Температура пламени при горении некоторых веществ и материалов. Температура пламени


Температура огня разных источников пламени

Температура огня заставляет в новом свете увидеть привычные вещи – вспыхнувшую белым спичку, голубое свечение горелки газовой печки на кухне, оранжево-красные язычки над пылающим деревом. Человек не обращает внимания на огонь, пока не обожжёт кончики пальцев. Или не спалит картошку на сковороде. Или не прожжёт подошву кроссовок, сохнущих над костром.

Когда первая боль, испуг и разочарование проходят, наступает время философских размышлений. О природе, цветовой гамме, температуре огня.

Горит, как спичка

Кратко о строении спички. Она состоит из палочки и головки. Палочки изготавливают из дерева, картона и хлопчатобумажного жгута, пропитанного парафином. Дерево выбирают мягких пород – тополь, сосну, осину. Сырьё для палочек называют спичечной соломкой. Чтобы избежать тления соломки, палочки пропитывают фосфорной кислотой. Российские заводы мастерят соломку из осины.

Головка спички проста по форме, но сложна по химическому составу. Темно-коричневая голова спички содержит семь компонентов: окислители - бертолетова соль и дихромат калия; стекляннюу пыль, сурик свинцовый, серу, костный клей, цинковые белила.

Головка спички при трении воспламеняется, нагреваясь до полутора тысяч градусов. Порог воспламенения, в градусах Цельсия:

  • тополь – 468;
  • осина – 612;
  • сосна – 624.

Температура огня спички равна температуре возгорания древесины. Поэтому белая вспышка серной головки сменяется желто-оранжевым язычком спички.

Если пристально разглядывать горящую спичку, то взгляду предстают три зоны пламени. Нижняя – холодная голубая. Средняя в полтора раза теплее. Верхняя – горячая зона.

Огненный художник

При слове «костёр» вспыхивают не менее ярко ностальгические воспоминания: дым костра, создающий доверительную обстановку; красные и желтые огни, летящие к ультрамариновому небу; переливы язычков с голубого до рубиново–красного цвета; багровые остывающие угли, в которых печётся «пионерская» картошка.

Изменяющийся колер пылающего дерева сообщает о колебаниях температуры огня в костре. Тление дерева (потемнение) начинается со 150°. Возгорание (задымление) происходит в интервале 250-300°. При одинаковом поступлении кислорода породы деревьев горят при несовпадающих температурах. Соответственно, градус костра тоже будет отличаться. Берёза горит при 800 градусах, ольха – при 522°, а ясень и бук – при 1040°.

Но цвет огня также определяется химическим составом горящего вещества. Желтый и оранжевый цвет огню вносят соли натрия. Химический состав целлюлозы содержит и соли натрия, и соли калия, придающие пылающим углям дерева красный оттенок. Романтические голубые огоньки в древесном костре возникают из-за недостатка кислорода, когда вместо СО2 образуется СО – угарный газ.

Энтузиасты научных опытов измеряют температуру огня в костре прибором под названием пирометр. Изготовляют три типа пирометров: оптические, радиационные, спектральные. Это бесконтактные приборы, разрешающие оценивать мощность теплового излучения.

Изучаем огонь на собственной кухне

Кухонные газовые плиты работают на двух видах топлива:

  1. Магистральный природный газ метан.
  2. Пропан–бутановая сжиженная смесь из баллонов и газгольдеров.

Химический состав топлива определяет температуру огня газовой плиты. Метан, сгорая, образует огонь мощностью 900 градусов в верхней точке.

Сжигание сжиженной смеси даёт жар до 1950°.

Внимательный наблюдатель отметит неравномерность раскраски язычков горелки газовой плиты. Внутри огненного факела происходит деление на три зоны:

  • Тёмный участок, расположенный возле конфорки: здесь нет горения из-за недостатка кислорода, а температура зоны равна 350°.
  • Яркий участок, лежащий в центре факела: горящий газ разогревается до 700°, но топливо сгорает не до конца из-за недостатка окислителя.
  • Полупрозрачный верхний участок: достигает температуры 900°, и сгорание газа полноценное.

Цифры температурных зон огневого факела приведены для метана.

Правила безопасности при огневых мероприятиях

Разжигая спички, камин, газовую плиту, позаботьтесь о вентиляции помещения. Обеспечьте приток кислорода к топливу.

Не пытайтесь самостоятельно ремонтировать газовое оборудование. Газ не терпит дилетантов.

Хозяйки отмечают, что горелки светятся голубым цветом, но иногда огонь становится оранжевым. Это не глобальное изменение температуры. Изменение цвета связано с изменением состава топлива. Чистый метан горит без цвета и без запаха. В целях безопасности в бытовой газ добавляют серу, которая при сгорании окрашивает газ в голубые оттенки и сообщает продуктам сгорания характерный запах.

Появление оранжевых и желтых оттенков в огне конфорки сообщает о необходимости профилактических манипуляций с плитой. Мастера прочистят оборудование, удалят пыль и сажу, горение которых и изменяет привычный цвет огня.

Иногда огонь в горелке становится красным. Это сигнал опасного содержания угарного газа в продуктах сгорания. Поступления кислорода к топливу настолько мало, что плита даже тухнет. Угарный газ без вкуса и запаха, и человек рядом с источником выделения вредного вещества заметит слишком поздно, что отравился. Поэтому красный цвет газа требует немедленного вызова мастеров для профилактики и наладки оборудования.

fb.ru

Пламя: строение, описание, схема, температура

В процессе горения образуется пламя, строение которого обусловлено реагирующими веществами. Его структура поделена на области в зависимости от температурных показателей.

Определение

Пламенем называют газы в раскаленном виде, в которых присутствуют составляющие плазмы или вещества в твердой дисперсной форме. В них осуществляются преобразования физического и химического типа, сопровождающиеся свечением, выделением тепловой энергии и разогревом.

Наличие же в газообразной среде ионных и радикальных частичек характеризует его электрическую проводимость и особое поведение в электромагнитном поле.

Что такое языки пламени

Обычно так называют процессы, связанные с горением. По сравнению с воздухом, газовая плотность меньше, но высокие температурные показатели обуславливают поднятие газа. Так и образуются языки пламени, которые бывают длинными и короткими. Часто происходит и плавный переход одних форм в другие.

Пламя: строение и структура

Для определения внешнего вида описываемого явления достаточно зажечь газовую горелку. Появившееся несветящееся пламя нельзя назвать однородным. Визуально можно выделить три его основные области. Кстати, изучение строения пламени показывает, что различные вещества горят с образованием различного типа факела.

При горении смеси из газа и воздуха вначале происходит формирование короткого факела, цвет которого имеет голубые и фиолетовые оттенки. В нем просматривается ядро - зелено-голубое, напоминающее конус. Рассмотрим это пламя. Строение его разделяется на три зоны:

  1. Выделяют подготовительную область, в которой происходит нагревание смеси из газа и воздуха при выходе из отверстия горелки.
  2. За ней следует зона, в которой происходит горение. Она занимает верхушку конуса.
  3. Когда имеется недостаток воздушного потока, газ сгорает не полностью. Выделяется углерода двухвалентный оксид и водородные остатки. Их догорание протекает в третьей области, где есть кислородный доступ.

Теперь отдельно рассмотрим разные процессы горения.

Горение свечи

Горение свечи подобно горению спички или зажигалки. А строение пламени свечи напоминает раскаленный газовый поток, который вытягивается вверх за счет выталкивающих сил. Процесс начинается с нагревания фитиля, за которым следует испарение парафина.

Самую нижнюю зону, находящуюся внутри и прилегающую к нити, называют первой областью. Она обладает небольшим свечением синего цвета из-за большого количества топлива, но малого объема кислородной смеси. Здесь осуществляется процесс неполного сгорания веществ с выделением угарного газа, который в дальнейшем окисляется.

Первую зону окружает светящаяся вторая оболочка, характеризующая строение пламени свечи. В нее поступает больший кислородный объем, что обуславливает продолжение окислительной реакции с участием топливных молекул. Температурные показатели здесь будут выше, чем в темной зоне, но недостаточные для конечного разложения. Именно в первых двух областях при сильном нагревании капелек несгоревшего топлива и угольных частичек появляется светящийся эффект.

Вторая зона окружена слабозаметной оболочкой с высокими температурными значениями. В нее заходит много кислородных молекул, что способствует полному догоранию топливных частичек. После окисления веществ, в третьей зоне светящийся эффект не наблюдается.

Схематическое изображение

Для наглядности представляем вашему вниманию изображение горения свечи. Схема пламени включает:

  1. Первую или темную область.
  2. Вторую светящуюся зону.
  3. Третью прозрачную оболочку.

Нить свечи не подвергается горению, а только происходит обугливание загнутого конца.

Горение спиртовки

Для химических экспериментов часто используют небольшие резервуары со спиртом. Их называют спиртовками. Фитиль горелки пропитывается залитым через отверстие жидким топливом. Этому способствует давление капиллярное. При достижении свободной верхушки фитиля, спирт начинает испаряться. В парообразном состоянии он поджигается и горит при температуре не более 900 °C.

Пламя спиртовки имеет обычную форму, оно практически бесцветное, с небольшим оттенком голубого. Его зоны не так четко видны, как у свечки.

У спиртовой горелки, названной в честь ученого Бартеля, начало огня располагается над калильной сеткой горелки. Такое заглубление пламени приводит к уменьшению внутреннего темного конуса, а из отверстия выходит средний участок, который считается самым горячим.

Цветовая характеристика

Излучения различных цветов пламени, вызывается электронными переходами. Их еще называют тепловыми. Так, в результате горения углеводородного компонента в воздушной среде, синее пламя обусловлено выделением соединения H-C. А при излучении частичек C-C, факел окрашивается в оранжево-красный цвет.

Трудно рассмотреть строение пламени, химия которого включает соединения воды, углекислого и угарного газа, связь OH. Его языки практически бесцветны, так как вышеуказанные частички при горении выделяют излучения ультрафиолетового и инфракрасного спектра.

Окраска пламени взаимосвязана с температурными показателями, с наличием в нем ионных частиц, которые относятся к определенному эмиссионному или оптическому спектру. Так, горение некоторых элементов приводит к изменению цвета огня в горелке. Отличия в окрашивании факела связаны с расположением элементов в разных группах системы периодической.

Огонь на наличие излучений, относящихся к видимому спектру, изучают спектроскопом. При этом было установлено, что простые вещества из общей подгруппы оказывают и подобное окрашивание пламени. Для наглядности используют горение натрия в качестве теста на данный металл. При внесении его в пламя, языки становятся ярко-желтыми. На основании цветовых характеристик выделяют натриевую линию в эмиссионном спектре.

Для щелочных металлов характерно свойство быстрого возбуждения светового излучения атомарных частиц. При внесении труднолетучих соединений таких элементов в огонь горелки Бунзена происходит его окрашивание.

Спектроскопическое исследование показывает характерные линии в области, видимой для глаза человека. Быстрота возбуждения светового излучения и простое спектральное строение тесно взаимосвязаны с высокой электроположительной характеристикой данных металлов.

Характеристика

В основе классификации пламени лежат следующие характеристики:

  • состояние агрегатное сгорающих соединений. Они бывают газообразной, аэродисперсной, твердой и жидкой формы;
  • тип излучения, которое может быть бесцветным, светящимся и окрашенным;
  • распределительная скорость. Существует быстрое и медленное распространение;
  • высота пламени. Строение может быть коротким и длинным;
  • характер передвижения реагирующих смесей. Выделяют пульсирующее, ламинарное, турбулентное перемещение;
  • визуальное восприятие. Вещества горят с выделением коптящего, цветного или прозрачного пламени;
  • температурный показатель. Пламя может быть низкотемпературным, холодным и высокотемпературным.
  • состояние фазы топливо – окисляющий реагент.

Возгорание происходит в результате диффузии или при предварительном перемешивании активных компонентов.

Окислительная и восстановительная область

Процесс окисления протекает в слабозаметной зоне. Она самая горячая и располагается вверху. В ней топливные частицы подвергаются полному сгоранию. А наличие в кислородного избытка и горючего недостатка приводит к интенсивному процессу окисления. Этой особенностью следует пользоваться при нагревании предметов над горелкой. Именно поэтому вещество погружают в верхнюю часть пламени. Такое горение протекает намного быстрее.

Восстановительные реакции проходят в центральной и нижней части пламени. Здесь содержится большой запас горючих веществ и малое количество O2 молекул, осуществляющих горение. При внесении в эти области кислородсодержащих соединений осуществляется отщепление O элемента.

В качестве примера восстановительного пламени используют процесс расщепления железа двухвалентного сульфата. При попадании FeSO4 в центральную часть факела горелки, происходит вначале его нагревание, а затем разложение на оксид трехвалентного железа, ангидрид и двуокись серы. В данной реакции наблюдается восстановление S с зарядом от +6 до +4.

Сварочное пламя

Данный вид огня образуется в результате сгорания смеси из газа или пара жидкости с кислородом чистого воздуха.

Примером служит формирование пламени кислородно-ацетиленового. В нем выделяют:

  • зону ядра;
  • среднюю область восстановления;
  • факельную крайнюю зону.

Так горят многие газокислородные смеси. Различия в соотношении ацетилена и окислителя приводят к разному типу пламени. Оно может быть нормального, науглероживающего (ацетиленистого) и окислительного строения.

Теоретически процесс неполного сгорания ацетилена в чистом кислороде можно охарактеризовать следующим уравнением: HCCH + O2 → h3 + CO +CO (для реакции необходима одна моль O2).

Полученный же молекулярный водород и угарный газ реагируют с воздушным кислородом. Конечными продуктами является вода и оксид четырехвалентного углерода. Уравнение выглядит так: CO + CO + h3 + 1½O2 → CO2 + CO2 +h3O. Для этой реакции необходимо 1,5 моля кислорода. При суммировании O2 получается, что 2,5 моль затрачивается на 1 моль HCCH. А так как на практике трудно найти идеально чистый кислород (часто он имеет небольшое загрязнение примесями), то соотношение O2 к HCCH будет 1,10 к 1,20.

Когда значение пропорции кислорода к ацетилену меньше 1,10, возникает науглероживающее пламя. Строение его имеет увеличенное ядро, очертания его становятся расплывчатыми. Из такого огня выделяется копоть, вследствие недостатка кислородных молекул.

Если же соотношение газов больше 1,20, то получается окислительное пламя с кислородным избытком. Лишние его молекулы разрушают атомы железа и другие компоненты стальной горелки. В таком пламени ядерная часть становится короткой и имеет заострения.

Температурные показатели

Каждая зона огня свечи или горелки имеет свои значения, обусловленные поступлением кислородным молекул. Температура открытого пламени в разных его частях колеблется от 300 °C до 1600 °C.

Примером служит пламя диффузионное и ламинарное, которое образовано тремя оболочками. Конус его состоит из темного участка с температурой до 360 °C и недостатком окисляющего вещества. Над ним располагается зона свечения. Ее температурный показатель колеблется от 550 до 850 °C, что способствует разложению термическому горючей смеси и ее горению.

Внешняя область едва заметная. В ней температура пламени доходит до 1560 °C, что обусловлено природными характеристиками топливных молекул и быстротой поступления окисляющего вещества. Здесь горение наиболее энергичное.

Вещества воспламеняются при разных температурных условиях. Так, металлический магний горит только при 2210 °С. Для многих твердых веществ температура пламени около 350 °С. Возгорание спичек и керосина возможно при 800 °С, тогда как древесины – от 850 °С до 950 °С.

Сигарета горит пламенем, температура которого варьируется от 690 до 790 °С, а в пропан-бутановой смеси – от 790 °С до 1960 °С. Бензин воспламеняется при 1350 °С. Пламя горения спирта имеет температуру не более 900 °С.

fb.ru

Температура пламени при горении некоторых веществ и материалов

ТАБЛИЦА 1.8. ВРЕМЯ ПРЕБЫВАНИЯ ЛЮДЕЙ В ЗОНЕ ТЕПЛОВОГО ВОЗДЕЙСТВИЯ ПРИ ТУШЕНИИ ПОЖАРА

Примечание. Числитель обозначает время пребывания людей при относительной влажности 15 - 20 %, а знаменатель - при 70 - 75 %

ТАБЛИЦА 1.9. ОПРЕДЕЛЕНИЕ ГОРЯЩИХ ВЕЩЕСТВ ПО ХАРАКТЕРУ И ПРИЗНАКАМ ДЫМА

ТАБЛИЦА 1.10. СОДЕРЖАНИЕ ОКСИДА УГЛЕРОДА В ЗАКРЫТЫХ ПОМЕЩЕНИЯХ ПРИ ГОРЕНИИ РАЗЛИЧНЫХ МАТЕРИАЛОВ

ТАБЛИЦА 1.11. ДЕЙСТВИЕ ГАЗОВ И ПАРОВ НА ОРГАНИЗМ ЧЕЛОВЕКА

ТАБЛИЦА 1.12. ШКАЛА ПРИБЛИЖЕННОГО ОПРЕДЕЛЕНИЯ СИЛЫ ВЕТРА

ТАБЛИЦА 1.13. ОРИЕНТИРОВОЧНЫЕ ЗНАЧЕНИЯ АЭРОДИНАМИЧАСКИХ КОЭФФИЦИЕНТОВ ДЛЯ ЗДАНИЙ ПРЯМОУГОЛЬНОЙ ФОРМЫ

Вещество, находящееся в горения и теплового воздействия

зонах ствия

Вещества, образующиеся при горении и тепловом разложении

Ароматические вещества, содержащие воду

Сероводород, меркаптаны, тиоэфиры, тиофен, сернистый ангидрид

Ацетон

Кетоны

Бездымный порох

Ацетилен, нитрилы, оксид углерода, оксиды азота

Бензол

Дефинил, антрацен

Волос, кожа, ткани, шерсть

Неприятно пахнущие продукты: пиридин, хинолин, цианистые соединения, соединения содержащие серу, а также газы с сильным и острым запахом (альдегиды, кетоны)

Гремучая ртуть

Уксусный эфир, уксусная кислота эфиры азотной кислоты, цианистый водород, нитрилы, пары ртути и летучие органические ртутные соединения

Древесина

Формальдегид, ацетальдегид, валеральдигид, фурфурол, ацеталий, смоляные кислоты, спирты, сложные эфиры, кетоны, фенолы, амины, пиридин, метил-перидин, оксид углерода

Жиры, мыла, мясопродукты

Кроме других химических веществ образуется акролеин. Концентрацию акролеина около 0,003 % человек переносит более 1 мин

Каучук

Изопрен, высшие непредельные углеводороды

Лаки, продукты содержащие нитроцеллюлозу

Оксид углерода, углекислота, оксид азота, синильная кислота

Нафталин

Динафтил

Нитроглицерин

Оксид углерода, углекислота, оксид азота

Пластмассы, целлулоид

Оксид углерода, оксид азота, цианистые соединения, хлорангидридные кислоты, формальдегиды, фенол, фторфосген, амиак, фенол, ацетон, стирол и др.

Скипидар

Изопрен, гомологи бензола, и др.

Спирты

Оксид углерода, водород, формальдегиды, ацетальдегиды, метан, кротоновый альдегид, ацетилен и др.

Этиловый эфир

Ацетальдегид, этан, перекиси соединения винила

Эфиры жирного ряда

Альдегиды

Вещество и материал

Характеристика дыма

цвет

запах

вкус

Бумага, сено, солома

Беловато-желтый

Специфический

Кисловатый

Волос, кожа

Серый, желтоваый

Специфический

Кисловатый

Магний, электрон

Белый

Не имеет

Металлический

Калий металлический

Белый

Не имеет

Кисловатый

Пиролксилин и другие азотные соединения

Желто-белый

Раздражающий

Металлический

Нефть и нефтепродукты

Черный

Специфический нефтяной

Металлический кисловатый

Резина

Черно-бурый

Сернистый

Кислый

Сера

Неопределенный

Сернистый

Кислый

Фосфор

Белый

Чесночный

Не имеет

Хлопок, ткани

Бурый

Специфический

Кисловатый

Место пожара

Горючий материал

Объемная доля ок­сида

уг­лерода, %

Подвал жилого дома

Дрова, старая мебель

0,18

Подвал жилого дома

Дрова, уголь, брикеты

0,27

Квартира жилого дома

Мебель, постельные принадлежно­сти

0,15

Контора предприятия

Конторская мебель, бумага

0,40

Магазин

Канцелярские принадлежности, книги и др.

0,30

Магазин

Пищевые продукты, мука, крупа, рис, хлеб

0,18

Ветер

Скорость ветра, м/с

Наблюдаемое действие ветра

Штиль

0 – 0,5

Дым поднимается отвесно или почти отвесно Листья деревьев неподвижны

Тихий

0,6 – 1,7

Движение флюгера незаметно

Легкий

1,8 - .3,3

Дуновение чувствуется лицом. Листья деревьев шелестят

Слабый

3,4 - 5.2

Листья и тонкие ветки деревьев все время колышутся Легкие флаги развеваются

Умеренный

5,3 – 7,4

Поднимается пыль. Тонкие ветки деревьев качаются

Свежий

7,5 – 9,8

Качаются тонкие стволы деревьев, на воде появляются волны с гребешками

Сильный

99 - 12,4

Качаются толстые сучья деревьев, гудят телефонные провода

Крепкий

12,5 – 15,2

Качаются стволы деревьев, гнутся большие ветки

Очень крепкий

15,3 - 18,2

Ломаются тонкие ветки и сухие сучья деревьев

Шторм

18,3 - 21,5

Небольшие разрушения. Волны на море покрываются пеной

Шторм сильный

21,6 – 25,1

Значительные разрушения. Деревья вырываются с корнями

Шторм жесткий

25,2 – 29,0

Большие разрушения

Ураган

Выше 29,0

Катастрофические разрушения

studfiles.net

Температура пламени при горении некоторых веществ и материалов

ТАБЛИЦА 1.8. ВРЕМЯ ПРЕБЫВАНИЯ ЛЮДЕЙ В ЗОНЕ ТЕПЛОВОГО ВОЗДЕЙСТВИЯ ПРИ ТУШЕНИИ ПОЖАРА

Примечание. Числитель обозначает время пребывания людей при относительной влажности 15 - 20 %, а знаменатель - при 70 - 75 %

ТАБЛИЦА 1.9. ОПРЕДЕЛЕНИЕ ГОРЯЩИХ ВЕЩЕСТВ ПО ХАРАКТЕРУ И ПРИЗНАКАМ ДЫМА

ТАБЛИЦА 1.10. СОДЕРЖАНИЕ ОКСИДА УГЛЕРОДА В ЗАКРЫТЫХ ПОМЕЩЕНИЯХ ПРИ ГОРЕНИИ РАЗЛИЧНЫХ МАТЕРИАЛОВ

ТАБЛИЦА 1.11. ДЕЙСТВИЕ ГАЗОВ И ПАРОВ НА ОРГАНИЗМ ЧЕЛОВЕКА

ТАБЛИЦА 1.12. ШКАЛА ПРИБЛИЖЕННОГО ОПРЕДЕЛЕНИЯ СИЛЫ ВЕТРА

ТАБЛИЦА 1.13. ОРИЕНТИРОВОЧНЫЕ ЗНАЧЕНИЯ АЭРОДИНАМИЧАСКИХ КОЭФФИЦИЕНТОВ ДЛЯ ЗДАНИЙ ПРЯМОУГОЛЬНОЙ ФОРМЫ

Вещество, находящееся в горения и теплового воздействия

зонах ствия

Вещества, образующиеся при горении и тепловом разложении

Ароматические вещества, содержащие воду

Сероводород, меркаптаны, тиоэфиры, тиофен, сернистый ангидрид

Ацетон

Кетоны

Бездымный порох

Ацетилен, нитрилы, оксид углерода, оксиды азота

Бензол

Дефинил, антрацен

Волос, кожа, ткани, шерсть

Неприятно пахнущие продукты: пиридин, хинолин, цианистые соединения, соединения содержащие серу, а также газы с сильным и острым запахом (альдегиды, кетоны)

Гремучая ртуть

Уксусный эфир, уксусная кислота эфиры азотной кислоты, цианистый водород, нитрилы, пары ртути и летучие органические ртутные соединения

Древесина

Формальдегид, ацетальдегид, валеральдигид, фурфурол, ацеталий, смоляные кислоты, спирты, сложные эфиры, кетоны, фенолы, амины, пиридин, метил-перидин, оксид углерода

Жиры, мыла, мясопродукты

Кроме других химических веществ образуется акролеин. Концентрацию акролеина около 0,003 % человек переносит более 1 мин

Каучук

Изопрен, высшие непредельные углеводороды

Лаки, продукты содержащие нитроцеллюлозу

Оксид углерода, углекислота, оксид азота, синильная кислота

Нафталин

Динафтил

Нитроглицерин

Оксид углерода, углекислота, оксид азота

Пластмассы, целлулоид

Оксид углерода, оксид азота, цианистые соединения, хлорангидридные кислоты, формальдегиды, фенол, фторфосген, амиак, фенол, ацетон, стирол и др.

Скипидар

Изопрен, гомологи бензола, и др.

Спирты

Оксид углерода, водород, формальдегиды, ацетальдегиды, метан, кротоновый альдегид, ацетилен и др.

Этиловый эфир

Ацетальдегид, этан, перекиси соединения винила

Эфиры жирного ряда

Альдегиды

Вещество и материал

Характеристика дыма

цвет

запах

вкус

Бумага, сено, солома

Беловато-желтый

Специфический

Кисловатый

Волос, кожа

Серый, желтоваый

Специфический

Кисловатый

Магний, электрон

Белый

Не имеет

Металлический

Калий металлический

Белый

Не имеет

Кисловатый

Пиролксилин и другие азотные соединения

Желто-белый

Раздражающий

Металлический

Нефть и нефтепродукты

Черный

Специфический нефтяной

Металлический кисловатый

Резина

Черно-бурый

Сернистый

Кислый

Сера

Неопределенный

Сернистый

Кислый

Фосфор

Белый

Чесночный

Не имеет

Хлопок, ткани

Бурый

Специфический

Кисловатый

Место пожара

Горючий материал

Объемная доля ок­сида

уг­лерода, %

Подвал жилого дома

Дрова, старая мебель

0,18

Подвал жилого дома

Дрова, уголь, брикеты

0,27

Квартира жилого дома

Мебель, постельные принадлежно­сти

0,15

Контора предприятия

Конторская мебель, бумага

0,40

Магазин

Канцелярские принадлежности, книги и др.

0,30

Магазин

Пищевые продукты, мука, крупа, рис, хлеб

0,18

Ветер

Скорость ветра, м/с

Наблюдаемое действие ветра

Штиль

0 – 0,5

Дым поднимается отвесно или почти отвесно Листья деревьев неподвижны

Тихий

0,6 – 1,7

Движение флюгера незаметно

Легкий

1,8 - .3,3

Дуновение чувствуется лицом. Листья деревьев шелестят

Слабый

3,4 - 5.2

Листья и тонкие ветки деревьев все время колышутся Легкие флаги развеваются

Умеренный

5,3 – 7,4

Поднимается пыль. Тонкие ветки деревьев качаются

Свежий

7,5 – 9,8

Качаются тонкие стволы деревьев, на воде появляются волны с гребешками

Сильный

99 - 12,4

Качаются толстые сучья деревьев, гудят телефонные провода

Крепкий

12,5 – 15,2

Качаются стволы деревьев, гнутся большие ветки

Очень крепкий

15,3 - 18,2

Ломаются тонкие ветки и сухие сучья деревьев

Шторм

18,3 - 21,5

Небольшие разрушения. Волны на море покрываются пеной

Шторм сильный

21,6 – 25,1

Значительные разрушения. Деревья вырываются с корнями

Шторм жесткий

25,2 – 29,0

Большие разрушения

Ураган

Выше 29,0

Катастрофические разрушения

studfiles.net

Температура пламени при горении некоторых веществ и материалов

ТАБЛИЦА 1.8. ВРЕМЯ ПРЕБЫВАНИЯ ЛЮДЕЙ В ЗОНЕ ТЕПЛОВОГО ВОЗДЕЙСТВИЯ ПРИ ТУШЕНИИ ПОЖАРА

Примечание. Числитель обозначает время пребывания людей при относительной влажности 15 - 20 %, а знаменатель - при 70 - 75 %

ТАБЛИЦА 1.9. ОПРЕДЕЛЕНИЕ ГОРЯЩИХ ВЕЩЕСТВ ПО ХАРАКТЕРУ И ПРИЗНАКАМ ДЫМА

ТАБЛИЦА 1.10. СОДЕРЖАНИЕ ОКСИДА УГЛЕРОДА В ЗАКРЫТЫХ ПОМЕЩЕНИЯХ ПРИ ГОРЕНИИ РАЗЛИЧНЫХ МАТЕРИАЛОВ

ТАБЛИЦА 1.11. ДЕЙСТВИЕ ГАЗОВ И ПАРОВ НА ОРГАНИЗМ ЧЕЛОВЕКА

ТАБЛИЦА 1.12. ШКАЛА ПРИБЛИЖЕННОГО ОПРЕДЕЛЕНИЯ СИЛЫ ВЕТРА

ТАБЛИЦА 1.13. ОРИЕНТИРОВОЧНЫЕ ЗНАЧЕНИЯ АЭРОДИНАМИЧАСКИХ КОЭФФИЦИЕНТОВ ДЛЯ ЗДАНИЙ ПРЯМОУГОЛЬНОЙ ФОРМЫ

Вещество, находящееся в горения и теплового воздействия

зонах ствия

Вещества, образующиеся при горении и тепловом разложении

Ароматические вещества, содержащие воду

Сероводород, меркаптаны, тиоэфиры, тиофен, сернистый ангидрид

Ацетон

Кетоны

Бездымный порох

Ацетилен, нитрилы, оксид углерода, оксиды азота

Бензол

Дефинил, антрацен

Волос, кожа, ткани, шерсть

Неприятно пахнущие продукты: пиридин, хинолин, цианистые соединения, соединения содержащие серу, а также газы с сильным и острым запахом (альдегиды, кетоны)

Гремучая ртуть

Уксусный эфир, уксусная кислота эфиры азотной кислоты, цианистый водород, нитрилы, пары ртути и летучие органические ртутные соединения

Древесина

Формальдегид, ацетальдегид, валеральдигид, фурфурол, ацеталий, смоляные кислоты, спирты, сложные эфиры, кетоны, фенолы, амины, пиридин, метил-перидин, оксид углерода

Жиры, мыла, мясопродукты

Кроме других химических веществ образуется акролеин. Концентрацию акролеина около 0,003 % человек переносит более 1 мин

Каучук

Изопрен, высшие непредельные углеводороды

Лаки, продукты содержащие нитроцеллюлозу

Оксид углерода, углекислота, оксид азота, синильная кислота

Нафталин

Динафтил

Нитроглицерин

Оксид углерода, углекислота, оксид азота

Пластмассы, целлулоид

Оксид углерода, оксид азота, цианистые соединения, хлорангидридные кислоты, формальдегиды, фенол, фторфосген, амиак, фенол, ацетон, стирол и др.

Скипидар

Изопрен, гомологи бензола, и др.

Спирты

Оксид углерода, водород, формальдегиды, ацетальдегиды, метан, кротоновый альдегид, ацетилен и др.

Этиловый эфир

Ацетальдегид, этан, перекиси соединения винила

Эфиры жирного ряда

Альдегиды

Вещество и материал

Характеристика дыма

цвет

запах

вкус

Бумага, сено, солома

Беловато-желтый

Специфический

Кисловатый

Волос, кожа

Серый, желтоваый

Специфический

Кисловатый

Магний, электрон

Белый

Не имеет

Металлический

Калий металлический

Белый

Не имеет

Кисловатый

Пиролксилин и другие азотные соединения

Желто-белый

Раздражающий

Металлический

Нефть и нефтепродукты

Черный

Специфический нефтяной

Металлический кисловатый

Резина

Черно-бурый

Сернистый

Кислый

Сера

Неопределенный

Сернистый

Кислый

Фосфор

Белый

Чесночный

Не имеет

Хлопок, ткани

Бурый

Специфический

Кисловатый

Место пожара

Горючий материал

Объемная доля ок­сида

уг­лерода, %

Подвал жилого дома

Дрова, старая мебель

0,18

Подвал жилого дома

Дрова, уголь, брикеты

0,27

Квартира жилого дома

Мебель, постельные принадлежно­сти

0,15

Контора предприятия

Конторская мебель, бумага

0,40

Магазин

Канцелярские принадлежности, книги и др.

0,30

Магазин

Пищевые продукты, мука, крупа, рис, хлеб

0,18

Ветер

Скорость ветра, м/с

Наблюдаемое действие ветра

Штиль

0 – 0,5

Дым поднимается отвесно или почти отвесно Листья деревьев неподвижны

Тихий

0,6 – 1,7

Движение флюгера незаметно

Легкий

1,8 - .3,3

Дуновение чувствуется лицом. Листья деревьев шелестят

Слабый

3,4 - 5.2

Листья и тонкие ветки деревьев все время колышутся Легкие флаги развеваются

Умеренный

5,3 – 7,4

Поднимается пыль. Тонкие ветки деревьев качаются

Свежий

7,5 – 9,8

Качаются тонкие стволы деревьев, на воде появляются волны с гребешками

Сильный

99 - 12,4

Качаются толстые сучья деревьев, гудят телефонные провода

Крепкий

12,5 – 15,2

Качаются стволы деревьев, гнутся большие ветки

Очень крепкий

15,3 - 18,2

Ломаются тонкие ветки и сухие сучья деревьев

Шторм

18,3 - 21,5

Небольшие разрушения. Волны на море покрываются пеной

Шторм сильный

21,6 – 25,1

Значительные разрушения. Деревья вырываются с корнями

Шторм жесткий

25,2 – 29,0

Большие разрушения

Ураган

Выше 29,0

Катастрофические разрушения

studfiles.net

Максимальная температура - пламя - Большая Энциклопедия Нефти и Газа, статья, страница 1

Максимальная температура - пламя

Cтраница 1

Максимальные температуры пламен, измеренные методом лучеиспускания и поглощения, выше максимальных температур, измеренных термопарой. Различие между измеренными температурами для пламен гептана, октана, нонана, уротропина, гексазаде-калина незначительно и составляет 5 - 3 %, что подтверждает достоверность результатов, полученных оптическим методом.  [1]

Максимальная температура пламени при р 1 атм равна 3320 К.  [2]

Максимальная температура пламени метана достигает приблизительно 2000 С. Смесь метана с воздухом взрывоопасна. Поэтому очень важно в производствах, где возможно образование метана, или в рудниках, где может выделяться природный газ, следить за составом воздуха и в аварийных случаях принимать срочные меры.  [3]

Максимальная температура пламен углеводородов нормального строения в воздухе в зависимости от числа атомов углерода ( п) в молекуле приведена в работе [ 20, с. По уменьшению такой температуры углеводороды располагаются в такой последовательности ( при одном и том же п): ацетиленовые углеводороды ароматические углеводороды олефины циклопарафи-ны парафины.  [4]

Полученные оценки максимальных температур пламен различных газовых смесей, как показывают приведенные в табл. 2.1 данные, хорошо коррелируют с результатами большинства последних работ, в которых применялись расчетные способы и метод обращения.  [5]

Различие в максимальных температурах пламен / - 3 объясняется прежде всего количеством избыточного воздуха в горючих газовых смесях.  [6]

Этот факт определяет максимальную температуру пламени. Если бы реакцию 2Н2 О2 проводили даже в условиях, когда выделяющееся в результате горения тепло не передается окружающей среде, то температура не превышала бы определенного максимума, так как при более высокой температуре продукт реакции Н2О диссоциировал бы с поглощением тепла. Зная константу равновесия, можно вычислить максимальную ( теоретически возможную) температуру пламени. В действительности даже при сжигании в кислороде не развивается температура 3000, так как еще до достижения этой температуры начинается диссоциация молекул Н2 и О2 на атомы, которая также происходит с поглощением тепла.  [7]

Приведенные значения являются максимальными температурами пламен, определенными для данного топлива. Концентрации даны в объемных процентах для сухих смесей. Все значения температуры указаны для исходных смесей при комнатной температуре и атмосферном давлении. На экспериментальные значения температур пламени, по-видимому, влияют потери тепла и перемешивание с окружающим воздухом. Однако это влияние во многих случаях не вызывает заметного отклонения от расчетных температур пламени; эти значения могут быть использованы как приблизительные значения температур пламени исследуемых смесей [ 11, с. Как следует из данных табл. 1.5, при горении воздушных смесей Н2, СО и углеводородов достигается сравнительно высокая температура ( 2045 - 1875 С) в ряде случаев приближающаяся к расчетной адиабатической температуре.  [8]

Предположим, горелка дает максимальную температуру пламени при соотношении газа с воздухом в смеси 1: 8 и при изменении этого соотношения на небольшую ( например, до соотношений 1: 7 8 или 1: 8 2) величину температура изменится на значительную величину, например 40 С. В этом случае незначительные изменения теплоты сгорания газа резко нарушат нормальную работу контрольной горелки; следовательно, эти изменения калорийности газа будут передаваться на приемник изменения калорийности - термоэлемент; таким образом, точность работы регулятора будет весьма высокой.  [9]

Здесь величина Тг представляет собой максимальную температуру пламени в случае, когда потерями нельзя пренебречь.  [10]

Если факел укорачивается, увеличивается максимальная температура пламени, этот максимум смещается к срезу горелки и, как следствие, увеличивается суммарная теплоотдача.  [11]

Под теоретической температурой горения подразумевают максимальную температуру пламени, которая достигается при сгорании газа с теоретически необходимым количеством воздуха.  [12]

НВг и соответственно На при максимальной температуре пламени, Кулей и Андерсон приходят к заключению, что, несмотря на значительно меньшую равновесную концентрацию ( по сравнению с концентрацией атомов брома), атомы водорода играют основную роль в распространении пламени.  [13]

Теплоотдача из зоны пламени приводит к понижению максимальной температуры пламени Тт против адиабатической температуры горения Tad. Согласно формуле ( VI73) снижение максимальной температуры горения уменьшает скорость распространения пламени. Но чем меньше скорость горения, тем больше времени проводит вещество в зоне пламени и тем больше успевает потерять тепла. Из-за обратной связи увеличение относительных теплолотерь сверх определенного предельного значения делает распространение пламени невозможным. При этом на пределе скорость распространения отнюдь не обращается в нуль, но сохраняет вполне измеримое значение. Теплоот-вод непосредственным соприкосновением имеет место только при распространении пламени в трубах конечного диаметра Но тепло-потери излучением существуют всегда, их относительная величина зависит только от состава смеси. Именно теплоотвод излучением определяет концентрационные пределы распространения пламени.  [14]

Теплоотдача из зоны пламени приводит к понижению максимальной температуры пламени Тт против адиабатической температуры горения Tad. Согласно формуле ( VI73) снижение максимальной температуры горения уменьшает скорость распространения пламени. Но чем меньше скорость горения, тем больше времени проводит вещество в зоне пламени и тем больше успевает потерять тепла. Из-за обратной связи увеличение относительных тешюпотерь сверх определенного предельного значения делает распространение пламени невозможным. При этом на пределе скорость распространения отнюдь не обращается в нуль, но сохраняет вполне измеримое значение. Теплоот-вод непосредственным соприкосновением имеет место только при распространении пламени в трубах конечного диаметра. Но тепло-цотери излучением существуют всегда, их относительная величина зависит только от состава смеси. Именно теплоотвод излучением определяет концентрационные пределы распространения пламени.  [15]

Страницы:      1    2    3    4

www.ngpedia.ru

Какова максимальная температура огня при горении дерева (любого)?

при нагревании до 105°С из древесины испаряется вода; при нагревании до 150°С из древесины удаляются остатки влаги и начинается разложение и выделение газообразных продуктов; при нагревании 270—280°С начинается экзотермическая реакция с выделением тепла, т. е. созданы условия для самоподдержания необходимой температуры, при • которой идёт разложение древесины с образованием пламени и дальнейшим повышением температуры; при температуре 450°С и более пламенное горение переходит в беспламенное горение угля (тление) с температурой до 900°С.

Думаю градусов 500-600

При температуре 275° на открытом воздухе начинается горение древесины, т. е. соединение ее с кислородом воздуха, сопровождающееся светящимся пламенем. При этом в толстых кусках древесина из-за малой теплопроводности не прогревается; начавшееся горение переходит в тление и прекращается совсем. Поэтому практически точкой воспламенения древесины можно считать (для сосны) 300—330°.

Температура воспламенения для большинства твердых материалов - 300°С. Температура пламени в горящей сигарете - 700-800°С. В спичке температура пламени 750-850 °С, при этом 300°С - температура воспламенения дерева, А ТЕМПЕРАТУРА ГОРЕНИЯ ДЕРЕВА РАВНЯЕТСЯ ПРИМЕРНО 800 — 1000 °С. Температура горения пропан-бутана колеблется от 800 до 1970 °С. Температура горения бензина - 1300-1400 °С. Температура пламени керосина - 1100 °С. Температура пламени спирта не превышает 900 °С. Температура горения магния - 2200 °С.

Ответ зависит от того, что и как греть. Большие температуры за 1000 С для нагрева крупных тел можно получить лишь с подогревом воздуха, в прогретых печах, где тепло не рассеивается в стороны. Хотя верхняя часть пламени имеет выше 1500 С, но никто не расплавит в ней железо.

По моему подробней не получится открыть тему, чем здесь: <a rel="nofollow" href="http://fas.su/page-510" target="_blank">http://fas.su/page-510</a>

touch.otvet.mail.ru