Почему насосная станция не засасывает воду: Page not found — ДЕШЕВШЕ ТУТ

Решаем проблему запуска насоса. | САН САМЫЧ

 Здравствуйте, уважаемые читатели «Сан Самыча». Многочисленные Ваши вопросы, связанные с первым пуском или пуском насосной станции после ремонта каких-либо элементов системы побудили меня к написанию данной статьи. Казалось бы, в теории все просто: залили насос через заливное отверстие водой, завинтили и обжали пробку, включили вилку в розетку. Насос должен удовлетворенно заурчать, поднимая давление в системе до заданного, и после щелчка реле давления отключиться.

Но на практике, почему-то так не получается. Обычно, после включения насоса, стрелка манометра подпрыгивает до отметки в 1,0 бар, после чего медленно скатывается до 0,8, а иногда и до 0,5 бар, где  беспомощно застывает. Из крана на напорной трубе вместе с водой шумно вырывается воздух, и, вырвавшись, затихает. Все затихает: ни воды, ни воздуха – ничего, лишь насос продолжает исступленно подвывать, сорвавшись на холостой ход.  Вы лихорадочно выдергиваете вилку из розетки и пытаетесь сообразить, что Вы сделали не так. Снова откручиваете пробку, снова заливаете, закручиваете, включаете… Но в результате ничего не меняется.

Давайте разбираться…

Почему насос «срывает»?

Насосы для бытовых насосных станций, хоть и называются «самовсасывающими», но сами они ничего всасать не могут. Этого не позволяет сделать огромная разница в плотности воды и воздуха. А насосы рассчитаны на перекачивание воды, и никак не воздуха. Поэтому прежде чем включить насос, его необходимо заполнить водой, и вместе с ним – всасывающий трубопровод, каким бы длинным он не был. И только в воде лопасти рабочего колеса насоса, вращаясь, создают избыточное давление по внутреннему периметру корпуса и разрежение в его центре.

 Но если в насос, уже после его пуска, попадет воздух, то, во-первых, лопасти сразу же взобьют «смертельный» для насоса коктейль из воды и воздуха и, во-вторых, общая плотность воды с воздухом тут же значительно изменится (это зависит от количества попавшего в насос воздуха), изменяя и перепад давления внутри насоса. Соответственно, всасывающая сила уменьшится так же, как и центробежная (ни всасать, ни выплюнуть) из-за уменьшения плотности «коктейля».

Кроме того, «масла в огонь подливает» и эффект кавитации, образование воздушных каверн за быстродвижущимися лопастями рабочего колеса, уменьшая и без того не очень большую плотность «коктейля». И чем ниже первоначальная плотность «коктейля», тем в большей степени проявляется эффект кавитации, и тем меньше создаваемое насосом давление на напоре.

«Откуда воздух?», — спросите Вы, — «Если все новое, соединения обжаты, насос залит по «самую маковку», воды в колодце или скважине более чем достаточно». Проблема в том, что для образования «коктейля» много воздуха и не нужно. Рабочая зона в корпусе бытового насоса довольно мала, соответственно даже небольшой пузырек всплывшего из всасывающей трубы воздуха может изменить плотность воды в рабочей зоне.

Откуда могут взяться эти пузырьки? Из неровностей всасывающей трубы, положенной и закопанной в грунте. Из неплотного соединения всаса непосредственно к насосу. Из незаметных глазу пазух переходных фитингов. Даже из внутреннего эжектора самого насоса и его рабочего колеса, где мелкие пузырьки могли остаться из-за шероховатостей внутренней поверхности материала. Я могу и дальше продолжать, но нужно ли? Это нормально, это неизбежно.

Вопрос нужно ставить по-другому: Как уменьшить влияние оставшегося на всасе и в насосе воздуха, чтобы система нормально заработала? И каверзный вопрос: Почему при уже работающей системе это  влияние почти не проявляется, и даже если проявляется, исправляется само, автоматически? Ответив на второй вопрос, мы сможем найти решение для первого.

Ответ на второй вопрос кроется в нормальных условиях работы насосной станции. А нормальным режимом работы насосной станции является работа под давлением, ведь даже при пониженных параметрах, реле давления включает насос не при нулевом значении давления в системе. И если напорный трубопровод уже заполнен водой и есть минимальный перепад по высоте между насосом и потребителями (а он, как правило, есть, редко, кто ставит насосную станцию на чердаке), то даже если на манометре «ноль», минимальное давление все равно присутствует. Кроме того, если насос уже запустился и смог, хотя бы однажды, поднять давление в системе, то он уже смог выгнать лишний воздух, по крайней мере из корпуса.

И еще один момент. Как мы все знаем, вода – вещество не сжимаемое, и её объем мало зависит от давления. А вот объем воздуха очень сильно зависит от давления окружающей среды, и первоначальное разрежение на всасе насоса превращает небольшой пузырек воздуха в монстра, который способен на много уменьшить общую плотность водо-воздушного коктейля в корпусе насоса. Соответственно, подняв любым способом, хотя бы на немного, первоначальное давление во всасывающей трубе, мы увеличиваем плотность коктейля, и, тем самым, уменьшаем вероятность срыва насоса.

Резонный вопрос: «А как же кавитация?». А кавитация никуда не делась, но, опять же, объем воздушных каверн зависит от давления в корпусе насоса, а дальше… смотрите предыдущий абзац.

Еще один частый вопрос, связанный с этой темой: «Почему новый насос запускается легче, чем уже проработавший в составе насосной станции энное количество времени? Ведь до этого было все нормально, насос не трогали, поменяли лишь обратный клапан (гидроаккумулятор, реле давления и т. д.)». Да потому что он новый, его еще «не ел песочек», еще не было небольших деформаций внутренних пластиковых стенок из-за перегрева, еще не было работы электродвигателя на пределе возможного, подшипники и сальники еще не изношены и прочее, и прочее. Как бы ни был хорош насос, со временем, все равно происходит износ его рабочих элементов, и его характеристики начинают уменьшаться. Просто у хороших и дорогих насосов это происходит немного позже.

Итак, вывод из всего предыдущего: нужно каким-то образом поднять давление во всасывающей трубе, и не допустить его падение при пуске насоса и в ближайшее после пуска время, до тех пор, пока насос сам не сможет создать устойчивый рост избыточного давления в системе.

Как это сделать? Как обычно, предлагаю на Ваш суд несколько решений.

  Работа внутреннего эжектора центробежного насоса.

 На самом деле, даже производители насосов знакомы с этой проблемой. Иначе зачем, по-вашему, нужны насосы с внутренним, уже встроенным в насос, эжектором. Другое дело, что эжектор этот – далек от идеального из-за ограничения в габаритах и не всегда бывает эффективен. Хотя задумка правильная.

 Вода из нижней части рабочей камеры насоса, там, где меньше вероятность появления воздуха, подается снова на всас насоса, тем самым повышая давление на всасе. Кроме того, сам всас насоса немного приподнят относительно центра насоса, где и расположен реальный вход в рабочую камеру, создавая небольшой гидравлический подпор (смешно, сантиметров 10) и действуя в качестве гидрозатвора, который отводит попадающий воздух в верхнюю часть всаса. Проблема только в том, что плотность «коктейля» настолько мала, что этих мер недостаточно.

 При этом на работу эжектора тратится часть мощности электродвигателя, уменьшая напор и производительность насоса. Но производитель идет на эти жертвы ради устойчивой работы насоса и легкого его пуска.

Владельцы вихревых насосов лишены даже этой малости, зато их насосы обладают большим напором и расходом при, относительно, небольшой мощности электродвигателя.

Поможем насосу запуститься. Заливная воронка на всасе.

 Классическим решением данной проблемы является отдельная заливная трубка с воронкой, подсоединенная через тройник ко всасу насоса. Преимущество такого решения в его простоте и эффективности.

 Заполняя воронку водой, мы, тем самым, на немного (1 метр = 0,1 бар) повышаем первоначальное давление на всасе. И все бы было прекрасно, если бы мы могли поддерживать высокий уровень воды в воронке постоянно, пока насос не «подхватит». Но это не всегда возможно. Можно заменить маловместительную воронку на бутыль или канистру, но где гарантия, что их объема точно хватит для пуска насоса.

Кстати, переместив кран на заливной трубке повыше от тройника, мы устраиваем ловушку для воздуха, приходящего к насосу по всасывающей трубе. К сожалению, только для этой его части. Подсосы воздуха непосредственно на насосе, воздух, появившийся в результате кавитации и оставшийся в насосе, мы устранить не сможем.

Гидрозатвор на всасе.

 Теми же недостатками обладает устройство гидрозатвора на всасе насоса. Но у него есть преимущества по сравнению с обычной заливной воронкой. Если всасывающий трубопровод действительно герметичен, то залить его нужно будет всего один раз, а дальше атмосферное давление само будет заполнять эту емкость, отделяя воздух от воды. Высота гидравлического подпора в этом случае зависит от высоты размещения самого гидрозатвора.

Важным преимуществом такого решения является возможность разместить обратный клапан системы на всасывающей трубе уже после гидрозатвора, т.е. непосредственно перед насосом. Многие читатели спрашивали об этом, не желая откапывать на морозе кессон скважины или лезть в колодец. Я их понимаю.

Ну, и небольшая «ложка дегтя». Высоту подъема воды на всасе, при таком размещении обратного клапана, нужно рассчитывать по высоте входа трубы в гидрозатвор, а не по высоте насоса. И если у Вас насос уже на пределе всасывающих возможностей, то этот вариант Вам не подойдет.

Еще есть некоторые тонкости при использовании такого устройства, но эта тема для отдельной статьи, если Вам будет интересно. И так этот рассказ получается довольно длинным, поэтому я продолжу в следующий раз.

В следующий раз я расскажу еще о нескольких способах облегчить «первый» пуск насоса. Да-да, не об одном, не двух, а о нескольких, в том числе и об универсальном, подходящем, по моему мнению, практически для любого насоса. Надеюсь, Вы сможете выбрать наиболее подходящий для Вас.

За сим, откланиваюсь, уважаемые читатели «Сан Самыча», надеюсь не надолго.

ПРОДОЛЖЕНИЕ.

Почему насосы не могут всасывать жидкость с глубины более 9 метров?

Ежедневные вопросы по поводу того, почему же насосы не могут всасывать жидкость с глубины более 9 метров сподвигли меня написать статью об этом.

Для начала немного истории:

В 1640 г. в Италии герцог Тосканский решил устроить фонтан на террасе своего дворца. Для подачи воды из озера был построен трубопровод и насос большой длины, каких до этого еще не строили. Но оказалось, что система не работает — вода в ней поднималась только до 10,3 м над уровнем водоёма.

Никто не мог объяснить, в чем тут дело, пока ученик Галилея — Э. Торичелли не высказал мысль, что вода в системе поднимается под действием тяжести атмосферы, которая давит на поверхность озера. Столб воды высотой в 10,3 м в точности уравновешивает это давление, и поэтому выше вода не поднимается. Торичелли взял стеклянную трубку с одним запаянным концом и другим открытым и заполнил ее ртутью. Потом он зажал отверстие пальцем и, перевернув трубку, опустил ее открытым концом в сосуд, наполненный ртутью. Ртуть не вылилась из трубки, а только немного опустилась.

Столб ртути в трубке установился на высоте 760 мм над поверхностью ртути в сосуде. Вес столба ртути сечением в 1 см2 равен 1,033 кг, т. е. в точности равен весу столба воды такого же сечения высотой 10,3 м. Именно с такой силой атмосфера давит на каждый квадратный сантиметр любой поверхности, в том числе и на поверхность нашего тела.

Точно также, если в опыте с ртутью вместо неё в трубку налить воды, то столб воды будет высотой 10,3 метра. Именно поэтому и не делают водяных барометров, т.к. они были бы слишком громоздкими.

Давление столба жидкости (Р) равно произведению ускорения свободного падения (g), плотности жидкости (ρ) и высоты столба жидкости:

Атмосферное давление на уровне моря (Р) принять считать равным 1 кг/см2 (100 кПа).

Примечание: на самом деле давление равно 1,033 кг/см2.

Плотность воды при температуре 20°С равна 1000 кг/м3.

Ускорение свободного падения – 9,8 м/с2.

Из этой формулы видно, что чем меньше атмосферное давление (P), тем на меньшую высоту может подняться жидкость (т.е. чем выше над уровнем моря, например в горах, тем с меньшей глубины может всасывать насос).

Также из этой формулы видно, что чем меньше плотность жидкости, тем с большей глубины можно её выкачивать, и наоборот, при большей плотности глубина всасывания уменьшится.

Например, ту же ртуть, при идеальных условиях, можно поднять с высоты не более 760 мм.

Предвижу вопрос: почему в расчетах получился столб жидкости высотой 10,3 м, а насосы всасывают только с 9 метров?

Ответ достаточно простой:

— во-первых, расчет выполнен при идеальных условиях,

— во-вторых, любая теория не дает абсолютно точных значений, т.к. формулы эмпирические.

— и в-третьих, всегда существуют потери: во всасывающей линии, в насосе, в соединениях.

Т.е. не возможно в обычных водяных насосах создать разрежение, достаточное для того, чтобы вода поднялась выше.

Итак, какие выводы из всего этого можно сделать:

1. Насос не всасывает жидкость, а лишь создает разрежение на своём входе (т.е. уменьшает атмосферное давление во всасывающей магистрали). Вода выдавливается в насос атмосферным давлением.

2. Чем больше плотность жидкости (например, при большом содержании в ней песка), тем меньше высота всасывания.

3. Рассчитать высоту всасывания (h) можно, зная, какое разрежение создает насос и плотность жидкости по формуле:

h = P / ( ρ* g) — x,

где P – атмосферное давление, — плотность жидкости. g – ускорение свободного падения, x – величина потерь (м).

Примечание: формула может использоваться для расчета высоты всасывания при нормальных условиях и температуре до +30°С.

Также хочется добавить, что высота всасывания (в общем случае) зависит от вязкости жидкости, длины и диаметра трубопровода и температуры жидкости.

Например при увеличении температуры жидкости до +60°С, высота всасывания уменьшается почти в два раза.

Это происходит потому, что возрастает давление насыщенных паров в жидкости.

В любой жидкости всегда присутствуют пузырьки воздуха.

Думаю, все видели, как при закипании сначала появляются маленькие пузырьки, которые затем увеличиваются, и происходит кипение. Т.е. при кипении, давление в пузырьках воздуха становится больше, чем атмосферное.

Давление насыщенных паров и есть давление в пузырьках.

Увеличение давления насыщенных паров приводит к тому, что жидкость закипает при более низком давлении. А насос, как раз и создает в магистрали пониженное атмосферное давление.

Т.е. при всасывании жидкости при высокой температуре, существует возможность её закипания в трубопроводе. А никакие насосы не могут всасывать кипящую жидкость.

Вот, в общем, и всё.

А самое интересное, что все это мы все проходили на уроке физики при изучении темы «атмосферное давление».

Но раз вы читаете эту статью, и почерпнули что-то новое, то именно «проходили» 😉

Распространенные проблемы с канализационными насосными станциями

Время чтения: 3 минуты

Канализационная система состоит из сети труб, по которым отходы транспортируются из дома в основную канализацию. Обычно это происходит самотеком, так как отходы стекают в канализацию. Однако, когда участок находится на более низком уровне, а канализационный коллектор выше него, этот обычный метод не сработает, и тогда на помощь придет канализационная насосная станция.

Что такое канализационная насосная станция?

Отличие обычной канализационной системы от канализационной насосной станции заключается в мокром колодце. Он действует как приемник сточных вод от собственности, он расположен ниже дома, поэтому любые отходы могут попасть в него под действием силы тяжести.

Сточные воды будут оставаться в колодце, пока не достигнут определенного уровня, в этот момент включается насос, позволяя им двигаться вверх по склону, из колодца, пока они не достигнут точки, где они могут попасть в основной коллектор на своем пути. собственный.

Проблемы с насосной станцией для сточных вод

По своей природе, независимо от того, насколько хороша ваша насосная система, могут возникнуть проблемы, чтобы уменьшить вероятность возникновения чего-то серьезного, необходимо проводить регулярные проверки обслуживания. Однако также полезно знать о некоторых распространенных проблемах, которые могут возникнуть, чтобы знать, на что обращать внимание.

Резервуар для туалетов

Несмотря на то, что насосы сделаны так, чтобы свести к минимуму риск засорения, вероятность их возникновения все же существует. Жиры, масла или любые другие восковые отложения, смываемые в канализацию, могут затвердевать и засорять насосные камеры. Если это произойдет, ничто не сможет пройти, что приведет к резервному копированию туалетов.

Обычно вы почувствуете запах сточных вод до того, как в туалете появится запах. Если вы все-таки почувствуете этот запах, лучше всего немедленно вызвать специалиста.

Насос не включается

Это может быть вызвано различными причинами, в том числе засорением крыльчатки мусором, недостаточной подачей электроэнергии насосу, засорением насоса, что может привести к выходу из строя электрики, или насосом, который может просто сломаться.

Насос не выключается

Обычно это происходит из-за контрольного поплавкового выключателя, иногда он застревает в неправильном положении, в результате чего насос остается включенным. Если в ваших счетах за электроэнергию наблюдается необычный всплеск, это может быть признаком того, что ваша помпа не отключается.

Durrarchitect

Сломанные трубы

Признаков того, что ваши трубы сломаны, может быть много, в том числе засорение унитаза, проблемы с плесенью, медленные стоки и трещины в фундаменте. Если вы видите какие-либо признаки того, что ваша труба может быть сломана, лучше немедленно обратиться к профессионалу, потому что, если вы не поймаете это на ранних стадиях, ремонт может быть очень дорогим. Регулярные проверки технического обслуживания могут помочь вам избежать этих проблем, поскольку они могут обнаружить их до того, как они станут слишком серьезными.

Сигналы тревоги

Если ваша насосная станция оснащена сигнализацией, она должна звучать при обнаружении проблемы. Это может включать что угодно, от высокого уровня воды до неисправности. Немедленно свяжитесь со специалистом, если услышите сигнал тревоги, чтобы снизить риск затопления.

Техническое обслуживание вашей насосной станции

Большинство упомянутых проблем можно легко предотвратить с помощью регулярных профилактических осмотров. Они могут обеспечить бесперебойную работу, а также надежность, снижение эксплуатационных расходов и эффективность. Во время этих проверок проверяются все компоненты, а также устраняются любые незначительные повреждения, чтобы они не стали более серьезными.

Хотя с канализационными насосными станциями могут произойти различные неполадки, это не значит, что ими нельзя пользоваться. На самом деле они очень полезны и могут стать отличным решением для людей, живущих в собственности более низкого уровня.

Обратитесь к нашим специалистам по насосам для сточных вод

Если вы обеспокоены тем, что ваша система перекачки сточных вод неисправна, или вы решили пройти техническое обслуживание, позвоните в компанию Pumping Solutions по телефону 01775 711960 сегодня.

Находите эту статью полезной? Найдите больше подобных сообщений в нашем блоге или посетите нашу страницу услуг, чтобы узнать, как мы можем вам помочь!

Блог →
Наши услуги →

Обратитесь к специалистам по насосам

Шум насоса: 6 распространенных проблем и способы их устранения

В традиционной системе охлаждения используются водяные насосы двух типов: водяные насосы конденсатора и насосы охлажденной воды.

Водяные насосы конденсатора подают горячую воду из конденсатора в градирню, а насосы охлажденной воды подают холодную воду из чиллера в кондиционер.

Когда насос выходит из строя, вода не циркулирует эффективно или вообще не циркулирует, что ставит под угрозу производительность всей вашей системы. К счастью, насосы часто сигнализируют о том, что что-то не так, и эти сигналы обычно проявляются в виде странных и громких шумов насоса.

Громкие и необычные звуки, издаваемые циркуляционными насосами, всегда являются тревожным сигналом, признаком того, что что-то не так либо с насосом, либо с водопроводом.

Давайте рассмотрим несколько проблем в системе здания, которые обычно являются причиной шума насоса, и способы их устранения.

 

1. Воздух в системе

Если у вас не установлен воздухоотделитель, скорее всего, в какой-то момент вам придется столкнуться с воздухом в системе. Когда это происходит, важно осмотреть водопроводные линии и прокачать систему.

Современные насосы оснащены выпускными клапанами, которые значительно упрощают процесс. Медленно открывайте клапан, пока не услышите шипящий звук. Как только шипение прекратится, вы увидите небольшую каплю воды, указывающую на то, что в насосе больше нет воздуха. В этот момент вы можете закрыть клапан.

После этого убедитесь, что насос установлен правильно. Даже несколько градусов наклона или смещения могут привести к тому, что воздух будет заблокирован в насосе.

 

2. Неправильный размер насоса

Как слишком большие, так и маленькие насосы могут создавать шумы в системе, но решение для каждого случая будет разным.

Насосы могут быть увеличены по нескольким причинам. Это может произойти из-за некоторой ошибки на этапе планирования и проектирования, когда инженерам необходимо «прикинуть» длину трубопровода и фитингов, или это может быть специально спроектировано таким образом, чтобы система могла расширяться в будущем и обеспечивать «правильный размер» насос сегодня не сможет удовлетворить будущий спрос завтра.

Иногда требуется замена насоса сразу, а у поставщика не было на складе идеальной замены, или инженеры выбирают насос увеличенного размера, уже учитывая ожидаемое накопление коррозии в трубах, требующих большего напора насоса.

Независимо от причины, которая привела к использованию слишком большого насоса, его наличие всегда может вызвать чрезмерный шум и вибрацию, расшатывание соединений и соединений и усталость трубопровода.

Для решения проблемы можно предпринять следующие действия:

  • Дросселировать клапаны на стороне нагнетания до устранения шумов
  • Обрезка рабочего колеса по диаметру
  • Уменьшить скорость насоса
  • Добавить линию рециркуляции потока
  • Установите преобразователь частоты и снимите регулирующие клапаны

Недостаточный размер насоса представляет собой более серьезную проблему. Это потому, что у вас, к сожалению, нет особого выбора, кроме замены насоса и установки большего.

Если система недостаточного размера, она не может обеспечить требуемый режим работы, а также может привести к застою — когда нагнетание насоса перекрывается из-за засорения линии или непреднамеренно закрытого клапана. Когда это происходит, жидкость бурлит внутри насоса, пока не нагревается до состояния пара, вызывая шум и повреждения. Насосы с тупиковой головкой могут привести к перегоранию двигателя, повреждению крыльчатки, протечкам уплотнений, растрескиванию втулок и повреждению эластомеров, что в конечном итоге приведет к выходу насоса из строя.

В системах с насосами меньшего размера вы можете проверить, может ли существующий насос работать с более крупным двигателем, чтобы избежать мертвого напора. Несмотря на то, что это может быть самый дешевый способ справиться с проблемой, он не самый лучший, и решение будет временным.

 

3. Чрезмерный износ подшипников 

Не все насосы имеют подшипниковые узлы. Однако все электродвигатели насосов имеют подшипники, и чрезмерный износ подшипников — будь то в узле или внутри двигателя — может вызвать шум насоса.

Хорошей новостью является то, что для моделей насосов с подшипниковыми узлами компоненты обычно доступны для покупки, они недороги и их легко заменить.

Плохая новость заключается в том, что подшипники двигателя не продаются как комплектующие, и когда подшипники в двигателе изнашиваются, необходимо заменять деталь целиком.

Срок службы подшипника определяется тем, сколько часов требуется металлу для «усталости», но на это могут влиять многие факторы, такие как статическая перегрузка, коррозия, отсутствие избытка смазки, перегрев, несоосность и загрязнение. Таким образом, лучший способ избежать слишком быстрого износа подшипников — профилактическое обслуживание и комплексная проверка вашей системы.

 

4.

Засорение системы

Вода с ржавчиной и другими отложениями может изнашивать циркуляционный насос и засорять рабочее колесо. Когда это происходит, шум является следствием. Чтобы избавиться от него, нет волшебной палочки: решение заключается в очистке системы.

Многие системы HVAC имеют специальные системы фильтрации и сепараторы грязи для предотвращения засорения. Отложения могут быть легко удалены из системы с помощью продувки водой.

Эти системы защищают не только насосы, но и все другие блоки HVAC в системе.

 

5.

Неправильная настройка скорости

Высококачественные и современные насосы обычно имеют 3 настройки потока, в то время как более старые насосы могут иметь только одну или две. Вот почему старые насосы обычно более шумные, чем другие. Они менее эффективны, и потеря энергии обычно выражается в гудящем шуме.

Если помпа издает этот шум и у вас есть несколько параметров настройки потока, найдите переключатель потока и поверните его на один уровень вниз. Затем проверьте радиаторы и направляющие башни, чтобы убедиться, что они все еще нагреваются до нужной температуры. Если да, то оставьте так.

Если вы работаете с частотно-регулируемым приводом, а насос продолжает издавать гудящий звук, проверьте правильность заземления двигателя на частотно-регулируемый привод. Во многих случаях неправильное заземление позволяет системе действовать как передатчик шума.

 

6. Отсутствие NPSHa или неправильная установка, вызвавшая отсутствие NPSHa

Чтобы понять это, нам нужно сделать шаг назад и быстро взглянуть на работу насоса. Принцип Бернулли показывает нам, что жидкость течет из областей с высоким давлением в области с низким давлением.

Насосы HVAC работают за счет создания низкого давления на входе, что позволяет нагнетать воду в насос. Когда жидкость проходит через насос, давление уменьшается. Если давление на входе падает ниже давления паров жидкости, на входе образуются пузырьки воздуха. Эти пузырьки могут вызвать кавитацию, что приведет к шуму насоса, повреждению и снижению производительности.

Чистый положительный напор на всасывании или NPSH – это разница между давлением жидкости на всасывании насоса и давлением паров жидкости, которая выражается в виде высоты столба жидкости. NPSH обычно должен составлять от 3 до 5 футов, чтобы избежать кавитации.

Если при осмотре обнаруживается проблема с кавитационным запасом, в основном можно сделать две вещи: во-первых, есть возможность выбрать насос, более подходящий для применения (наша рекомендация, если насос уже получил непоправимый ущерб из-за кавитации ). Во-вторых, систему можно переоценить, чтобы увидеть, может ли подъем градирни увеличить NPSHa (абсолютное давление на всасывающем отверстии насоса) или можно уменьшить фитинги, которые лишают текущий NPSHa.

Если вам нужна помощь по вопросам, связанным с циркуляционными насосами, свяжитесь с нами. У нас есть 3 офиса в Калифорнии, и мы можем приехать, где бы вы ни находились, чтобы осмотреть вашу помпу, если вы слышите громкие и необычные шумы.

Команда инженеров по продажам и технических специалистов компании Vertical Systems может указать причину шума насоса и определить наилучшее решение для ее устранения. Специалисты по всем типам циркуляционных насосов, наши специалисты могут решить любые проблемы с установкой, изношенными компонентами, протечками, а также вопросы, связанные с температурой воды, давлением и пузырьками воздуха. Они также могут порекомендовать энергосберегающие обновления, которые повысят производительность вашей системы и сэкономят ваши деньги.