Plank

Stadia

Wall Panels

Precast Concrete Wall Panels:

Solid Architectural Wall Panels:

Insulated Foundation Wall Панели:

Сплошные стеновые панели фундамента

Сплошные стеновые панели сдвига:

Пустотные доски — экономичное и универсальное решение для полов и крыш практически для любого строительного проекта.

В основном используется для полов и настила крыш, полые стержни представляют собой сборные железобетонные плиты с рядами полых внутренних труб для экономичности и стальной арматурой для дополнительной прочности. Полые внутренние пространства пустотелых досок делают плиты намного легче, чем плиты перекрытий той же толщины, сохраняя при этом одинаковую прочность. Полые трубы также снижают материальные и транспортные расходы.

Компания Molin Concrete предлагает два типа бетонных плит с пустотелыми элементами: Flexicore и экструдированные. Наши варианты продукции обеспечивают необходимую гибкость конструкции и структурную стабильность, сокращая при этом время выполнения заказа. Свяжитесь с нами, чтобы более подробно обсудить варианты пустотелых досок.

Выгоды/преимущества пустотелых досок:

  • Быстрая установка для сокращения трудозатрат и затрат на месте
  • Способность охватывать большие открытые пространства для обеспечения гибкости конструкции
  • Непрерывные внутренние пустоты для дополнительной структурной устойчивости и снижения веса и стоимости
  • Звукоизолированные, огнестойкие и не требующие особого ухода
  • Высокая несущая способность для широкого спектра применений

Области применения пустотелых досок:

Пустотные доски являются отличным вариантом для жилых, коммерческих и промышленных зданий любого размера благодаря своей прочности, экономичности и огнестойкости. Общие области применения включают кровельные и напольные покрытия для многоквартирных домов, многоэтажных зданий, жилых домов на одну семью, школ и т. д.

Пустотные плиты обычно используются с предварительно напряженными балками и сборными колоннами Molin, обеспечивая полную структурную стабильность и свободу проектирования. Сборный железобетон отливается в контролируемой среде, чтобы обеспечить однородность и прочность бетонной плиты.

Наша гибкость при заливке пустотелых бетонных досок позволяет найти эффективные решения для ваших полов и крыш. Свяжитесь с нами, чтобы обсудить, какие сборные элементы будут полезны для вашего следующего проекта.

Эстетическая информация

Техническая информация

Эстетическая информация

Компания Molin Concrete Products предлагает архитектурный сборный железобетон практически любого цвета, формы или текстуры для удовлетворения эстетических и функциональных требований проектировщика. Эти образцы представлены только в качестве рекламного материала. они представляют собой общие цвета и текстуры бетонных архитектурных сборных изделий Molin. Компания Molin может создавать индивидуальные композиции смесей для получения желаемых цветов. Эта книга образцов призвана стать «отправной точкой» для архитекторов и дизайнеров.

Пожалуйста, свяжитесь с Molin Concrete Products, чтобы запросить образцы архитектурного сборного железобетона, по телефону 651-786-7722 или отправьте нам электронное письмо по адресу [email protected]

Техническая информация

Компания Molin Concrete Product Company предлагает сертифицированные предварительно напряженные/сборные железобетонные изделия в широком диапазоне размеров и конструкций для удовлетворения конкретных потребностей вашего проекта. Узнайте больше о возможностях каждого из наших продуктов, загрузив соответствующую таблицу нагрузки или связавшись с Molin по телефону 651-786-7722 или по электронной почте [email protected]

Файлы PDF можно открывать в любой стандартной программе чтения PDF. Для наших файлов DWG требуются специальные шрифты. Добавьте следующие файлы в папку со шрифтами САПР:

  • FRC.SHX
  • СИМПЛЕКС.SHX
  • ВФРК.SHX

Историческое развитие многопустотных плит

* Эта статья Арнольда Ван Акера (†) и Стефа Мааса первоначально была опубликована в CPI 2-2021.

ОБЗОР, ОСНОВАННЫЙ НА ПАТЕНТНЫХ ИССЛЕДОВАНИЯХ

Идея уменьшить собственный вес бетонных плит путем размещения пустот в центре поперечного сечения относится к началу прошлого века. Несколько изобретателей из разных стран подали заявки на патенты на различные системы. Настоящая статья в основном основана на анализе патентов, опубликованных в первой половине 20 века, и личного опыта с 1960 года. Патенты обычно предлагают комплексное описание изобретений (формула изобретения). Реконструкция истории пустотных плит на основе этих патентов — трудоемкое, но увлекательное занятие. Эта статья призвана дать общий обзор и не претендует на то, чтобы быть исчерпывающей.

Не всегда ясно, как провести различие между «настоящими» пустотелыми элементами и аналогичными типами настила, такими как коробчатые настилы, пузырчатые настилы, двутавровые балки, расположенные рядом, и т. д. Европейский стандарт на продукцию EN 1168 [1] определяет многопустотную плиту как монолитный предварительно напряженный или усиленный элемент с постоянной габаритной высотой, разделенный на верхнюю и нижнюю полки, соединенные вертикальными стенками, таким образом, образуя ядра как продольные пустоты, поперечное сечение которых является постоянным и представляет собой одну вертикальную ось симметрии (рис. 1). В настоящей статье речь идет о многопустотных плитах только в соответствии с определением стандарта EN 1168.

Системы

На основании патентных заявок мы можем выделить 3 основные системы производства многопустотных плит. Для каждой категории могут быть определены подкатегории:

1. Мокрая отливка
    1.1. Образователи постоянных пустот
    1.2. Временные пустотообразователи

2. Шликерформирование
    2.1. Трамбовка
    2.2. Вибрационный

3. Экструзионный
    3.1. Уплотнение высокочастотной вибрацией
    3.2. Уплотнение при сдвиге

Как правило, эти методы производства могут использоваться для производства армированных плит, а также для производства предварительно напряженных плит. Они в основном из обычного плотного бетона, но есть и примеры конструкционного легкого бетона.

Раньше пустотные плиты производились либо на заводе, либо на месте. Часто использовались отдельные формы, а иногда даже длинные ряды, но прерывистым образом. Уплотнение бетона в основном осуществлялось путем утрамбовки свежего бетона. Здесь также патентное исследование могло бы дать больше информации, но это не является основным предметом настоящей статьи.

Специфические характеристики многопустотных плит

Наиболее характерной особенностью разработки многопустотных плит было то, что они сильно отклонялись от существовавших в то время принципов проектирования армированного и предварительно напряженного бетона, согласно которым сжатие воспринимается бетоном, а растяжение по армированию. Ведь в большинстве случаев разработанная технология изготовления была возможна только при следующих условиях:

  • Без вертикальной арматуры;
  • Отсутствие поперечной арматуры на нижней стороне
    блоков;
  • Только продольные арматурные стержни или предварительно напряженные
    арматуры;
  • Нет выступающей арматуры для соединений и т. д.

Как следствие, при проектировании необходимо было учитывать способность бетона к растяжению и разрабатывать новые методы соединения. Это было новым, особенно в отношении передачи усилий на опору, несущей способности блоков, действия диафрагмы перекрытий, поперечного распределения нагрузки между соседними блоками, нежестких опор, проемов в перекрытиях, огнестойкости и т. д.

Что касается преднапряженных многопустотных плит, то Комиссия по сборным конструкциям ФИБ сыграла решающую роль в разработке проекта. Обширные исследования и интенсивный полевой опыт, собранный со всего мира, показали, что пустотелые полы идеально подходят для выполнения всех необходимых структурных функций при условии соблюдения некоторых элементарных принципов проектирования. В 1988 году Комиссия FIP по сборным конструкциям опубликовала Рекомендации по проектированию преднапряженных пустотных перекрытий. Они использовались в качестве основы для национальных и международных стандартов, например, Еврокода 2 и европейского стандарта продукции CEN EN 1168. Обновленная версия Рекомендаций FIB 19В этом году будет опубликовано 88.

Исторические разработки

Современные предварительно напряженные и армированные многопустотные плиты перекрытий являются результатом длительного периода разработки и испытаний. Новые варианты многопустотных плит все еще появляются на рынке (см., например, многопустотные плиты с поперечным изгибом для тоннельного свода на итальянской автостраде A4 у входа в торгово-выставочную зону в Милане [2]). Даже больше, чем сами многопустотные плиты, методы производства подлежат постоянной оптимизации.

Далее исторические разработки классифицируются в соответствии с упомянутыми выше тремя производственными системами.

Wetcast

Техника мокрого литья использует предварительно сформированные сердечники (образователи пустот) для создания продольных пустот. Их помещают в форму перед отливкой плиты.

Мокрое литье с постоянными пустотообразователями

Вильгельм Зиглер (Германия, 1906 г.), вероятно, может претендовать на первое применение продольных пустотообразователей в бетонных плитах [3]. Его система изготовления стержней была основана на предварительно изготовленных коротких формовочных трубах из затвердевшего раствора или другого материала, которые располагались на подмостках (рис. 2). Длина плит была произвольной. Трубки имели на дне боковые выступы, служившие формой для паутины. Их располагали либо непрерывно в продольном направлении, либо с небольшими промежутками в определенных местах, образуя поперечные ребра. Продольные и поперечные стенки армировались классическим способом.

В течение следующих двух десятилетий было разработано несколько решений для формирования продольных пустот в плоских плитах перекрытий. Обзор представлен в таблице 1.

Можно задать вопрос о различии между полыми элементами и коробчатыми элементами. Вышеупомянутые варианты по-прежнему соответствуют приведенному выше определению пустотных плит, но начиная с определенной толщины они должны классифицироваться как коробчатые плиты или балки. Кстати, изобретатели решений табл. 1 в первую очередь претендуют на плиты перекрытий, хотя и не исключают в описании патента применимость для коробчатых балок или даже стен.

Сегодня этот метод производства довольно редок, но все еще используется. После заливки нижнего слоя устанавливаются призматические пустотообразователи, обычно из полистирола. После этого заливается второй слой бетона для придания формы перемычкам и верхнему слою.

Мокрая отливка с временными пустотообразователями

В 1930 году бельгийскому изобретателю Жюлю Хейнеману был выдан патент на сборную плиту перекрытия с продольными пустотами [10]. Эти пустоты формируются с помощью эластичных форм, изготовленных, например, из каучука. стали и удерживаются на месте клиньями. Когда эти клинья удалены, поперечное сечение этой формы уменьшается, и форму можно без труда извлечь из полостей в балке. К сожалению, чертежи патента не содержат подробностей об этих пустотообразователях. Количество пустот в поперечном сечении может быть изменено. Перекрытия были железобетонными. Патент описывает в основном сам продукт, без каких-либо подробностей о производстве. Продольные стыки между блоками выполнены зазубренными и снабжены поперечными армирующими скобами. Их заливали на месте раствором.

Неудобство решения заключалось, конечно, в слабости гибких стальных труб. В 1939 году Уолтер Х. Коби (США) запатентовал решение с пневматическими расширяемыми и разборными резиновыми сердечниками [11]. На рис. 4 показаны продольный 90–125 и поперечный разрез системы.

Впоследствии было запатентовано несколько вариантов решений, касающихся как формы и количества жил, так и профиля продольных соединений.

Чарльз Летбридж (Великобритания) [12] представлен в 1940, усовершенствованный способ со съемными стальными трубами одинакового поперечного сечения, проходящими в продольном направлении через всю форму и соответствующими по форме форме поперечного сечения пустотного блока. После установки нужных арматурных стержней был залит бетон, и форма в целом завибрировала. При этом стержневые трубы были немного смещены относительно кристаллизатора. Когда бетон достаточно уплотнился, чтобы сохранить свою форму, трубы вынимали через конец формы, а бетон оставляли для затвердевания. За счет использования металлических сердечников с гладкой поверхностью и поддержания их в движении бетон не прилипал к трубам, и последние можно было без труда удалить. Предпочтительно и для простоты стержневые трубы имели круглое поперечное сечение, что допускало вращательное движение во время литья.

Во Франции в 1952 году компания STUP Freyssinet [13] подала заявку на патент на изготовление предварительно напряженных полых элементов на длинных стальных станинах. Изобретение предназначалось для полов зданий. Блоки были изготовлены из предварительно напряженного бетона, их длина равнялась пролету пола без промежуточных опор, а ширина изменялась в зависимости от необходимой толщины плиты и возможностей перемещения. Элементы имели продольные пустоты по всей длине круглой формы. Вертикальные края были профилированы и заполнены раствором после монтажа, чтобы обеспечить передачу вертикальных нагрузок от одного элемента к другому. Элементы были отлиты в стальных формах с длинными линиями. Поперечные пластины пресс-формы можно было разместить в любом месте, чтобы реализовать длину блоков. Продольные пустоты формировались длинными трубками из армированной резины, накачиваемыми жидкостью под давлением до и во время литья. После уплотнения бетона давление было сброшено, а трубы удалены.

Шликерное формование

Шликерное формование характеризуется движущейся профильной формой (формой), в которую заливается и уплотняется бетон. Как правило, используется бетон с более высокой осадкой.

Шликерное формование (подбивка)

В марте 1931 г. немец Вильгельм Шефер [14] подал заявку на патент на производство сборных армированных и предварительно напряженных многопустотных плит на длинных рядах в штабелях один ряд над другим. Его цель состояла в том, чтобы улучшить уже существующую в то время производственную систему (патент не доступен), основанную на технологии скользящей формы с подвижными сердечниками и боковыми пластинами, в которой различные производственные этапы выполнялись один за другим. В его патенте описывается, как сделать производство автоматическим и непрерывным. Мы могли бы рассматривать его как предшественника системы бланков. Патенты были выданы в Германии, Великобритании, США и Швейцарии, всего в 1933.

Литейная машина подвешивалась на подвижной раме и состояла из коротких следящих трубок для реализации пустот и краевых форм. Все операции (например, заполнение формы, трамбовка бетона, образование пустот и удаление кромок боковых плит) выполнялись по всей длине станины автоматически и без перерыва. Машина также включала устройство для выравнивания верхней поверхности плиты. Затем на готовую линию клали лист бумаги, машину поднимали в более высокое положение и операцию литья повторяли для следующей строки поверх предыдущей.

Бетон уплотняется в этих машинах с помощью пальцев, которые утрамбовывают бетон. Следовательно, мы называем этот метод формирования шликера «подбивкой».

Американская компания Spancrete приобрела патент Шефера и примерно в 1950 году запустила технологию производства предварительно напряженных пустотелых элементов, при которой ряд длинных нитей отливали в стопки, каждая линия поверх другой. После затвердевания верхней плиты сваи на эту кучу плит устанавливали алмазно-дисковую пилу, вырезали и удаляли пустотелые блоки.

Вильгельм Шефер получил в 1951 г. патент на предварительно напряженные пустотелые перекрытия с большими пролетами [15]. Элементы имели особый профиль продольной кромки с пазом типа «ласточкин хвост» и могли быть изготовлены с теплоизоляционным слоем на потолке. Технология изготовления не упоминается в патенте, но мы предполагаем, что речь идет о той же технологии шликерной формы, которая описана выше.

Шликерное формование (вибрация)

Наиболее распространенным способом уплотнения бетона во время шликерного формования является вибрация.

В 1952 году компания Wacker Brothers (GE) получила патент [16]. Вдохновленная патентом 1938 года, описывающим способ и устройство для изготовления трубопроводов, эта компания разработала метод формования и уплотнения бетона в движущихся формах. Уплотнение осуществляется за счет вибрации бетона. В 1953 г. Макс Гесснер из Лохама (Мюнхен, GE) подал заявку на патент [17], относящийся к уплотняющему оборудованию для производства предварительно напряженных балок или структурных элементов из железобетона. Этот патент, выданный в 1957, представлено использование вибрационной шликерной формы на одной литейной платформе, что в настоящее время является наиболее распространенной конфигурацией.

Идеи Гесснера получили дальнейшее развитие в западногерманских компаниях Max Roth KG и Weiler KG.

В 1957 году компания Weiler GmbH (GE) подала заявку на патент на машину для формования шликерных форм, изобретенную Гансом Гайгером [18]. Гейгер также был вдохновлен братьями Ваккер и разработал метод изготовления предварительно напряженных одинарных и двойных тавровых балок. Этот метод также применим для полых элементов.
Машина состояла из двух частей, соединенных друг с другом, каждая из которых имела бункер, виброплиты и выравнивающие плиты. Литье производилось в два этапа: на первом отливалась, уплотнялась и выравнивалась нижняя часть агрегата;
на втором этапе аналогичным образом была отлита верхняя часть. Машина, представленная Гейгером, очень похожа на существующие сегодня машины со скользящими опалубками. Компания Weiler усовершенствовала машину для производства преднапряженных многопустотных плит и коммерциализировала все производство, включая станки и литейные станины. В настоящее время Weiler GmbH известна как Maxtruder GmbH.

Примерно в это же время Макс Рот из Германии разработал скользящую форму для предварительно напряженных пустотных плит. В 1962 г. компания подала заявку на патент [19] (выдан в 1965 г.). В середине 50-х компания уже разработала шликерный станок для производства тавровых и L-образных балок. В этом патенте задокументирован шликерный формирователь, в котором бетон заливается и уплотняется в три слоя. Позже другие компании (Spiroll Corp Ltd, SpanDeck inc., VBI Development, Elematic Oy AB,…) также будут ссылаться на этот патент в своих патентных заявках.

Компания Echo в Бельгии начала в 1963 году производство предварительно напряженных многопустотных плит на машине Roth. После непродолжительного периода экспериментов Echo разработала собственное производственное оборудование. В 1990 году эта деятельность привела к созданию независимой дочерней компании Echo Engineering. Echo Engineering теперь принадлежит Progress Group и называется Echo Precast Engineering.

В 1965 г. Дэвид Додд получил патент США на шликерную форму только с одним бункером, в которой весь сляб отливался за один этап [20]. Он описал ее как самоходную шликерную формовочную машину экструзионного типа, подходящую для использования с относительно сухими бетонными смесями.

Другой вариант метода классической скользящей формовочной машины касается формовочной машины Tensyland с одним бункером [21]. Формирователь потока использует только собственный вес бетонной колонны внутри литейной машины в сочетании с вибрацией, необходимой для оседания заполнителей, чтобы бетон протекал через статическую форму.

Опалубочные станки используются для литья многопустотных плит с глубиной, выходящей далеко за рамки стандарта EN 1168. Итальянская компания Nordimpianti специализируется на производстве машин для опалубки с 1974, выпускает в продажу машины, способные производить элементы высотой 1 метр. Эта категория элементов не является частью данной статьи.

Экструзия

При экструзии бетон с очень низкой посадкой вдавливается с помощью шнеков (шнеков) в формовочный отсек, который формирует бетон в требуемое поперечное сечение. Бетон уплотняется вибрацией в сочетании с давлением. Давление шнеков приводит к движению экструдера вперед.

Уже в 1912 году итальянский изобретатель Акилле Гайба представил патент на свою машину для производства непрерывных армированных изделий, в которой формование и уплотнение изделия осуществлялось только за счет давления пластичной бетонной смеси в формовочное отделение, без дополнительной вибрации. [22]. Он явно относится к производству водопроводных труб, но патент не ограничивается только трубами.

Свежий бетон, подаваемый бункером, подталкивался многолопастным пропеллером к отверстию и далее в формовочное отделение. Таким образом, бетон подвергался высокому давлению и заполнял форму без дальнейшей вибрации.

Другое применение уплотнения бетона давлением без вибрации было предложено Джоном Мюрреем в США в 1928 году [23]. Способ и устройство можно использовать для формирования непрерывных трубопроводов, в которых пластичный бетон под давлением вдавливается в форму с поступательным движением. Его изобретение было специально направлено на создание подземных трубопроводов с множеством каналов для прокладки электрических кабелей. 40 лет спустя Гленн Бут из Spiroll Corporation ссылался на этот документ в своем патенте от 1966 [25].

Экструзия с помощью высокочастотных вибраторов

В июле 1961 г. в Канаде Эллису и Торстейнсону был выдан патент на машину для экструзии пустотелых бетонных секций [24]. Патент описывает экструдер. Экструдер был представлен как усовершенствование наиболее часто используемых в то время процессов
, представляющих собой формы с надувными сердечниками.

Способ предусматривает формование бетонных плит с продольным сердечником на выдвижном поддоне путем продавливания бетонного желоба через формующую секцию с помощью шнека. Бетон уплотняется с помощью вибратора в верхней части опалубочной секции.

Примерно в то же время другая канадская компания Dy-Core также разработала экструзионную машину.

В своем патенте 1965 г. [25] Глен Бут, Spiroll Corporation Canada, претендует на несколько усовершенствований устройств, описанных в патенте 1961 г. [24]. В частности, речь идет о включении в каждый шнек отдельного вибрационного узла, что улучшает характеристики текучести бетона при формовании изделия, снижает кавитацию и обеспечивает гладкую непрерывную наружную поверхность формируемого изделия. Другим усовершенствованием стало введение нового защитного узла, который частично окружает нижний сегмент каждого из узлов шнека на части его длины, способствуя, таким образом, формированию стенок продукта, в частности верхней и боковой стенок.

Первые экструдированные блоки имели толщину 200 и 265 мм и ширину 1200 мм. Ядра были круглыми, а плиты были из обычного бетона с плотностью примерно до 2500 кг/м³ и кубической прочностью на сжатие до 60 Н/мм².

Некоторые производители сборных железобетонных изделий также использовали конструкционный легкий бетон для предварительно напряженного пустотного сердечника. В Бельгии около половины продукции Ergon приходится на легкий бетон плотностью 1800 кг/м³ и прочностью на сжатие 45 Н/мм². В Италии компания Vibrosud работала также с легким бетоном плотностью 1800 кг/м³ и кубической прочностью бетона до 50 Н/мм².

Первоначально машины Spiroll продавались на основе эксклюзивности регионального производства, за которую нужно было платить ежегодную плату за квадратный метр произведенной плиты.

В 1969 году частная строительная компания TTV разработала версию экструзионных машин Variax для предварительно напряженных пустотелых элементов в Финляндии. После нескольких слияний и поглощений компания Elematic Engineering Ltd стала мировым лидером финского рынка в области маркетинга и разработки технологии Variax. Позже в Финляндии были основаны другие компании по производству экструзионных машин.

В конце 1960-х годов экструдированные многопустотные плиты были представлены на шведском рынке, а в последующие десятилетия за ними последовали несколько европейских производителей, например. в Финляндии, Норвегии, Дании, Бельгии, Голландии, Франции, Италии, Испании и др. В 1984 году Elematic приобрела компанию Dy-Core, а в 1996 году компанию Roth. шумный (85 дБ в непосредственной близости от машины). В 1984 году компания Elematic разработала так называемый метод уплотнения сдвигом, при котором вместо использования высокочастотных вибраторов внутри шнеков бетон уплотняется трамбовочным движением шнеков и боковых опалубок. Машины работают значительно тише и производят хороший профиль продукта. На рис. 14 показаны типы поперечных сечений преднапряженных многопустотных плит, использовавшихся в Швеции в 1984.

Заключение

Перекрытия из сборных многопустотных плит интенсивно используются во многих странах. Они предлагают значительные возможности для новых требований в области строительства зданий будущего: эффективность конструкции, большие пролеты до 20 м в сочетании с меньшей глубиной застройки, сокращение использования материалов, энергии и отходов при производстве, полуавтоматическое производство и т. д. . строительства. Конкуренция и социальная среда заставляют отрасль постоянно стремиться к повышению эффективности и условий труда за счет разработки и инноваций продуктов, систем и процессов. В этом контексте очень хорошо подходит сборный пустотелый сердечник. Ожидается, что система будет развиваться дальше в более сложных объединениях строительных технологий и приложений в проектах гражданского строительства.

Об этой статье

Арнольд Ван Акер (1936-2019) посвятил свою карьеру в основном исследованиям и разработке сборных железобетонных изделий и конструкций. Он был страстным пропагандистом сборного железобетона. Арнольд уделял много внимания распространению знаний и был высоко оценен спикером на ICCX. Он также написал много статей в CPI. Одна статья осталась незаконченной на его столе, когда он скончался в 2019 году: история пустотелых заполнителей. Арнольд написал эту статью в продолжение патентного исследования Стефа Мааса. Последний теперь закончил статью, не касаясь первоначальной структуры и содержания.

История сборных полов

Эта статья не претендует на то, чтобы быть исчерпывающей, но она является прекрасным началом для возможной серии статей, которые также включают другой опыт людей, работающих в индустрии напольных покрытий. Если у вас есть дополнительная информация (патенты, статьи, фотографии, интервью и т. д.) о сборных перекрытиях (пустотные, балочно-блочные, полупанельные) и производственном оборудовании, не стесняйтесь присылать их по адресу [email protected] или [email protected].

Каталожные номера

[1] Сборные железобетонные изделия – многопустотные плиты, NBN EN 1168:2005 + A3:2011, 2011
[2] Б. Делла Белла, «Инновационная технология сборных железобетонных конструкций для проходки туннелей с предварительно напряженными сборными железобетонными плитами», Архив CPI, нет. 5, pp. 176-180, 2017
[3] W. Siegler [Германия], «Plafond en ciment armé sans enduit», патент Франции FR365548A, 10 сентября 1906 г.
[4] A. Martens [Бельгия], « Планшет, пуховик и плафоны в бетонной арме, площади без фасадов», патент Франции FR468929A, 20, 19 июля.14
[5] Молотилофф Н. [Россия], «Разъемное железобетонное перекрытие», патент Великобритании GB191513497A, 13 апреля 1916 г.
[6] Мойс С. [Бельгия], «Улучшения в железобетонных балках, полах, Стены и тому подобное», патент Великобритании GB120394A, 2 октября 1919 г.
[7] F.C.C. Rings [GB], «Улучшения перекрытий из железобетонных балок», патент Великобритании GB156973A, 20 января 1921 г.
[8] E. Chaumeny [Франция], «Plancher en ciment armé», патент Франции FR618750A, 18 марта , 1927
[9] Société Des Applications Mécaniques Du Ciment Armé, «Poutres en beton armé et dispositif d’assemblage de ces poutres entre elles pour бывшего монолитного ансамбля», патент Франции FR619622A, 6 апреля 1927 г.
[10] J. Heyneman [Бельгия], «Plancher en béton armé», патент Франции FR681074A, 9 мая 1930 г.
[11] W. Cobi [США], «Складной сердечник», патент США US2170188A, 22 августа 1939 г.
[12] C. Летбридж [Ирландия], «Усовершенствования конструкции железобетонных элементов перекрытий, балок и т. п.», патент Великобритании GB521785A, 30 мая 19 г.40
[13] A. Durant [Франция], «Planchers pour bâtiments et leurs procédés de réalisation», патент Франции FR1005129A, 20 марта 1952 г.
[14] W. Schäfer [Германия], «Vorrichtung zum Herstellen von Betonplatten aller Art», патент Германии DE581572C, 16 сентября 1933 г.
[15] W. Schäfer [Германия], «Plattendecke aus großformatigen Hohlplatten», патент Германии DE813198C, 10 сентября 1951 г.
[16] Wacker Gebrüder [Германия], « Verfahren und Vorrichtung zur Herstellung von Formstücken aus Beton und ähnlichen Massen», патент Германии DE859724C, 15 декабря 1952 г.
[17] М. Гесснер [Германия], «Verdichtungsgerät zum Herstellen von vorgespannten Trägern oder Bauelementen aus Stahlbeton», патент Германии DE1008180B, 9 мая 1957 г.
[18] H. Geiger [Германия], «Gleitschalung zum Herstellen von Betonträgern mit vorgespannten Stahldrähten», патент Германии DE1084186B, 23 июня 1960 г.
[19] W. Roth [Германия], «Машина для производства бетона», патент США US3177552A, 13 апреля 1965 г.
[20]. ] Д. Х. Додд [США], «Устройство и процесс для формования трубопроводов: способ формования бетонных изделий и машина для формования шликерных форм для них», патент США US3200177A, 10, 19 августа.65
[21] Prensoland sa, «100 000 м² пустотных плит, изготовленных на машинах для формования потока», Архив CPI, №. 3, pp. 236-237, 2017
[22] A. Gaiba [Италия], «Machine pour construire des corps longs, tels que tuyaux, poteaux, etc., en materiaux à l’état pâteux, et pour les armer avec des fils métalliques», патент Франции FR449553A, 3 марта 1913 г.
[23] J. Murray [США], «Устройство и процесс для формования труб», патент США US1887244A, 8 ноября 1932 г.
[24] F.G. Эллис, М.А. Торстейнсон, «Машина для экструзии пустотелых бетонных профилей», патент Канады CA623476A, 11, 19 июля.