4.17 Электрическая схема силовой части преобразователя. Силовая часть электрической схемы. Силовая часть электрической схемы
4.17 Электрическая схема силовой части преобразователя. Силовая часть электрической схемы
Силовая часть схемы управления | НПП Ковинт
Силовая часть схемы управления работой винтового компрессора содержит устройства, через которые подается электропитание на главный двигатель и двигатель вентилятора компрессора. В качестве этих устройств наиболее часто применяются электромагнитные контакторы.
Электромагнитный контактор
Схематично конструкция контактора показана на рисунке ниже:
Конструкция электромагнитного контактора
1 — электромагнитная катушка;
2 – неподвижная часть сердечника;
3 – подвижная часть сердечника;
4 – неподвижные контакты;
5 – подвижные контакты;
6 – изолирующий держатель подвижных контактов.
При подаче напряжения на катушку 1 подвижная часть сердечника 3 под действием силы притяжения к намагнитившейся неподвижной части сердечника 2 перемещается вниз. При этом неподвижные контакты 4 попарно замыкаются подвижными контактами 5, которые связаны с подвижной частью сердечника 3 держателем 6.
После отключения напряжения от катушки 1 подвижная часть сердечника 3 возвращается в исходное положение под действием пружины (на рисунке не показана) и пары неподвижных контактов 4 размыкаются.
Как видите, устройство контактора довольно просто. Но благодаря ему решается очень важная задача – коммутация силовых цепей питания электродвигателя (а токи в них могут быть довольно большими) при помощи слаботочной цепи питания электромагнитной катушки.
На принципиальных электрических схемах электромагнитный контактор, как привило, изображается следующим образом (здесь показан контактор для трехфазной цепи):
Изображение контактора на принципиальной электрической схеме
На схеме буквами А1, А2 обозначены выводы электромагнитной катушки, буквами L1, L2, L3 – входные (от источника питания), а буквами Т1, Т2, Т3 – выходные (к обмоткам электродвигателя) силовые клеммы.
Мощность двигателя вентилятора в винтовых компрессорах, как правило, невелика. Поэтому для его включения используется один контактор.
Совсем другое дело – запуск главного двигателя компрессора. Пусковой ток при этом может в 7-8 раз превышать номинальный ток двигателя.
Сразу оговоримся, что описание принципа работы асинхронного электродвигателя выходит за рамки данной статьи. В случае необходимости Вы всегда можете почерпнуть дополнительную информацию из справочников или на просторах Всемирной паутины. Кроме того, мы всегда рады предоставить необходимые сведения после заполнения Вами формы в конце страницы.
Итак, существует несколько способов борьбы с высокими пусковыми токами асинхронного двигателя.
Наиболее распространенным является пуск по так называемой схеме «звезда – треугольник».
Откуда же возник этот термин?
Дело в том, что обмотки трехфазного асинхронного двигателя могут быть соединены «звездой» или «треугольником»:
Соединение обмоток двигателя «звездой» и «треугольником»
На типовой идентификационной табличке (шильдике) электродвигателя можно увидеть вот такие данные:
Типовая табличка электродвигателя
В данном примере рабочее напряжение двигателя при соединении его обмоток «звездой» (Y) составляет 690В, а при соединении «треугольником» (D) – 400В. Номинальный ток при этом составляет 45 и 78А соответственно.
Поскольку в России стандартным считается трехфазное напряжение 400В 50Гц, рабочим для данного двигателя является соединение его обмоток «треугольником».
А что же произойдет, если, сохранив напряжение питания 400В, соединить обмотки двигателя «звездой»?
В случае, когда на валу двигателя постоянно присутствует номинальная нагрузка, такое переключение приведет к росту потребляемого тока. А вот если на валу двигателя в момент пуска нагрузка отсутствует или незначительна, потребляемый ток снизится в 3 раза. Мы не будем здесь приводить математические вычисления, но поверьте – это действительно так.
Из других наших статей, посвященных винтовым компрессорам, Вы уже знаете, что они могут работать в двух режимах – нагрузки и холостого хода. Запуск компрессора всегда происходит на холостом ходу, т.е. нагрузка на вал двигателя очень мала. Поэтому мы смело можем на этапе разгона соединить обмотки двигателя «звездой» для снижения пускового тока.
И лишь через некоторое время (интервал зависит от мощности двигателя, но обычно не превышает 10 секунд) произвести быстрое переключение обмоток на соединение «треугольником».
Как же это реализуется на практике?
Для коммутации обмоток двигателя применяют схему, состоящую из трех контакторов:
Силовая часть схемы «звезда – треугольник»
При запуске сначала включаются контакторы КМ1 и КМ3, соединяя обмотки двигателя в «звезду». Через заданный промежуток времени, отведенный на разгон, контактор КМ3 отключается, а контактор КМ2 включается. Обмотки двигателя соединяются в «треугольник». Переключение контакторов КМ2 и КМ3 происходит очень быстро (доли секунды).
В тоже время ситуация, когда оба контактора включены (это привело бы к короткому замыканию) невозможна благодаря наличию между ними механической блокировки (на схеме показана небольшим треугольником).
Реально собранная схема «звезда – треугольник» выглядит примерно так:
Схема «звезда – треугольник» в сборе
Сигналы на включение контакторы получают от цепей контроля управления и индикации, которые мы рассмотрим ниже.
Для снижения пусковых токов в силовой части винтовых компрессоров применяют также так называемые устройства плавного пуска (УПП). Хотя УПП применяются не так часто, как схемы «звезда – треугольник», скажем о них несколько слов.
Устройства плавного пуска
УПП представляет собой довольно сложное электронное устройство, в котором в качестве силовых элементов используются полупроводниковые симметричные тиристоры (симисторы).
Упрощенная схема силовой части УПП
Симисторы способны открываться под действием импульсов, подаваемых на их управляющие входы. Как известно, напряжение переменного тока имеет синусоидальную форму. Если открывающие импульсы подавать на управляющие входы симисторов с задержкой, то результирующее напряжение на обмотках двигателя будет тем меньше, чем позже открываются симисторы.
Принцип работы УПП
Таким образом, во время пуска напряжение и ток в обмотках двигателя плавно нарастают за заданное время (время пуска). Это позволяет избежать возникновения бросков тока.
Изменение напряжения на обмотках при различных способах пуска:
Изменение напряжения на обмотках при различных способах пуска
Изменение тока в обмотках при различных способах пуска:
Изменение тока в обмотках при различных способах пуска
По истечении времени разгона, когда симисторы закончили выполнять роль регулирующих элементов, они шунтируются встроенным в УПП контактором (см. рисунок «Упрощенная схема силовой части УПП» выше). Это значительно
xn----7sbeb3bupph.xn--p1ai
Силовая часть схемы управления | НПП Ковинт
Силовая часть схемы управления работой винтового компрессора содержит устройства, через которые подается электропитание на главный двигатель и двигатель вентилятора компрессора. В качестве этих устройств наиболее часто применяются электромагнитные контакторы.
Электромагнитный контактор
Схематично конструкция контактора показана на рисунке ниже:
Конструкция электромагнитного контактора
1 — электромагнитная катушка;
2 – неподвижная часть сердечника;
3 – подвижная часть сердечника;
4 – неподвижные контакты;
5 – подвижные контакты;
6 – изолирующий держатель подвижных контактов.
При подаче напряжения на катушку 1 подвижная часть сердечника 3 под действием силы притяжения к намагнитившейся неподвижной части сердечника 2 перемещается вниз. При этом неподвижные контакты 4 попарно замыкаются подвижными контактами 5, которые связаны с подвижной частью сердечника 3 держателем 6.
После отключения напряжения от катушки 1 подвижная часть сердечника 3 возвращается в исходное положение под действием пружины (на рисунке не показана) и пары неподвижных контактов 4 размыкаются.
Как видите, устройство контактора довольно просто. Но благодаря ему решается очень важная задача – коммутация силовых цепей питания электродвигателя (а токи в них могут быть довольно большими) при помощи слаботочной цепи питания электромагнитной катушки.
На принципиальных электрических схемах электромагнитный контактор, как привило, изображается следующим образом (здесь показан контактор для трехфазной цепи):
Изображение контактора на принципиальной электрической схеме
На схеме буквами А1, А2 обозначены выводы электромагнитной катушки, буквами L1, L2, L3 – входные (от источника питания), а буквами Т1, Т2, Т3 – выходные (к обмоткам электродвигателя) силовые клеммы.
Мощность двигателя вентилятора в винтовых компрессорах, как правило, невелика. Поэтому для его включения используется один контактор.
Совсем другое дело – запуск главного двигателя компрессора. Пусковой ток при этом может в 7-8 раз превышать номинальный ток двигателя.
Сразу оговоримся, что описание принципа работы асинхронного электродвигателя выходит за рамки данной статьи. В случае необходимости Вы всегда можете почерпнуть дополнительную информацию из справочников или на просторах Всемирной паутины. Кроме того, мы всегда рады предоставить необходимые сведения после заполнения Вами формы в конце страницы.
Итак, существует несколько способов борьбы с высокими пусковыми токами асинхронного двигателя.
Наиболее распространенным является пуск по так называемой схеме «звезда – треугольник».
Откуда же возник этот термин?
Дело в том, что обмотки трехфазного асинхронного двигателя могут быть соединены «звездой» или «треугольником»:
Соединение обмоток двигателя «звездой» и «треугольником»
На типовой идентификационной табличке (шильдике) электродвигателя можно увидеть вот такие данные:
Типовая табличка электродвигателя
В данном примере рабочее напряжение двигателя при соединении его обмоток «звездой» (Y) составляет 690В, а при соединении «треугольником» (D) – 400В. Номинальный ток при этом составляет 45 и 78А соответственно.
Поскольку в России стандартным считается трехфазное напряжение 400В 50Гц, рабочим для данного двигателя является соединение его обмоток «треугольником».
А что же произойдет, если, сохранив напряжение питания 400В, соединить обмотки двигателя «звездой»?
В случае, когда на валу двигателя постоянно присутствует номинальная нагрузка, такое переключение приведет к росту потребляемого тока. А вот если на валу двигателя в момент пуска нагрузка отсутствует или незначительна, потребляемый ток снизится в 3 раза. Мы не будем здесь приводить математические вычисления, но поверьте – это действительно так.
Из других наших статей, посвященных винтовым компрессорам, Вы уже знаете, что они могут работать в двух режимах – нагрузки и холостого хода. Запуск компрессора всегда происходит на холостом ходу, т.е. нагрузка на вал двигателя очень мала. Поэтому мы смело можем на этапе разгона соединить обмотки двигателя «звездой» для снижения пускового тока.
И лишь через некоторое время (интервал зависит от мощности двигателя, но обычно не превышает 10 секунд) произвести быстрое переключение обмоток на соединение «треугольником».
Как же это реализуется на практике?
Для коммутации обмоток двигателя применяют схему, состоящую из трех контакторов:
Силовая часть схемы «звезда – треугольник»
При запуске сначала включаются контакторы КМ1 и КМ3, соединяя обмотки двигателя в «звезду». Через заданный промежуток времени, отведенный на разгон, контактор КМ3 отключается, а контактор КМ2 включается. Обмотки двигателя соединяются в «треугольник». Переключение контакторов КМ2 и КМ3 происходит очень быстро (доли секунды).
В тоже время ситуация, когда оба контактора включены (это привело бы к короткому замыканию) невозможна благодаря наличию между ними механической блокировки (на схеме показана небольшим треугольником).
Реально собранная схема «звезда – треугольник» выглядит примерно так:
Схема «звезда – треугольник» в сборе
Сигналы на включение контакторы получают от цепей контроля управления и индикации, которые мы рассмотрим ниже.
Для снижения пусковых токов в силовой части винтовых компрессоров применяют также так называемые устройства плавного пуска (УПП). Хотя УПП применяются не так часто, как схемы «звезда – треугольник», скажем о них несколько слов.
Устройства плавного пуска
УПП представляет собой довольно сложное электронное устройство, в котором в качестве силовых элементов используются полупроводниковые симметричные тиристоры (симисторы).
Упрощенная схема силовой части УПП
Симисторы способны открываться под действием импульсов, подаваемых на их управляющие входы. Как известно, напряжение переменного тока имеет синусоидальную форму. Если открывающие импульсы подавать на управляющие входы симисторов с задержкой, то результирующее напряжение на обмотках двигателя будет тем меньше, чем позже открываются симисторы.
Принцип работы УПП
Таким образом, во время пуска напряжение и ток в обмотках двигателя плавно нарастают за заданное время (время пуска). Это позволяет избежать возникновения бросков тока.
Изменение напряжения на обмотках при различных способах пуска:
Изменение напряжения на обмотках при различных способах пуска
Изменение тока в обмотках при различных способах пуска:
Изменение тока в обмотках при различных способах пуска
По истечении времени разгона, когда симисторы закончили выполнять роль регулирующих элементов, они шунтируются встроенным в УПП контактором (см. рисунок «Упрощенная схема силовой части УПП» выше). Это значительно повышает надежность и долговечность устройства.
Следует отметить, что разные модели УПП могут значительно отличаться по своим функциональным возможностям. Дешевые устройства, как правило, позволяют задавать только время разгона и ограничение тока. Они даже могут не иметь шунтирующих контактов. Более дорогие модели УПП имеют широкий набор настроек и встроенную всестороннюю защиту как самого устройства, так и электродвигателя.
Пример замены схемы «звезда – треугольник» устройством плавного пуска
В современных винтовых компрессорах также широко применяются частотные преобразователи (ЧП).
Назначение ЧП гораздо более широкое, чем у УПП. Они не только позволяют осуществить плавный разгон двигателя при запуске компрессора, но и осуществляют регулирование скорости вращения роторов винтового блока, изменяя производительность компрессора в широких пределах. О пользе такого регулирования более подробно рассказано в статье «Цепи контроля, управления и индикации».
ЧП является более сложным, по сравнению с УПП, устройством. Он позволяет изменять не только величину, но и частоту напряжения, подаваемого на обмотки двигателя компрессора.
В качестве силовых элементов на выходе ЧМ применяются современные мощные IGBT-транзисторы. Не вдаваясь в подробности, скажем только, что эти полупроводниковые приборы имеют ряд преимуществ перед симисторами, устанавливаемыми в УПП.
Структурная схема частотного преобразователя
В ЧП входное напряжение сначала преобразуется в постоянное при помощи выпрямителя и фильтра. Затем шесть транзисторных ключей по специальному алгоритму, задаваемому схемой управления, формируют из постоянного напряжения двуполярные прямоугольные импульсы переменной ширины. При этом ток в обмотках двигателя (они сами выполняют роль фильтров импульсного напряжения) близок к синусоидальному.
Форма напряжения на обмотках двигателя и тока в них
На схему управления транзисторными ключами подается входной сигнал, в зависимости от которого изменяется частота следования прямоугольных импульсов и их ширина. В винтовых компрессорах таким сигналом является, как правило, давление в пневмосети. Также ЧП может управляться контроллером компрессора.
Силовой щит винтового компрессора с установленным в нем ЧП
И в заключение скажем несколько слов об устройствах защиты, входящих в состав силовой части схемы управления работой винтового компрессора.
В процессе работы главного двигателя его обмотки неизбежно подвергаются нагреву. Изоляция провода, которым выполнены обмотки, способна выдерживать нагрев только до определенного уровня. При превышении этого порога изоляция начинает разрушаться и, как следствие, происходит замыкание.
Перегрев двигателя может происходить по ряду причин:
- повышенная нагрузка на валу вследствие, например, неисправности в винтовом блоке;
- плохие условия вентиляции внутри компрессора;
- высокая температура окружающей среды и т.д.
Для того, чтобы не допустить разрушения изоляции и вовремя остановить двигатель при перегреве, в его обмотки вмонтированы чувствительные элементы – термисторы.
Внешний вид термисторов
Это полупроводниковые приборы, сопротивление которых зависит от температуры. Но, в отличие от обычных проволочных терморезисторов, зависимость эта носит резко нелинейный характер.
Температурные характеристики термисторов
Термисторы устанавливаются производителем двигателя и конкретная температура резкого роста сопротивления зависит от класса изоляции обмоток.
В трехфазных двигателях термисторы устанавливаются в каждую обмотку и электрически соединяются последовательно. Поэтому контрольное устройство реагирует на изменение общего сопротивления трех термисторов.
Если в схеме управления работой компрессора используется специализированный контроллер, имеющий отдельный вход для подключения термистора двигателя, то никакие дополнительные устройства не требуются. Контроллер распознает резкий рост сопротивления термистора или обрыв цепи, останавливает двигатель и отображает на панели индикации сообщение об аварийной остановке и ее причине.
Если же контроллера нет или он не имеет входа для подключения термистора, необходимо использовать специальное термисторное реле. Его внутренние контакты переключаются при резком изменении сопротивления термистора и этот сигнал можно использовать для подключения к релейной схеме управления работой компрессора или к обычному цифровому входу контроллера.
Типовая схема термисторного реле
Также для защиты главного двигателя компрессора служит тепловое реле, подключаемое после контактора КМ1 в схеме «звезда – треугольник».
Подключение теплового реле OL1
Само по себе тепловое реле не производит разрыв цепи главного двигателя. Оно реагирует на длительное превышение номинального тока и размыкает контакты 95, 96. Этот сигнал используется для подключения к релейной схеме или контроллеру компрессора.
Следует обратить внимание на то, что при такой схеме подключения (а она наиболее распространена) через тепловое реле протекает не весь потребляемый двигателем ток, а только его часть (1/Ö3 или 58%). Это надо помнить, производя настройку теплового реле (все они имеют регулятор тока срабатывания). Номинальный ток двигателя можно определить по его идентификационной табличке.
В отличие от теплового реле, автоматический выключатель защиты двигателя вентилятора при срабатывании разрывает цепь его питания.
Подключение автомата защиты двигателя вентилятора
Этот автоматический выключатель также может иметь дополнительную группу контактов, которую можно использовать для передачи сигнала о срабатывании защиты на релейную схему или контроллер компрессора.
Ниже на фото приведен фрагмент силового щита винтового компрессора с установленными контактором и автоматическим выключателем двигателя вентилятора.
Фрагмент силового щита с цепями питания и защиты двигателя вентилятора
Может возникнуть закономерный вопрос: «Почему главный двигатель защищается тепловым реле, а двигатель вентилятора – автоматическим выключателем?»
Ответ достаточно прост.
Дело в том, что двигатели вентиляторов винтовых компрессоров имеют малую мощность и защитные автоматы для них невелики. Мощность же главного двигателя исчисляется десятками, а то и сотнями киловатт. И автоматический выключатель для него (хотя такие и существуют) был бы чрезмерно велик и тяжел. Так что все дело в экономии места.
На этом все.
Все возникшие вопросы вы можете задать в форме ниже. Мы ответим в течение 1-2 рабочих дней.
С уважением,
Константин Широких & Сергей Борисюк
Вернуться в раздел Полезная информация
Еще по теме:
Винтовые компрессоры. Общая информация
Принцип работы винтового компрессора
Конструкция/устройство винтового компрессора
Конструкция винтового газового компрессора. Видео
Конструкция винтового блока компрессора
Конструкция всасывающего клапана (регулятора всасывания) винтового компрессора
Конструкция термостата. Назначение термостата в винтовом компрессоре
Конструкция клапана минимального давления (КМД). Назначение КМД в винтовом компрессоре
Конструкция масляного резервуара. Назначение и принцип действия
Конструкция сепаратора тонкой очистки. Назначение и функции в винтовом компрессоре
Схема управления работой винтового компрессора. Общая информация
covint.ru
Разработка принципиальной электрической схемы силовой части электропривода. Силовая часть электрической схемы
Силовая часть схемы управления | НПП Ковинт
Силовая часть схемы управления работой винтового компрессора содержит устройства, через которые подается электропитание на главный двигатель и двигатель вентилятора компрессора. В качестве этих устройств наиболее часто применяются электромагнитные контакторы.
Электромагнитный контактор
Схематично конструкция контактора показана на рисунке ниже:
Конструкция электромагнитного контактора
1 — электромагнитная катушка;
2 – неподвижная часть сердечника;
3 – подвижная часть сердечника;
4 – неподвижные контакты;
5 – подвижные контакты;
6 – изолирующий держатель подвижных контактов.
При подаче напряжения на катушку 1 подвижная часть сердечника 3 под действием силы притяжения к намагнитившейся неподвижной части сердечника 2 перемещается вниз. При этом неподвижные контакты 4 попарно замыкаются подвижными контактами 5, которые связаны с подвижной частью сердечника 3 держателем 6.
После отключения напряжения от катушки 1 подвижная часть сердечника 3 возвращается в исходное положение под действием пружины (на рисунке не показана) и пары неподвижных контактов 4 размыкаются.
Как видите, устройство контактора довольно просто. Но благодаря ему решается очень важная задача – коммутация силовых цепей питания электродвигателя (а токи в них могут быть довольно большими) при помощи слаботочной цепи питания электромагнитной катушки.
На принципиальных электрических схемах электромагнитный контактор, как привило, изображается следующим образом (здесь показан контактор для трехфазной цепи):
Изображение контактора на принципиальной электрической схеме
На схеме буквами А1, А2 обозначены выводы электромагнитной катушки, буквами L1, L2, L3 – входные (от источника питания), а буквами Т1, Т2, Т3 – выходные (к обмоткам электродвигателя) силовые клеммы.
Мощность двигателя вентилятора в винтовых компрессорах, как правило, невелика. Поэтому для его включения используется один контактор.
Совсем другое дело – запуск главного двигателя компрессора. Пусковой ток при этом может в 7-8 раз превышать номинальный ток двигателя.
Сразу оговоримся, что описание принципа работы асинхронного электродвигателя выходит за рамки данной статьи. В случае необходимости Вы всегда можете почерпнуть дополнительную информацию из справочников или на просторах Всемирной паутины. Кроме того, мы всегда рады предоставить необходимые сведения после заполнения Вами формы в конце страницы.
Итак, существует несколько способов борьбы с высокими пусковыми токами асинхронного двигателя.
Наиболее распространенным является пуск по так называемой схеме «звезда – треугольник».
Откуда же возник этот термин?
Дело в том, что обмотки трехфазного асинхронного двигателя могут быть соединены «звездой» или «треугольником»:
Соединение обмоток двигателя «звездой» и «треугольником»
На типовой идентификационной табличке (шильдике) электродвигателя можно увидеть вот такие данные:
Типовая табличка электродвигателя
В данном примере рабочее напряжение двигателя при соединении его обмоток «звездой» (Y) составляет 690В, а при соединении «треугольником» (D) – 400В. Номинальный ток при этом составляет 45 и 78А соответственно.
Поскольку в России стандартным считается трехфазное напряжение 400В 50Гц, рабочим для данного двигателя является соединение его обмоток «треугольником».
А что же произойдет, если, сохранив напряжение питания 400В, соединить обмотки двигателя «звездой»?
В случае, когда на валу двигателя постоянно присутствует номинальная нагрузка, такое переключение приведет к росту потребляемого тока. А вот если на валу двигателя в момент пуска нагрузка отсутствует или незначительна, потребляемый ток снизится в 3 раза. Мы не будем здесь приводить математические вычисления, но поверьте – это действительно так.
Из других наших статей, посвященных винтовым компрессорам, Вы уже знаете, что они могут работать в двух режимах – нагрузки и холостого хода. Запуск компрессора всегда происходит на холостом ходу, т.е. нагрузка на вал двигателя очень мала. Поэтому мы смело можем на этапе разгона соединить обмотки двигателя «звездой» для снижения пускового тока.
И лишь через некоторое время (интервал зависит от мощности двигателя, но обычно не превышает 10 секунд) произвести быстрое переключение обмоток на соединение «треугольником».
Как же это реализуется на практике?
Для коммутации обмоток двигателя применяют схему, состоящую из трех контакторов:
Силовая часть схемы «звезда – треугольник»
При запуске сначала включаются контакторы КМ1 и КМ3, соединяя обмотки двигателя в «звезду». Через заданный промежуток времени, отведенный на разгон, контактор КМ3 отключается, а контактор КМ2 включается. Обмотки двигателя соединяются в «треугольник». Переключение контакторов КМ2 и КМ3 происходит очень быстро (доли секунды).
В тоже время ситуация, когда оба контактора включены (это привело бы к короткому замыканию) невозможна благодаря наличию между ними механической блокировки (на схеме показана небольшим треугольником).
Реально собранная схема «звезда – треугольник» выглядит примерно так:
Схема «звезда – треугольник» в сборе
Сигналы на включение контакторы получают от цепей контроля управления и индикации, которые мы рассмотрим ниже.
Для снижения пусковых токов в силовой части винтовых компрессоров применяют также так называемые устройства плавного пуска (УПП). Хотя УПП применяются не так часто, как схемы «звезда – треугольник», скажем о них несколько слов.
Устройства плавного пуска
УПП представляет собой довольно сложное электронное устройство, в котором в качестве силовых элементов используются полупроводниковые симметричные тиристоры (симисторы).
Упрощенная схема силовой части УПП
Симисторы способны открываться под действием импульсов, подаваемых на их управляющие входы. Как известно, напряжение переменного тока имеет синусоидальную форму. Если открывающие импульсы подавать на управляющие входы симисторов с задержкой, то результирующее напряжение на обмотках двигателя будет тем меньше, чем позже открываются симисторы.
Принцип работы УПП
Таким образом, во время пуска напряжение и ток в обмотках двигателя плавно нарастают за заданное время (время пуска). Это позволяет избежать возникновения бросков тока.
Изменение напряжения на обмотках при различных способах пуска:
Изменение напряжения на обмотках при различных способах
szemp.ru
Схемы по электрике. Виды и типы. Некоторые обозначения
Во время работ по электротехнике человек может столкнуться с обозначениями элементов, которые условно обозначены на электромонтажных схемах. Разнообразия схемы по электрике очень широки. Они имеют разные функции и классификацию. Но все графические обозначения в условном виде приводятся к одним формам, и для всех схем элементы соответствуют друг другу.
Электромонтажная схема – это документ, в котором обозначены связи составных элементов разных устройств, потребляющих электроэнергию, между собой по определенным стандартным правилам. Такое изображение в виде чертежа призвано научить специалистов по электрическому монтажу, чтобы они поняли из схемы принцип действия устройства, и из каких составных частей и элементов она собрана.
Главное предназначение электромонтажной схемы – оказать помощь в монтаже электроустройств и приборов, простом и легком обнаружении неисправности в электрической цепи. Далее разберемся в видах и типах электромонтажных схем, выясним их свойства и характеристики каждого типа.
Схемы по электрике: классификация
Все электрические схемы, как документы, разделяются на виды и типы. По соответствующим стандартам можно найти разделение этих документов по видам схем и типам. Разберем их подробную классификацию.
Виды электромонтажных схем следующие:
- Электрические.
- Газовые.
- Гидравлические.
- Энергетические.
- Деления.
- Пневматические.
- Кинематические.
- Комбинированные.
- Вакуумные.
- Оптические.
Основные типы:
- Структурные.
- Монтажные.
- Объединенные.
- Расположения.
- Общие.
- Функциональные.
- Принципиальные.
- Подключения.
Рассматривая схемы по электрике, перечисленные обозначения, по названию электросхемы определяют тип и вид.
Обозначения в электросхемах
В современный период в электромонтажных работах используются как отечественные, так и импортные элементы. Зарубежные детали можно представить широким ассортиментом. На схемах и чертежах они также обозначаются условно. Описывается не только размер параметров, но и список элементов, входящих в устройство, их взаимосвязь.
Теперь следует разобраться, для чего предназначена каждая конкретная электросхема, и из чего она состоит.
Принципиальная схема
Такой тип используется в распределительных сетях. Он обеспечивает полное раскрытие работы электрооборудования. На чертеже обязательно обозначают функциональные узлы, их связь. Схема имеет два вида: однолинейная, полная. На однолинейной схеме изображены первичные сети (силовые). Вот ее пример:
Полный вариант схемы по электрике изображается в элементном или развернутом виде. Если устройство простое, и на чертеже входят все пояснения, то хватит развернутого плана. При сложном устройстве с цепью управления, измерения и т. д., оптимальным решением будет изобразить все узлы на отдельных листах, во избежание путаницы.
Бывает также принципиальная электросхема, на которой изображена выкопировка плана с обозначением отдельного узла, его состав и работа.
Монтажная схема
Такой вид применяется для разъяснения монтажа какой-либо проводки. На ней можно изобразить точное положение элементов, их соединение, характеристики установок. На схеме проводки квартиры будет видно размещение розеток, светильников и т.д.
Эта схема руководит электромонтажными работами, дает понимание всех подключений. Для монтажа бытовых устройств такая схема лучше подходит для работы.
Объединенная схема
Этот тип схемы включает в себя разные виды и типы документов. Ее применяют для того, чтобы не загромождать чертеж, обозначить важные цепи, особенности. Чаще объединенные схемы применяют на предприятиях промышленности. Для домашнего применения она вряд ли имеет смысл.
Изучив условные обозначения, подготовив необходимую документацию, не трудно разобраться в работе любой электроустановке.
Порядок сборки по электрической схеме
Самым сложным делом для электрика является понимание взаимодействия элементов в схеме. Нужно знать, как читать и собирать схему. Сборка предполагает определенные правила:
- Во время сборки необходимо руководствоваться одним направлением, например, по часовой стрелке.
- Лучше для начала разделить схему на части, если много элементов и схема сложная.
- Начинают сборку от фазы.
- При каждом выполненном шаге по сборке нужно предположить, что будет происходить, если в данный момент подать напряжение.
После окончания сборки обязательно должна образоваться замкнутая цепь. Для примера разберем подключение в домашних условиях люстры, состоящей из 3-х плафонов, с применением двойного выключателя.
Сначала определим порядок работы люстры. При включении 1-й клавиши должна загораться одна лампочка, если включить 2-ю клавишу, то другие две. По схеме на выключатель и люстру идут по 3 провода. От сети идут два провода, фаза и ноль.
Индикатором определяем и находим фазу, соединяем ее с выключателем, не прерывая ноль. Провод присоединяем к общей клемме выключателя. От него пойдут 2 провода на 2 цепи. Один из проводов соединим с патроном лампы. От патрона выводим второй проводник, соединяем с нулем. Одна цепь готова. Для проверки щелкаем первой клавишей выключателя, лампа горит.
2-й провод от выключателя подключаем к патрону другой лампы. От патрона провод соединяем с нулем. Если по очереди щелкать клавишами выключателя, то будут светиться разные лампы.
Теперь подключим третью лампу. Соединяем ее параллельно к любой лампе. В люстре один провод стал общим. Его делают отличительным по цвету. Если у вас провода все одинаковые по цвету, то во избежание путаницы необходимо при монтаже пользоваться индикатором. Для подключения люстры обычно не требуется особого труда, так как эта схема не особо сложная.
Похожие темы:
electrosam.ru
Принципиальные электрические схемы дизельных электростанций
Принципиальная электрическая схема агрегата АД-20М (см. рис.1).
Стационарные агрегаты АД-20М предназначены для питания силовой и осветительной нагрузки при параллельной и автономной работе. В силовую цепь включены обмотки генераторов ОС, цепи компаундирующего трансформатора ТТП, трансформатор статизма ТС, реактор PN, автоматический выключатель АВ1, трансформаторы тока ТТ1-ТТ3, три нагрузочные линии ШГ1 (подключение резервного генератора), ШГ2 и ШГЗ (подключение нагрузки мощностью до 50% мощности генератора). Линии ШГ2 и ШГЗ включаются через автоматические выключатели АВ2 и АВЗ и специальные разъемы. В схеме предусмотрено автоматическое регулирование напряжения с помощью фазного компаундирования и электромагнитного корректора напряжения КН. Схема обеспечивает точность поддержания напряжения ±2% при изменении нагрузки от 0 до 100%, а также при изменении частоты в пределах 48-52 Гц и ±1% при неизменной нагрузке в пределах от 0 до 100%.
Рис.1. Принципиальная схема дизель-генератора АД-20М
Для контроля за работой генератора в схеме предусмотрены вольтметр V для измерения линейных напряжений с переключателем ПП1, амперметр А для измерения токов трех фаз с переключателем ПП2, ваттметр W и частотомер Hz. В схеме имеется также прибор постоянного контроля изоляции ПКИ-1, а для электробезопасного обслуживания установлено реле РБП.
Для параллельной работы с другими ДЭС или агрегатами в схеме имеется трансформатор ТС с резистором СРС и выключателем ВЗ для шунтирования этого резистора при автономной работе генератора. Уставка напряжения выставляется резистором РУ.
В схеме предусмотрены цепи синхронизации с лампами 4ЛС и 5ЛС и резисторами R1-R2, сигнализации положения с лампами 6ЛС-10ЛС, питающимися через конденсаторы С1-С5, и цепи блокировки с реле РБ и выпрямительным мостом Д17-Д20.
Через автоматический выключатель АВ4 и вилку В происходит соединение с другим генератором для параллельной работы.
Рис.2. Принципиальная схема электростанции ЭСДА-30.а - схема силовой части ДЭС;б - схема управления ДЭС.
Принципиальная электрическая схема передвижной ДЭС типа ЭСДА-30 (рис.2).
Передвижная ДЭС типа ЭСДА-30 автоматизирована по 1-й степени и предназначена для питания силовой и осветительной нагрузки. В схему силовой части агрегата входят обмотки генератора с резонансной статической системой возбуждения, корректор напряжения на полупроводниковых элементах КН, блок параллельной работы БПР с трансформатором тока, трансформаторы тока для измерительных цепей и выводы отходящих линий с автоматическими выключателями: генератора АВГ, резервной сети АВС и нагрузки АВ1.
В схеме предусмотрена автоматическая система регулирования напряжения с помощью схемы компаундирования и полупроводникового корректора напряжения. Схема обеспечивает точность регулирования напряжения ±1% номинального значения при изменении нагрузки от 0 до 100%.
Для контроля за работой генератора предусмотрены вольтметр V, амперметр А, киловаттметр KW, частотомер Hz и переключатели ПА и ПВ. Постоянный контроль изоляции осуществляется прибором ПКИ. Цепи синхронизации с выключателем ВС и лампой позволяют включать генератор на параллельную работу с сетью и другими агрегатами. Схема предусматривает пуск агрегата со щита управления кнопкой КнП и его остановку кнопкой КнО, автоматическую остановку агрегата в аварийном режиме с работой сигнализации и ручную систему подогрева двигателя.
Перед запуском включают выключатели батареи ВБ, приборов ВП, реле питания РК, систему подогрева двигателя с панели управления подогревателем (свеча накаливания СН, топливный клапан ТК, электродвигатель Д). На период пуска выключатель защиты ВЗ выключается. После пуска двигателя кнопкой КУМ осуществляется увеличение частоты вращения двигателя с помощью изменения положения рейки топливного насоса, на которую действует электродвигатель постоянного тока ДНО.
При достижении номинальной частоты вращения двигателя включается нагрузка с помощью автоматов АВГ и AB1. В случае необходимости нормальная остановка агрегата производится кнопкой КнО, но перед этим необходимо отключить выключатель автомата АВГ (снимается нагрузка генератора) и выключатель ВЗ (отключается защита двигателя). Кнопкой КнО подается питание на обмотку соленоида закрытия топлива СЗТ, который действует на рейку топливного насоса. Подача топлива в двигатель прекращается, и он останавливается.
При понижении давления масла в системе смазки, повышении температуры воды в охлаждающей системе или разносе двигателя срабатывает соответствующее реле (РДМ, РКО или РТВ) и подается сигнал на реле РЗ, которое воздействует на соленоид воздушной захлопки СЗВ, останавливает двигатель и отключает автомат АВГ, снимая нагрузку с генератора; одновременно работает аварийная световая сигнализация.
Принципиальная электрическая схема стационарной ДЭС типа АСДА-100 с устройством КУ-67М (рис.3).
Схема силовой части агрегата и автоматической системы регулирования напряжения, за небольшим исключением, аналогична схеме ЭСДА-30. К шинам панели ПР-1 через автоматы 1В-4В подключены кабели, питающие потребителей электроэнергии агрегата.
Для контроля параметров генератора предусмотрены амперметр, вольтметр, частотомер и ваттметр. Устройство КУ-67М обеспечивает автоматизацию по 1-й степени, в том числе дистанционный пуск и остановку дизеля, включение генератора на обесточенные шины и на параллельную работу, отключение генератора, защиту и сигнализацию дизеля и генератора.
Для нормального пуска дизеля (рис.3,6) поворотом переключателя 1К в положение "Больше" приводят во вращение электродвигатель ДР, который выводит рейку топливного насоса в положение, соответствующее промежуточной частоте вращения дизеля (определяется настройкой микровыключателя В2), при этом загорается лампа 7ЛK. Когда рейка достигает определенного положения, микровыключатель В2 срабатывает и останавливает двигатель ДР, лампа 7ЛK гаснет. Нажатием кнопки КП замыкают цепь контактора 2К, включают маслопрокачивающий насос ДМ. Когда давление масла в масляной магистрали дизеля достигает значения настройки датчика давления масла 1ДДМ, последний срабатывает, замыкая цепь лампы 3ЛK и реле 2РИ, которое своими контактами замыкает цепь включения стартера. Дизель запускается. По импульсу от зарядного генератора замыкается цепь реле удавшегося запуска 1РИ. Лампа ЗЛК гаснет, загорается лампа 2Л3.
Дизель прогревается при промежуточной частоте вращения; при достижении рабочей температуры воды датчик 1ДТВ размыкает цепь лампы 2Л3 и она гаснет, а контакты 1ДТВ шунтируют микропереключатель В2. Поворотим ключа 1КУ в положение "Больше" повторно включают электродвигатель ДР; загорается лампа 7ЛК. Двигатель ДР включается микровыключателем ВЗ, который настроен на максимальную частоту вращения холостого хода дизеля.
При экстренном пуске дизеля включают выключатель Т1, шунтирующий микропереключатель В1, а все остальные операции осуществляют, как и при нормальном пуске дизеля.
Рис.3,а. Принципиальная схема дизельгенератора АСДА-100 с устройством КУ-67М
Для включения генератора на обесточенные шины (см. рис.3,а):
выбирают ручной или автоматический режим регулирования напряжения и переключают ТВ1, при автономной работе переключатель ставят в положение "Без статизма";
включают автоматический выключатель 2АВ и подготавливают схему включения электродвигательного привода автоматического выключателя генератора. Напряжение на эту схему подается со сборных шин через размыкающие контакты РПН, а при отсутствии напряжения на шинах - от возбужденного генератора через замыкающие контакты РПН. После разворота генератора до номинальной частоты вращения нажатием кнопки КнВ в течение 2-3 с подают начальное возбуждение от аккумуляторной батареи на зажимы ротора генератора. Генератор возбуждается;
напряжение при ручном регулировании устанавливают с помощью резистора СУ, при автоматическом - резистора СУН;
поворотом ключа 2КУ в положение "Включено" замыкают цепь реле РУ. Срабатывая, оно замыкает свои контакты в цепи электродвигателя привода автоматического выключателя. Автоматический выключатель генератора включается. Загорается лампа 1ЛК, а лампа 1ЛЗ гаснет.
Рис. 3,б. Принципиальная схема дизельгенератора АСДА-100 с устройством КУ-67М. Схема автоматики ДЭС.
Для включения генератора на параллельную работу:
переключатель ТВ1 устанавливают в положение "Параллельная работа", ТВ2 - в положение "Статизм", а переключатель Т4 - в положение "Медленно", что обеспечит уменьшение скорости нарастания частоты вращения дизеля при синхронизации генератора;
запускают дизель и сопротивлением СУН устанавливают на генераторе напряжение, равное напряжению сети. Генератор на параллельную работу включается невозбужденным. Для этого включают выключатель ТЗ, шунтирующий обмотку возбуждения генератора;
после того как напряжение генератора упадет до значения, близкого остаточному, поворотом ключа 1КУ в положение "Больше" подают импульс на включение автоматического выключателя генератора В. Реле РП срабатывает, самоблокируется и замыкает цепи реле ИРЧ;
при достижении генератором частоты вращения, близкой к синхронной, реле ИРЧ срабатывает и включает промежуточное реле синхронизации РПС. Своими контактами реле РПС замыкает цепь включения электродвигательного привода автоматического выключателя генератора;
генератор включается в сеть недовозбужденным, так как его обмотка возбуждения замкнута накоротко контактами выключателя гашения поля ВГП. После включения генераторного автомата обесточивается ВГП и размыкает свои контакты, шунтирующие обмотку возбуждения генератора;
генератор возбуждается и втягивается в синхронизм. Лампа 1ЛK загорается. Выключатель Т4 переключают в положение "Быстро", и генератор набирает нагрузку. Для нормальной остановки дизеля: отключают поворотом переключателя 2КУ автоматический выключатель генератора В, а поворотом переключателя 1КУ (В положение "Меньше") замыкают цепь обмотки левого вращения электродвигателя ДР, при этом рейка топливного насоса выводится в положение, соответствующее промежуточным оборотам дизеля;
дизель охлаждается до температуры настройки датчика 2ДТВ, который, срабатывая, размыкает цепь лампы 6Л3 и шунтирует микропереключатель В2;
повторным поворотом переключателя 1КУ рейка выводится в положение, соответствующее нулевой частоте вращения дизеля. Электродвигатель ДP выключается микропереключателем B1. Дизель останавливается.
Схемой предусмотрены защита и контроль работы дизеля при перегреве воды и масла, понижении давления масла и разносе.
При срабатывании датчика контролируемого параметра замыкается цепь выходного реле защиты 1P3 и срабатывает соответствующее указательное реле. Контакт реле 1РЗ замыкает цепи табло "Авария" и звукового сигнала (при замкнутом положении выключателя Т2). Другой контакт реле 1РЗ замыкает цепь независимого расцепителя автоматического выключателя генератора и отключает его.
Рейка топливного насоса автоматически выводится на нулевую частоту вращения. Дизель останавливается.
При срабатывании защиты от разноса одновременно с отключением генератора срабатывает автоматическое стоп-устройство дизеля АСУ. Для предотвращения ложного срабатывания защиты от понижения давления масла в цепь соответствующего сигнального реле включается контакт реле 1РИ, который контролирует запуск дизеля. Таким образом, контроль за понижением давления масла осуществляется только в том случае, если дизель запущен и контакт 1РИ замкнут.
Рис.4. Принципиальная схема дизель-генератора АСДА-100 полупроводниковыми блоками автоматики
Принципиальная электрическая схема АСДА-100, автоматизированного по 3-й степени (рис.4).
В схеме синхронный генератор со статической системой возбуждения показан в свернутом виде. На рис.4 показана силовая схема АСДА-100. Элементы блоков и автоматики показаны свернутом виде. Силовая цепь и цепи регулирования напряжения генератора состоят из резонансной статической системы возбуждения, корректора напряжения (на схеме не показан), блока управления параллельной работой БУ с трансформатором ТТ1, автоматического выключателя генератора АГ и сети АС, контакторов КФГ и КФС, предназначенных для дистанционной автоматической коммутации силовой цепи, реверсивного двигателя ДУН, регулирующего с помощью сопротивления СУН уставку напряжения, трансформаторов тока ТТ2-ТТ7 для питания цепей измерения тока, блока датчика мощности и частоты ДМЧ и блока контроля мощности БКМ.
Контроль и измерение параметров генератора производятся амперметром А, ваттметром W, частотомером Hz, вольтметром V.
Переключатель ВВ позволяет производить измерения на различных фазах (А,В,С) с использованием одного прибора.
При ручной синхронизации ненагруженного электроагрегата с сетью переключатель синхроноскопа ВСх устанавливают в положение I. В этом случае сигнальная лампа ЛC1 включена контактами переключателя ВСх через ограничительное сопротивление R1 на начала вторичных обмоток трансформаторов Th2 и ТН2 и находится под напряжением биений с амплитудой, изменяющейся от нуля до двойного значения напряжения вторичных обмоток этих трансформаторов. Частота биений равна разности частот синхронизируемых источников питания. Выключатель статизма ВС устанавливается во включенное положение и шунтирует часть сопротивления RП2 в блоке управления БУ. Сопротивлением установки напряжения СУН напряжение синхронизируемого электроагрегата устанавливается равным напряжению сети, а кнопками изменения частоты вращения двигателя устанавливается частота генератора, равная частоте сети. Включение электроагрегата на параллельную работу с сетью осуществляется контактором фидера генератора КФГ путем замыкания контактов кнопки включения контактора генератора в момент погасания сигнальной лампы ЛC1.
При ручной синхронизации нагруженного электроагрегата с сетью переключатель синхроноскопа BC устанавливается в положение III. При этом лампа синхроноскопа ЛС1 подключается контактами переключателя ВСх через ограничительное сопротивление R1 на начала вторичных обмоток трансформаторов ТН1 и ТНЗ и находится под напряжением биений. Напряжение и частота генератора устанавливаются, как и при ручной синхронизации ненагруженного электроагрегата с сетью. Включение нагруженного электроагрегата на параллельную работу с сетью осуществляется контактором фидера сети КФС.
Цепи собственных нужд получают питание от генераторного фидера через автоматический выключатель АСН. К собственным нуждам электроагрегата относятся устройства и цепи оперативного питания, поддержания горячего резерва, дозаправки масла и т.д.
Питание схемы автоматического управления осуществляется блоком питания. Основным источником постоянного напряжения является кремниевый выпрямительный агрегат со стабилизирующим напряжением, а резервным - аккумуляторные батареи.
Поддержание дизеля в состоянии горячей готовности производится электронагревателем ТЭН, расположенным в поддоне (водяной полости) масляного бака.
Питание на электронагреватель ТЭН подается через контакты контактора электронагревателя КЭП и предохранитель.
Контакторы КЭП включаются автоматически датчиком температуры охлаждающей жидкости, выходные контакты которого замыкаются при снижении температуры до +37°С и размыкаются при повышении ее до +45°С.
Дозаправка расходного масляного бака производится электронасосом, двигатель которого получает питание через контакты контактора заправки масла КЗМ и предохранители.
Включение контактора КЗМ осуществляется вручную кнопкой или автоматически с помощью реле заправки масла. При снижении уровня масла реле включает контактор КЗМ, а при повышении уровня масла отключает его. Аналогично работает и топливозакачивающий насос ДЗТ.
Пуск и остановку АСДА-100 осуществляют автоматически или дистанционно нажатием кнопки "Пуск" или "Стоп".
Схема предусматривает также автоматическое включение АСДА-100 на параллельную работу по методу точной синхронизации с помощью блоков автоматики.
Автономно работающий АСДА-100 поддерживает частоту тока с точностью 50±0,5 Гц независимо от нагрузки. Для поддержания частоты в заданных пределах служит система коррекции частоты, состоящая из датчиков частоты и магнитных усилителей.
Схема АСДА-100 обеспечивает защиту при следующих аварийных режимах: отключение автомата генератора, неудачный пуск и разнос двигателя, отсутствие возбуждения на генераторе, падение давления масла, перегрев дизеля и т. д. В этих случаях по сигналу соответствующего реле срабатывает реле аварии и выдает команду на остановку дизеля с одновременной выдачей сигнала.
www.gigavat.com
Разработка принципиальной электрической схемы силовой части электропривода
⇐ ПредыдущаяСтр 5 из 17Следующая ⇒
На рис. 6 приведена функциональная схема реверсивного электропривода серии КТЭУ на ток до 200 А. Тиристорный преобразователь ТП, состоящий из двух встречно включенных мостов VSF, VSB, получает питание от сети 380 В через автоматический выключатель QF1 и анодный реактор LF (первый вариант) или трансформатор TM (второй вариант). На стороне постоянного тока защита автоматическим выключателем QF2. Линейным контактор КМ служит для частой коммутации якорной цепи (при необходимости), торможение электродвигателя М осуществляется через контактор KV и резистор HV. Отметим, что в первых поставках электроприводов цепь динамического торможения замыкалась через тиристоры. Трансформатор 77 и диодный мост V служат для питания обмотки возбуждения двигателя LM. Тахогенератор JBR возбуждается от отдельного узла А — BR:имеется также узел питания электромагнитного тормоза YВ. Система управления СУ по сигналам оператора с пульта управления ПУ, сигналам о состоянии коммутационных и защитных аппаратов получаемым из узлов управления этими аппаратами и сигнализации УУКиС, сигналам из обшей схемы управления технологическим агрегатом СУТА. сигналам о токе якоря двигателя и токе возбуждения, получаемый с шунтов RS1, RS2. сигналам о напряжении на якоре электродвигателя, снимаемым с потенциометра RP1, сигналам о скорости, формируемым тахогенератором BR, выдает сигналы управления в СИФУ, УУКиС и на пульт управления ПУ. Узел управления коммутационной аппаратурой и сигнализации УУКиС по командам оператора и сигналам от СУ включает или выключает аппараты QF1-QF3, КМ, KV, а также осуществляет сигнализацию о состоянии этих и других защитных аппаратов.
Сигналы задания и обратных связей в СУ гальванически разделяются от внешних протяженных цепей или цепей с высоким потенциалом. Система управления СУ через гальванические разделители выдает в СУТА значения необходимых регулируемых параметров (скорости. тока и др.). Устройство УУКиС получает сигналы от ПУ, датчиков; СУТА через двухпозиционные гальванические разделители и преобразователи напряжения высокого уровня в напряжение низкого уровня, используемое в системе. Устройство УУКиС выдает на пульт управления и в СУТА двухпозиционные логические или контактные сигналы: о готовности электропривода к работе, состоянии аварийной и предупреждающей сигнализации нулевой скорости или достижении некоторой заданной скорости и т. п. Логические сигналы подаются через гальванические разделители и преобразователи напряжения низкого уровня в напряжение высокого уровня.
Рисунок 5. Функциональная схема однодвигательного электропривода серии КТЭУ, Iном<200А
©2015 arhivinfo.ru Все права принадлежат авторам размещенных материалов.
arhivinfo.ru
Обозначение радиоэлементов в схемах | Практическая электроника
«Как читать электрические схемы?». Пожалуй, это самый часто задаваемый вопрос в рунете. Если для того, чтобы научиться читать и писать, мы изучали азбуку, то здесь почти то же самое. Чтобы научиться читать схемы, первым делом, мы должны изучить как выглядит тот или иной радиоэлемент в схеме. В принципе ничего сложного в этом нет. Вся соль в том, что если в русской азбуке 33 буквы, то для того, чтобы выучить обозначения радиоэлементов, придется неплохо постараться. До сих пор весь мир не может договориться, как обозначать тот или иной радиоэлемент либо устройство. Поэтому, имейте это ввиду, когда будете собирать буржуйские схемы. В нашей статье мы будем рассматривать наш ГОСТ-вариант обозначения радиоэлементов.
Ладно, ближе к делу. Давайте рассмотрим простенькую электрическую схему блока питания, которая раньше мелькала в любом советском бумажном издании:
Если вы не первый день держите паяльник в руках, то для вас с первого взгляда сразу все станет понятно. Но среди моих читателей есть и те, кто впервые сталкивается с подобными чертежами. Поэтому, эта статья в основном именно для них.
Ну что же, давайте ее анализировать.
В основном, все схемы читаются слева-направо, точно также, как вы читаете книгу. Всякую разную схему можно представить в виде отдельного блока, на который мы что-то подаем и с которого мы что-то снимаем. Здесь у нас схема блока питания, на который мы подаем 220 Вольт из розетки вашего дома, а выходит уже с нашего блока постоянное напряжение. То есть вы должны понимать, какую основную функцию выполняет ваша схема. Это можно прочесть в описании к ней.
Итак, вроде бы определились с задачей этой схемы. Прямые линии — это проводочки, по которым будет бежать электрический ток. Их задача — соединять радиоэлементы.
Точка, где соединяются три и более проводочков, называется узлом. Можно сказать, в этом месте проводочки спаиваются:
Если пристально вглядеться в схему, то можно заметить пересечение двух проводочков
Такое пересечение будет часто мелькать в схемах. Запомните раз и навсегда: в этом месте проводочки не соединяются и они должны быть изолированы друг от друга. В современных схемах чаще всего можно увидеть вот такой вариант, который уже визуально показывает, что соединения между ними отсутствует:
Здесь как бы один проводок сверху огибает другой, и они никак не контактируют между собой.
Если бы между ними было соединение, то мы бы увидели вот такую картину:
Давайте еще раз рассмотрим нашу схему.
Как вы видите, схема состоит из каких-то непонятных значков. Давайте разберем один из них. Пусть это будет значок R2.
Итак, давайте первым делом разберемся с надписями. R — это значит резистор. Так как у нас он не единственный в схеме, то разработчик этой схемы дал ему порядковый номер «2». В схеме их целых 7 штук. Радиоэлементы в основном нумеруются слева-направо и сверху-вниз. Прямоугольник с чертой внутри уже явно показывает, что это постоянный резистор с мощностью рассеивания в 0,25 Ватт. Также рядом с ним написано 10К, что означает его номинал в 10 КилоОм. Ну как-то вот так…
Как же обозначаются остальные радиоэлементы?
Для обозначения радиоэлементов используются однобуквенные и многобуквенные коды. Однобуквенные коды — это группа, к которой принадлежит тот или иной элемент. Вот основные группы радиоэлементов:
А — это различные устройства (например, усилители)
В — преобразователи неэлектрических величин в электрические и наоборот. Сюда могут относиться различные микрофоны, пьезоэлементы, динамики и тд. Генераторы и источники питания сюда не относятся.
С — конденсаторы
D — схемы интегральные и различные модули
E — разные элементы, которые не попадают ни в одну группу
F — разрядники, предохранители, защитные устройства
G — генераторы, источники питания, кварцевые генераторы
H — устройства индикации и сигнальные устройства, например, приборы звуковой и световой индикации
K — реле и пускатели
L — катушки индуктивности и дроссели
M — двигатели
Р — приборы и измерительное оборудование
Q — выключатели и разъединители в силовых цепях. То есть в цепях, где «гуляет» большое напряжение и большая сила тока
R — резисторы
S — коммутационные устройства в цепях управления, сигнализации и в цепях измерения
T — трансформаторы и автотрансформаторы
U — преобразователи электрических величин в электрические, устройства связи
V — полупроводниковые приборы
W — линии и элементы сверхвысокой частоты, антенны
X — контактные соединения
Y — механические устройства с электромагнитным приводом
Z — оконечные устройства, фильтры, ограничители
Для уточнения элемента после однобуквенного кода идет вторая буква, которая уже обозначает вид элемента. Ниже приведены основные виды элементов вместе с буквой группы:
BD — детектор ионизирующих излучений
BE — сельсин-приемник
BL — фотоэлемент
BQ — пьезоэлемент
BR — датчик частоты вращения
BS — звукосниматель
BV — датчик скорости
BA — громкоговоритель
BB — магнитострикционный элемент
BK — тепловой датчик
BM — микрофон
BP — датчик давления
BC — сельсин датчик
DA — схема интегральная аналоговая
DD — схема интегральная цифровая, логический элемент
DS — устройство хранения информации
DT — устройство задержки
EL — лампа осветительная
EK — нагревательный элемент
FA — элемент защиты по току мгновенного действия
FP — элемент защиты по току инерционнго действия
FU — плавкий предохранитель
FV — элемент защиты по напряжению
GB — батарея
HG — символьный индикатор
HL — прибор световой сигнализации
HA — прибор звуковой сигнализации
KV — реле напряжения
KA — реле токовое
KK — реле электротепловое
KM — магнитный пускатель
KT — реле времени
PC — счетчик импульсов
PF — частотомер
PI — счетчик активной энергии
PR — омметр
PS — регистрирующий прибор
PV — вольтметр
PW — ваттметр
PA — амперметр
PK — счетчик реактивной энергии
PT — часы
QF — выключатель автоматический
QS — разъединитель
RK — терморезистор
RP — потенциометр
RS — шунт измерительный
RU — варистор
SA — выключатель или переключатель
SB — выключатель кнопочный
SF — выключатель автоматический
SK — выключатели, срабатывающие от температуры
SL — выключатели, срабатывающие от уровня
SP — выключатели, срабатывающие от давления
SQ — выключатели, срабатывающие от положения
SR — выключатели, срабатывающие от частоты вращения
TV — трансформатор напряжения
TA — трансформатор тока
UB — модулятор
UI — дискриминатор
UR — демодулятор
UZ — преобразователь частотный, инвертор, генератор частоты, выпрямитель
VD — диод, стабилитрон
VL — прибор электровакуумный
VS — тиристор
VT — транзистор
WA — антенна
WT — фазовращатель
WU — аттенюатор
XA — токосъемник, скользящий контакт
XP — штырь
XS — гнездо
XT — разборное соединение
XW — высокочастотный соединитель
YA — электромагнит
YB — тормоз с электромагнитным приводом
YC — муфта с электромагнитным приводом
YH — электромагнитная плита
ZQ — кварцевый фильтр
Ну а теперь самое интересное: графическое обозначение радиоэлементов.
Постараюсь привести самые ходовые обозначения элементов, используемые в схемах:
Резисторы постоянные
а) общее обозначение
б) мощностью рассеяния 0,125 Вт
в) мощностью рассеяния 0,25 Вт
г) мощностью рассеяния 0,5 Вт
д) мощностью рассеяния 1 Вт
е) мощностью рассеяния 2 Вт
ж) мощностью рассеяния 5 Вт
з) мощностью рассеяния 10 Вт
и) мощностью рассеяния 50 Вт
Резисторы переменные
Терморезисторы
Тензорезисторы
Варистор
Шунт
Конденсаторы
a) общее обозначение конденсатора
б) вариконд
в) полярный конденсатор
г) подстроечный конденсатор
д) переменный конденсатор
Акустика
a) головной телефон
б) громкоговоритель (динамик)
в) общее обозначение микрофона
г) электретный микрофон
Диоды
а) диодный мост
б) общее обозначение диода
в) стабилитрон
г) двусторонний стабилитрон
д) двунаправленный диод
е) диод Шоттки
ж) туннельный диод
з) обращенный диод
и) варикап
к) светодиод
л) фотодиод
м) излучающий диод в оптроне
н) принимающий излучение диод в оптроне
Измерители электрических величин
а) амперметр
б) вольтметр
в) вольтамперметр
г) омметр
д) частотомер
е) ваттметр
ж) фарадометр
з) осциллограф
Катушки индуктивности
а) катушка индуктивности без сердечника
б) катушка индуктивности с сердечником
в) подстроечная катушка индуктивности
Трансформаторы
а) общее обозначение трансформатора
б) трансформатор с выводом из обмотки
в) трансформатор тока
г) трансформатор с двумя вторичными обмотками (может быть и больше)
д) трехфазный трансформатор
Устройства коммутации
а) замыкающий
б) размыкающий
в) размыкающий с возвратом (кнопка)
г) замыкающий с возвратом (кнопка)
д) переключающий
е) геркон
Электромагнитное реле с различными группами коммутационных контактов (коммутационные контакты могут быть разнесены в схеме от катушки реле)
Предохранители
а) общее обозначение
б) выделена сторона, которая остается под напряжением при перегорании предохранителя
в) инерционный
г) быстродействующий
д) термическая катушка
е) выключатель-разъединитель с плавким предохранителем
Тиристоры
Биполярный транзистор
Однопереходный транзистор
Полевой транзистор с управляющим P-N переходом
МОП-транзисторы
IGBT транзисторы
Фото-радиоэлементы
Фоторезистор
Фотодиод
Фотоэлемент (солнечная панель)
Фототиристор
Фототранзистор
Оптоэлектронные приборы
Диодная оптопара
Резисторная оптопара
Транзисторная оптопара
Тиристорная оптопара
Симисторная оптопара
Кварцевый резонатор
Датчик Холла
Микросхема
Операционный усилитель
Семисегментный индикатор
Различные лампы
а) лампа накаливания
б) неоновая лампа
в) люминесцентная лампа
Соединение с корпусом (массой)
Земля
Более подробно с обозначением радиоэлементов можно ознакомиться в этой статье.
Продолжение
www.ruselectronic.com