Схема втягивающего реле: Схема втягивающего реле, две обмотки — Схемы стартеров — Стартеры — Каталог статей

Содержание

Как работает втягивающее реле стартера-неисправности

Необходимо знать, как работает втягивающее реле стартера. Для того чтобы правильно диагностировать неисправности возникающие при работе стартера.

Содержание статьи:

  • 1 Для чего нужно втягивающее реле
    • 1.1 Функции втягивающего реле стартера
      • 1.1.1 Схема включения катушки реле.
    • 1.2 Как работает втягивающее реле стартера
  • 2 Неисправности втягивающего реле стартера
    • 2.1 Неисправность обмоток
    • 2.2 Образование нагара
  • 3 Как проверить втягивающее реле стартера в домашних условиях
    • 3.1 При помощи мультиметра
    • 3.2 Проверка втягивающего реле аккумулятором

Для чего нужно втягивающее реле

Функции втягивающего реле стартера

  • Втягивающее реле выполняет две основные функции. Подводит шестерню бендикса к шестеренчатому венцу маховика. Реле представляет собой электромагнитную катушку. Внутри катушки расположен якорь-поршень цилиндрической формы.  . Который под воздействием силы магнитного потока перемещается поступательно. Якорь зацеплен за вилку, Которая соединена с бендиксом.

Когда электрический ток подаётся от замка зажигания на обмотку реле. Якорь втягивается внутрь реле. Тянет за собой вилку. Бендикс выталкивается. И шестерня бендикса и венец маховика соединяются.

Схема включения катушки реле.

Как работает втягивающее реле стартера

Катушка втягивающего реле состоит из двух обмоток. Обмотки соединены между собой. И в месте соединения на них приходит плюс от замка зажигания или реле стартера которая управляется замком зажигания. Минусы катушки имеют разное подключение. Одна соединена на массу. Её называют удерживающей.

Вторая обмотка соединена с клеммой к которой подключен провод  идущий из стартера. Этот провод идет на обмотки статора с них на щетки коллектора якоря. Фактически пока стартер не начал работать Вторая обмотка имеет минус через якорь от минусовой щетки коллектора. Он идет через обмотку якоря на плюсовую щетку далее на статор и выходит к клемме на втягивающем реле.

Эта обмотка называется втягивающая. Пока стартер не включен обе обмотки втягивающего реле имеют общий плюс и минусы от разных точек подключения. Общее плюсовое соединение подключено к клемме управления втягивающим реле.

Включается замок зажигания. Проворачивается ключ стартера. Плюс приходит на клемму управления. В обеих катушках создаётся электромагнитное поле. Силы, которого хватает, чтобы втянуть якорь.

  • Второе предназначение реле. Соединить клемму, на которую приходит плюс от аккумулятора. С клеммой, через которую подаётся плюс на обмотки статора и якоря. Чтобы стартер начал вращаться. Якорь втягивающего реле помимо того что тянет за собой вилку бендикса с одной стороны . с другой прижимает пятак и который соединяет две клеммы между собой. Стартер начинает вращаться. Втягивающая обмотка, которая имела минус на клемме отключится.

Это произойдет потому что. С одной стороны она имеет общий плюс с удерживающей обмоткой от клеммы управления. С другой стороны минус стал плюсом. На контактах втягивающей обмотки перестанет возникать разность потенциалов. Электромагнитное поле пропадет. Якорь реле будет удерживаться только одной обмоткой. Которая имеет минус на корпусе стартера. Силы магнитного поля будет достаточно чтобы удерживать якорь реле в этом положении. Пока крутится стартер.

Как только двигатель заведется и ключ стартера будет отпущен. Плюс перестанет приходить на удерживающую обмотку. Сила магнитного потока пропадет. Пружина отбросит якорь реле. Пятак отойдет от клемм, и стартер перестанет вращаться. неисправности втягивающего реле стартера

Неисправности втягивающего реле стартера

Именно по этому причиной неисправности втягивающего реле стартера. Может быть вышедшая из строя втягивающая обмотка. Реле щелкает а стартер не крутит. Потому что срабатывает удерживающая обмотка. Но её силы тока не хватает, чтобы сдавить усилие пружины и втянуть якорь реле и прижать пятак  к клеммам.

Неисправность обмоток

Это частая неисправность. Потому что основная нагрузка ложится на втягивающую обмотку. Потому что требуется максимальное усилие чтобы втянуть якорь. Эта обмотка имеет большее сечение провода. Соответственно в ней создаётся больший ток чем в удерживающей обмотке.

Образование нагара

Еще одна неисправность втягивающего реле это образование нагара на пятаке и клеммах. В результате воздействия сильного электрического тока на пятаке и клеммах в результате их взаимодействия образуется нагар и выгорание поверхности. При соединении пятака и клемм нагар не даёт контакта, и электрический ток не поступает на обмотки стартера. На втягивающих реле где снимается крышка с клеммами. Эта проблема решается легко. Пятак переворачивается другой стороной. Клеммы зачищаются.

Как проверить втягивающее реле стартера в домашних условиях

При помощи мультиметра

Проверить втягивающее реле стартера на обрыв обмотки можно мультиметром. Для этого необходимо выставить мультиметр на проверку сопротивления. Один щуп соединить с клеммой управления реле. Второй на массу. Мультиметр должен показать сопротивление. Значит удерживающая обмотка исправна.

Если переместить щуп с массы на клемму и отсоединить провод идущий на обмотки стартера. Мультиметр также должен показать сопротивление. В случае обрыва обмотки мультиметр покажет отсутствие контакта.

Но скорее всего может произойти либо межвитковое замыкание либо замыкание на корпус реле. Замыкание не происходит как провод с проводом   или с корпусом. Замыкание может происходить в месте нарушения изоляции через воздушное пространство. Под нагрузкой проскакивает искра в месте где нарушена изоляция. В результате происходит короткое замыкание через воздух. Сила магнитного потока не создаётся. Стартер не крутится. Обмотку можно прозвонить с помощью Мегомметра, но это так же может не привести к результату.

Проверка втягивающего реле аккумулятором

Поэтому лучше всего снять втягивающее реле со стартера. Собрать схему для проверки на рабочем столе. Минус от аккумулятора соединить с клеммой на которую должен крепиться провод идущий со стартера и корпусом втягивающего реле. Плюс необходимо подать на клему управления

Вк 1 — выключатель имитирует замок зажигания

При включении ВК-1 якорь втягивается Должны работать обе обмотки

При выключении массы выключателем ВК-2 имитируется смена полюсов в момент соединения пятака между клеммами. после того как якорь втянулся.

При этом отключается втягивающая обмотка и в работе остаётся удерживающая. Якорь находится во втянутом состоянии.

При отключении питания от клеммы управления якорь возвращается в исходное положение. выходит из реле

То есть если все работает как описано то реле исправно. Если якорь не втягивается или втягивается наполовину. Обрыв или замыкание обмоток.

От того как работает втягивающее реле зависит правильная работа стартера.

Ремонт втягивающего реле стартера своими руками

Диагностика и ремонт21 апреля 2019

Содержание

  • 1 Особенности устройства втягивающего реле
  • 2 Признаки и причины выхода из строя реле
  • 3 Какой вид реле подлежит ремонту?
  • 4 Как проверить втягивающее реле стартера?
  • 5 Как провести ремонт реле своими руками?

Запуск двигателя автомобиля происходит посредством работы втягивающего реле. Благодаря ему специальный маховик присоединяется к двигателю, запускает его, затем возвращается на место. Неисправность этой детали может привести к тому, что мотор не заведётся.

Особенности устройства втягивающего реле

Для того чтобы самостоятельно починить любую деталь в автомобиле, надо понимать, как она устроена. Это даст представление о том, какие элементы есть внутри, как они работают, и соответственно, как к ним добраться для ремонта.

Втягивающее реле – это капсула, внутри которой установлен электрический магнит, возвратная пружина и стержень. Магнит состоит из двух обмоток: втягивающего сердечника, и удерживающей его в определённом положении обмотки. Именно их работа двигает и фиксирует сердечник внутри механизма.

Как только происходит поворот ключа при заводе двигателя, от аккумулятора происходит подача электричества на обмотки, которые выполняют функцию втягивания. Вследствие этого, вокруг сердечника появляется электромагнитное поле, которое приводит его в движение. Одновременно сжимается возвратная пружина, которая потом вернёт его в исходное положение. Совместно с этими движениями происходит присоединение противоположного конца детали к маховику. За счёт этого, шестерёнка, соединённая с бендиксом, соединяется с маховиком и передаёт ему движение.

В результате всех этих манипуляций происходит старт двигателя. После чего механизм отключает внутри себя электрический ток, и возвращает все свои детали в исходное положение. Только сердечник остаётся в исходном положении благодаря одной из обмоток.

Справка. Существуют реле только с одной обмоткой, обладающей функцией втягивания. Но такие детали не распространены из-за того, что потребляют много электричества, и как следствие, быстрее сажают аккумулятор.

Признаки и причины выхода из строя реле

Если реле сломалось, то об этом расскажут следующие признаки:

  • при попытке завести двигатель ключом, он не запускается, или заводится только после двух-трёх попыток;
  • после запуска двигателя раздаётся жужжание. Это значит, что стартер вращается на повышенных оборотах, хотя уже не должен.

Если наблюдается хотя бы один из этих признаков, то это повод насторожиться. Реле может скоро сломаться. Причин, по которым это происходит несколько:

  • одна из обмоток, или обе сразу обгорели или оборвались;
  • деформация возвратной пружины внутри механизма;
  • внутри детали произошло короткое замыкание на одной из обмоток;
  • уменьшилась площадь поверхности контактных пластин, или они полностью сгорели.

Понимая причины по которым реле выходит из строя, ремонт займёт меньше времени, т.к. сразу понятно где искать неисправность.

Какой вид реле подлежит ремонту?

В автомобиле может быть установлен один из двух типов реле: разборное и неразборное. Если в машине второй тип реле, то починить его своими руками не всегда получится.

Неразборное реле можно починить только в том случае, если пригорели контактные пластины. В случае если испортилась одна из обмоток или в них произошло короткое замыкание, то починить его уже не удастся – только замена детали.

Важно! В случае самостоятельного ремонта, при изъятии реле, рекомендуется пометить клеммы, для того чтобы не перепутать их при установке механизма на место. Также не лишним будет зачистить и обезжирить контакты на реле и стартере.

Как проверить втягивающее реле стартера?

При проверке реле, в первую очередь нужно посмотреть: не нарушена ли проводка, соединяющая его со стартером. Делается это просто: смотрим визуально и ищем места разрывов. Затем, пробуем завести двигатель, если произошёл звук срабатывания – с проводами всё в порядке.

Бывают случаи, что при повороте ключа раздаётся щелчок, но отсутствует вращение стартера – значит подгорели контактные пластины. Проверить это можно подав напряжение на двигатель автомобиля, минуя реле. В этом случае клеммы реле отсоединяются от замка. Затем отвёрткой надо замкнуть клеммы, расположенные на батарее и на стартере. Если началось вращение, то неполадки во втягивающем устройстве.

Есть еще способ провести проверку стартера. Делается это следующим образом:

  1. Контакты реле соединяются короткими проводами с «плюсом» и «минусом» аккумулятора.
  2. Конец провода «минус» к аккумулятору не присоединяется. Он кладётся на контакт. Если в этот момент раздался щелчок, значит деталь работает исправно, если нет, значит деталь неисправна.

Как провести ремонт реле своими руками?

Для самостоятельного ремонта понадобится следующее:

  • плоская отвёртка;
  • паяльник;
  • олово;
  • канифоль.

Начинать разборку реле нужно с извлечения сердечника. Затем откручиваются два винта. Они держат крышку, под которой расположены контакты катушек.

Внимание! Ни в коем случае нельзя дёргать крышку. Если это сделать, то оборвутся провода, которые соединены с контактами. Сперва их нужно отсоединить с помощью паяльника. Чтобы получить доступ к контактным пластинам, достаточно отсоединить один провод.

После того как провода отсоединены, нужно открутить ещё два винта, и извлечь пластины, которые ими удерживались. Если на них появился нагар, то он счищается с помощью шлифовальной шкурки. Ею также необходимо обработать и места креплений в самой детали. Это можно сделать и отвёрткой, если шкуркой туда не добраться. По завершении всех этих действий деталь собирается обратно.

Этот алгоритм применяет как для неразборных, так и для разборных деталей. Разница заключается в необходимости дополнительно вывинтить длинные болты, чтобы получить доступ к внутренностям детали.

Само по себе реле стартера не является сложным механизмом. При этом его поломка не позволит завести двигатель автомобиля, и как следствие использовать его. Способы его проверки и ремонта не являются сложными процедурами, требующими специального образования и навыков. Главное при его ремонте и проверке, чтобы всё необходимое было под рукой.

В случае, если в автомобиле установлено неразборное реле, рекомендуется не тратить время на попытки его реанимировать, а сразу заказать через интернет, или купить на рынке новую деталь. Так можно сэкономить, в первую очередь, время. Это связано с тем, что даже если его удастся отремонтировать, оно прослужит меньше новой детали, и всё равно придётся его менять. Лучше это сделать сразу.


Описание соленоидов, контакторов и электромеханических реле

Для некоторых слова соленоид и реле вызывают в воображении видения древнего электромеханического мира, который теперь заменен полностью электронными устройствами, интеллектуальными двигателями и многим другим. Это почти логично, поскольку эти два компонента в различных формах существуют с нами уже более 150 лет. Но не обманывайте себя: оба устройства по-прежнему незаменимы… и остаются жизнеспособным выбором для преобразования электрической энергии в механическое движение (в случае соленоидов) или там, где сигнал должен управлять путем включения-выключения одного или нескольких других сигналов. (в случае реле). Давайте сравним эти два электрических компонента — имеющих очень разное применение, но использующих очень схожую физику.

Что такое соленоид?

В общих чертах соленоид представляет собой спирально намотанную катушку с полым центром вдоль ее продольной оси. Внутри этой катушки находится свободно плавающий поршень из магнитного материала, который втягивается или выдвигается вдоль этой оси — с головкой к одному из концов полости.

Используемые в автоматизированных системах в течение многих десятилетий, соленоиды и реле по-прежнему являются жизненно важными компонентами, особенно там, где требуется универсальность, надежность, простота использования и гибкость для линейного перемещения или переключения цепей. В соленоиде магнитное поле катушки, находящейся под напряжением, перемещает захваченный металлический плунжер. При отключении питания поршень возвращается в нейтральное положение. Напротив, электромеханическое реле имеет якорь, который перемещается и замыкает (или размыкает) контактную цепь, когда катушка находится под напряжением и создает магнитное поле.

Где используются соленоиды? Соленоиды отлично подходят для мест, где требуется резкое и быстрое линейное движение в ограниченном диапазоне. Конечно, соленоиды различаются по размеру и мощности, но типичные размеры варьируются от одного до шести дюймов в длину с линейным движением того же диапазона. В зависимости от витков провода и приложенного тока соленоиды могут создавать очень большие силы удара, способные пробивать отверстия в металле или формировать головки заклепок. Среди множества применений соленоидов — открытие и закрытие замков, движение промышленного оборудования и раздача в торговых автоматах… и везде, где конструкция машины требует сплошного линейного хода или ударного действия.

Как определяется сила соленоида? Выходная сила соленоида выражается уравнениями, основанными на законе Ампера. Они определяют мощность с точки зрения количества витков N, площади поперечного сечения якоря A, размера зазора g, магнитной проницаемости воздуха μ O и приложенного тока i. Обратите внимание, что мощность выходной силы пропорциональна квадрату тока и числа витков. Более реалистичные уравнения используют эти параметры и учитывают потери на окантовке катушки, дефекты катушки и другие реальные проблемы.

Как электрическая схема управляет соленоидом? Как и большинство магнитных устройств, соленоид управляется током, поэтому его лучше всего питать от настоящего источника тока. Однако, поскольку во многих приложениях используется источник напряжения (рельс), а не источник тока, соленоиды также определяются с точки зрения их сопротивления постоянному току… поэтому можно использовать источник напряжения, если он может обеспечить необходимый ток в соответствии с законом Ома. .

Имеет ли значение, использует ли инженер-конструктор источник тока или источник напряжения? Да и нет. Во многих успешных конструкциях соленоидов используются источники напряжения, способные обеспечить необходимый ток. Однако может быть трудно правильно управлять этим током от источника напряжения. Это связано с тем, что относительно высокое потребление соленоидом переходного тока может привести к «падению» источника напряжения, когда он пытается подать этот импульс тока — если только это не жесткий источник с очень низким сопротивлением подводящего провода. именно поэтому в конструкции везде, где это возможно, используется источник тока, а не источник напряжения.

Другие проблемы с электромагнитным приводом? Большинство соленоидов, как правило, используют относительно большое количество энергии, и они рассеивают большую часть этой мощности в виде тепла. Это означает, что они сильно нагреваются и могут демонстрировать как короткий срок службы, так и деградацию окружающей системы. Конечно, при импульсной работе соленоида (как в ситуации с низким рабочим циклом торгового автомата) это не может быть проблемой. Тем не менее, это может быть проблемой в больших объемах высокопроизводительных приложений на промышленных производственных линиях.

Каковы другие недостатки соленоидов? В дополнение к их требованиям к быстрым переходным процессам и сильному току, их трудно использовать для точной работы силы или повторяемости. Тем не менее, интеллектуальные драйверы вместе с обратной связью по положению через устройства на эффекте Холла значительно улучшили возможности соленоидов.

Как улучшить работу соленоида? Существует два основных режима соленоида. В базовом ударном режиме соленоид (при подаче питания) перемещает свой плунжер и с силой ударяет… а затем обесточивается — как при открывании двери. Во втором режиме на соленоид подается питание, и он удерживается в этом режиме в течение относительно длительного периода времени — например, когда дверь должна оставаться незапертой, когда через нее проходят люди. Любое использование, требующее удержания соленоида во включенном положении более чем на короткий ход, приведет к выделению тепла и потреблению значительного количества энергии. В конце концов, величина тока, необходимая для удержания соленоида, намного меньше тока активации. Вот где полезны умные драйверы — активировать соленоиды на полном токе, а затем переключиться на гораздо более низкий ток удержания.

Подробнее об интеллектуальных драйверах соленоидов

Хотя можно управлять соленоидом, просто подключив его к подходящей шине напряжения или источнику тока, интеллектуальный драйвер может делать гораздо больше. С электрической точки зрения соленоид подобен двигателю: оба управляются током и действуют как высокоиндуктивные нагрузки, поэтому требования к драйверам также схожи. Неудивительно, что многие компоненты, используемые для управления катушкой двигателя (обычно полевые транзисторы с металл-оксидом и полупроводником, называемые полевыми МОП-транзисторами), и их драйверы также работают как драйверы соленоидов. Например, некоторые энергосберегающие электромагнитные контроллеры тока работают от шины 24 В постоянного тока. Они могут служить настоящим источником тока для управления током соленоида в пиковом режиме и в режиме удержания, что, в свою очередь, снижает мощность и рассеивание тепла за счет использования ШИМ-управления приводом через внешний полевой МОП-транзистор.

Такие интеллектуальные драйверы также позволяют инженерам регулировать пиковый ток (и время при этом токе), а также удерживать ток. Они также могут включать автоматическое переключение из режима пикового тока в режим удержания в конце хода плунжера. Некоторые умные водители даже принимают внешний датчик Холла для отслеживания положения плунжера. Датчики в некоторых случаях могут позволить интеллектуальному водителю обнаруживать серьезные и мягкие условия неисправности … такие как короткое замыкание или разомкнутые катушки, а также внешне заблокированное или заблокированное движение плунжера. Хотя для таких драйверов на основе ИС требуется больше внешних компонентов пассивной поддержки, чем простая шина питания, включенная последовательно с соленоидом, они обеспечивают гораздо более высокую производительность.

Конечно, существует множество недорогих приложений (таких как робототехника и игрушки потребительского класса), для которых базовый контур источника питания без электроники является адекватным и экономически выгодным.


Герконовые реле для переключения контактов и т. д.

Герконовые реле представляют собой контактные реле со стеклянным корпусом, которые превосходно работают в пыльных и дымных условиях. В различных источниках герконовые реле перечислены как электромеханические реле (из-за их электромагнитного действия и подвижных элементов), в то время как в других они перечислены как подтип твердотельных реле (из-за их широкого использования в сочетании с твердотельными устройствами). Мы классифицируем герконовые реле как совершенно отдельный класс реле. При работе наиболее распространенной итерации — нормально разомкнутой (НО) схемы — магнитное поле от электромагнита или катушки воздействует на пару близко расположенных гибких язычков. В конечном итоге сила притяжения противоположной полярности трости преодолевает их жесткость и приводит в контакт их кончики (часто позолоченные или изготовленные из материала с высокой проводимостью). После удаления входа язычки возвращаются в исходное положение.

На самом деле, герконовые реле могут включать герконы в различном расположении и количестве, хотя последнее ограничено размером катушки реле. Многие катушки могут обрабатывать до дюжины стандартных переключателей; для приложений, требующих большего, катушки реле могут подключаться параллельно. Также доступны миниатюрные герконовые реле: это устройства для поверхностного монтажа (SMD), которые крепятся непосредственно на печатных платах (PCB).

Герконовые реле часто используются для включения стартеров и других промышленных компонентов.


Чем реле отличается от соленоидов

Теперь рассмотрим конструкцию электромеханических реле. У них много общих электромагнитных характеристик с соленоидами… но они имеют совершенно другую конструкцию и функциональность.

В конструкции электромеханического реле используется катушка и привод тока (или источник напряжения), как и в соленоиде. Однако функция реле совсем другая. Несмотря на наличие альтернатив для некоторых приложений, таких как оптическое твердотельное реле (SSR) и реле на основе MEMS, электромеханическое реле по-прежнему является жизненно важным и универсальным компонентом для переключения сигналов переменного и постоянного тока и мощности — при низких и высоких значениях. уровни.

Как уже было сказано, функция реле состоит в том, чтобы позволить одному сигналу управлять переключением другой цепи с полной гальванической развязкой и без какого-либо электрического контакта между двумя цепями.

Здесь слева показано тепловое реле перегрузки Siemens SIRIUS 3RU21160EB0. Используется для обеспечения защиты от перегрузок в зависимости от тока в главной цепи системы и устанавливается в фидеры нагрузки системы. Диапазон настройки от 0,28 до 0,4 А обеспечивает защиту двигателей и систем до 0,09 А.кВт. Вспомогательные контакты включают нормально замкнутый (НЗ) и нормально разомкнутый (НО).

Преимущества электромеханических реле

Существует множество причин для уникальной и долговечной полезности электромеханических реле — даже при наличии твердотельных реле и реле MEMS.

◾️ Цепь катушки и цепь контактов полностью изолированы друг от друга и могут иметь очень разные уровни напряжения и тока.

◾️ Контакт электромеханического реле образует основное замыкание выключателя… и ток через него может быть переменным или постоянным — независимо от привода катушки. Ни одна из сторон замыкания не заземлена и не подключена к общему проводу цепи, поэтому замыкатель может быть размещен в любом месте цепи.

◾️ Электромеханическое реле может замыкать контакт при активации (называется нормально разомкнутым или нормально разомкнутым) или может размыкать контакт (в нормально замкнутом или размыкающем исполнении). Электромеханические реле также могут использовать несколько контактов.

Это универсальное соединительное реле TRZ 24 В пост. тока, 1 перекидной контакт – 1122880000, справа от Weidmüller, имеет подпружиненные вставные контактные клеммы, которые обеспечивают простоту и надежность проводки системы. Соединительное реле принимает входное напряжение 24 В постоянного тока и имеет переключающий контакт для универсального переключения. Напомним, что переключающие контакты (называемые контактами формы C) сочетают в себе функции замыкающих (форма A) и размыкающих (форма B) цепей… и часто дополняются другой электроникой для выполнения конкретных задач.

◾️ Многие реле управляют несколькими замыкающими и размыкающими контактами — с тремя, четырьмя или даже более независимыми замыкающими и размыкающими контактами. Эти несколько контактов не обязательно должны выдерживать нагрузки одного типа и номинала… поэтому одни контакты могут быть предназначены для сигналов низкого уровня, а другие — для питания.

Релейно-контактные конфигурации включают однополюсное однопозиционное (SPST), однополюсное двухпозиционное (SPDT), двухполюсное однопозиционное (DPST) и двухполюсное двухпозиционное (DPDT).

◾️ Контактная цепь не обязательно должна быть под напряжением при срабатывании реле — что на самом деле необходимо в некоторых конструкциях. Это означает, что реле можно переключать, когда цепь нагрузки отключена. это называется сухой контакт замыкание.

◾️ Электромеханические реле электрически и механически прочны, надежны и просты в устранении неполадок. Они также могут выдерживать переходные процессы, которые могут повредить твердотельный эквивалент. https://www.youtube.com/embed/CbUO3LxUzYc

◾️ Электромеханические реле обычно рассчитаны на токи катушек от 10 мА до пары десятков ампер, с контактами, рассчитанными на миллиампер и несколько вольт на несколько порядков больше для обоих параметры.

◾️ После подачи питания на электромеханическое реле и перемещения якоря требуется лишь более слабое поле, чтобы удерживать его на месте; таким образом, ток удержания реле намного меньше тока срабатывания — обычно примерно вдвое. Это то же самое, что и с соленоидом, и такая же или очень похожая схема может использоваться в качестве привода соленоида или привода реле. Кроме того, релейная нагрузка не обязательно должна быть полностью известна или определена, если она находится в проектных пределах; это полезно в тех случаях, когда нагрузка может иметь неопределенные или трудноуправляемые характеристики.

◾️ Правильно спроектированное реле может использовать низкоуровневое напряжение-ток для коммутации гораздо более высокого напряжения-тока. Кроме того, в реле очень легко найти и устранить неисправности: все, что нужно, — это омметр для измерения непрерывности катушки и сопротивления постоянному току… и для измерения сопротивления контакта, когда реле разомкнуто и замкнуто.

◾️ Реле также можно использовать для переключения РЧ-сигналов, хотя они требуют уникальной внутренней конструкции.

Сравнение реле с контакторами

Реле и контакторы — это электрические переключатели с одинаковыми основными функциями, поэтому некоторые инженеры считают контакторы частью реле. Разница между реле и контакторами заключается в том, где они подходят для использования: реле чаще всего воздействуют на небольшие цепи с силой тока 20 А или меньше. Напротив, контакторы воздействуют на цепи большой мощности… напрямую коммутируют цепи, связанные с сильноточными нагрузками, такими как освещение, большие конденсаторы и электродвигатели со встроенной мощностью.

Мы уже объясняли конструкцию электромеханических реле: точно так же, как реле, контакторы используют электромагнитную катушку для размыкания и замыкания электрической цепи. Однако с контакторами эта катушка всегда находится на собственном источнике питания. Однако контакторы имеют одну или несколько пар трехфазных входов и выходов НО… и, в некоторых случаях, вспомогательные контакты, которые взаимодействуют с главными контактами.

Многие контакторы, используемые в электродвигателях (для включения и отключения питания обмоток), также имеют встроенную защиту от тепловой перегрузки на каждой обмотке. Металлические ленты с низким сопротивлением нагреваются, когда обмотки потребляют ток. При обнаружении перегрева они вызывают размыкание размыкающего контакта (последовательно с электромагнитной катушкой контактора)… что, в свою очередь, обесточивает контактор — и двигатель отключается от питания.

Форматы контакторов обычно соответствуют стандартам NEMA или IEC. Последние, как правило, меньше для данного номинала, а также меньше зависят от массы для отвода тепла от дуги благодаря использованию дополнительных контактов (и дугогасительных катушек) для электромагнитного гашения дуги. Также в конструкцию многих контакторов встроены дугогасительные камеры (замкнутые пространства, огражденные параллельными пластинами) для подавления дуги и гашения дуги.


Недостатки электромеханического реле

❌ Электромеханические реле хорошо подходят для одних ситуаций — и не подходят для других. Они могут быть относительно медленными, со скоростью переключения порядка десятков миллисекунд. Это неприемлемо для тех коммутационных приложений, которым требуются микросекундные или более высокие скорости.
❌ Они будут изнашиваться — хотя качественное реле с хорошей конструкцией, используемое в своих расчетных пределах, может выдержать более миллиона циклов, этого может быть недостаточно. Не только движущиеся механические элементы будут изнашиваться, но и электрическое покрытие контактной поверхности будет изнашиваться из-за многократного замыкания-размыкания…  в конечном счете, контакт будет плохим или прерывистым.
❌ Если контакты не загерметизированы, они могут накапливать грязь и даже подвергаться коррозии (что ухудшает работу контактной стороны).
❌ Они больше, чем аналоги SSR или MEMS, и требуют подачи тока на относительно высоком уровне, поэтому могут потреблять (и рассеивать) значительную мощность… особенно при работе в режиме питания.

Источник избранного изображения: TLXTechnologies

Источник:
Design World Online

Руководство по техническому обслуживанию Toyota Sienna: Обрыв или короткое замыкание в цепи реле электромагнитного клапана ABS — Таблица диагностических кодов неисправностей — Система контроля устойчивости автомобиля

Toyota Sienna Руководство по обслуживанию / Управление тормозами / Система контроля устойчивости автомобиля / Таблица диагностических кодов неисправностей / Обрыв или короткое замыкание в цепи реле электромагнитного клапана ABS

ОПИСАНИЕ

Электромагнитное реле ABS встроено в узел привода тормозов. Это реле
подает питание на каждую АБС
соленоид. Если первоначальная проверка прошла успешно, после поворота ключа зажигания в положение
В положении ON реле включается.

ЭЛЕКТРИЧЕСКАЯ СХЕМА

См. коды DTC C0226/21, C0236/22, C0246/23 и C0256/24 (см. стр. BC-105).

ПРОЦЕДУРА ПРОВЕРКИ

1 ПРОВЕРЬТЕ ПРЕДОХРАНИТЕЛЬ АБС 2

(a) Извлеките предохранитель АБС 2 из блока FL.

(b) Измерьте сопротивление в соответствии со значением (значениями) в
Таблица ниже.

Стандартное сопротивление

2 ПРОВЕРЬТЕ ЭБУ СИСТЕМЫ ПРОТИВОСКОЛЬЖЕНИЯ

(а) Отсоедините разъем ЭБУ системы противоскольжения.

(b) Поверните ключ зажигания в положение ON.

(c) Измерить напряжение в соответствии со значением(ями) в
Таблица ниже.

Стандартное напряжение

3 ПОДТВЕРДИТЕ DTC

УКАЗАНИЕ:
Этот код обнаруживается при обнаружении проблемы в
тормозной привод в сборе.

Электромагнитное реле ABS находится в блоке привода тормозов.

Следовательно, блок реле проверки цепи электромагнитного реле
осмотр не может быть выполнен. Убедитесь, что код неисправности
код выводится перед заменой тормозного привода в сборе.

(a) Сотрите коды DTC (см. стр. BC-82).

(b) Поверните ключ зажигания в положение ON.

(c) Записаны ли одни и те же коды DTC?

Результат

ВНИМАНИЕ:
При замене блока привода тормозов выполните
калибровка нулевой точки (см. стр. BC-70).

ЗАМЕНИТЕ ПРИВОД ТОРМОЗА В СБОРЕ

4 ПРОВЕРЬТЕ ЭБУ СИСТЕМЫ ПРОТИВОСКОЛЬЖЕНИЯ (КЛЕММА GND)

(a) Отсоедините разъем ЭБУ системы противоскольжения.

(b) Измерьте сопротивление в соответствии со значением(ями) в
Таблица ниже.

Стандартное сопротивление

5 ПОДТВЕРДИТЕ DTC

УКАЗАНИЕ:
Этот код обнаруживается при обнаружении проблемы в
тормозной привод в сборе.

Электромагнитное реле ABS находится в блоке привода тормозов.

Следовательно, блок реле проверки цепи электромагнитного реле
осмотр не может быть выполнен. Убедитесь, что код неисправности
код выводится перед заменой тормозного привода в сборе.

(a) Сотрите коды DTC (см. стр. BC-82).

(b) Поверните ключ зажигания в положение ON.

(c) Записаны ли одни и те же коды DTC?

Результат

ПОДСКАЗКА:
Есть подозрение, что вывод кодов DTC был вызван
плохой контакт клеммы разъема.

ВНИМАНИЕ:
При замене блока привода тормозов выполните
калибровка нулевой точки (см. стр. BC-70).

ЗАМЕНИТЕ ПРИВОД ТОРМОЗА В СБОРЕ

    Обрыв или короткое замыкание в цепи реле двигателя ABS

    ОПИСАНИЕ
    Реле двигателя ABS подает питание на двигатель насоса ABS. В то время как АБС и
    TRAC и VSC
    активируется, ЭБУ включает реле электродвигателя АБС и приводит в действие насос АБС.
    мото …

    Неисправность системы управления двигателем

    DTC C1201/51 Неисправность системы управления двигателем
    ОПИСАНИЕ
    Если возникает проблема в системе управления двигателем, ECM передает
    неисправность ЭБУ системы противоскольжения.

    ЭБУ системы противоскольжения установил это…

    Другие материалы:

    Телефон Bluetooth®
    функция сообщения
    Полученные сообщения могут быть переадресованы с подключенного
    Телефон Bluetooth®, позволяющий проверять и отвечать с помощью
    аудио система.

    В зависимости от типа подключенного телефона Bluetooth®,
    сообщения не могут быть переданы в папку входящих сообщений.

    Если телефон не поддерживает функцию сообщений …

    Осмотр на автомобиле
    1. ПРОВЕРЬТЕ ДАТЧИК ЗАДНЕЙ ПОДУШКИ БЕЗОПАСНОСТИ (АВТОМОБИЛЬ НЕ
    УЧАСТВОВАЛ В СТОЛКНОВЕНИИ)

    Выполните диагностическую проверку системы.

    2. ПРОВЕРЬТЕ ДАТЧИК ЗАДНЕЙ ПОДУШКИ БЕЗОПАСНОСТИ (АВТОМОБИЛЬ
    УЧАСТВОВАЛ В СТОЛКНОВЕНИИ И ПОДУШКИ БЕЗОПАСНОСТИ НЕ ИМЕЛИ
    РАЗВЕРНУТ)

    Выполните диагностическую проверку системы.