Международная система единиц СИ online. За единицу длины в си принят
Международная система единиц СИ online
Метр есть длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 секунды.
Историческое происхождение, обоснование
XVII Генеральная конференция по мерам и весам (ГКМВ) (1983 г, Резолюция 1) 1/10 000 000 расстояния от экватора Земли до северного полюса на меридиане Парижа.
Длина — физическая величина, числовая характеристика протяжённости линий. В узком смысле под длиной понимают линейный размер предмета в продольном направлении (обычно это направление наибольшего размера), то есть расстояние между его двумя наиболее удалёнными точками, измеренное горизонтально, в отличие от высоты, которая измеряется в вертикальном направлении, а также ширины или толщины, которые измеряются поперёк объекта (под прямым углом к длине).
В физике термин «длина» обычно используется как синоним «расстояния» и обозначается L или l от англ. length (длина).
Символ размерности длины — dim l = L. В ряду других пространственных величин длина — это величина единичной размерности, тогда как площадь — двухмерная, объём — трёхмерная. В большинстве систем измерений единица длины — одна из основных единиц измерения, через которые определяются другие (производные) единицы. В международной системе единиц (СИ) за единицу длины принят метр.
Метрическая система
Метрическая система считается самой удобной из всех придуманных из-за своей простоты. В основе метрической системы лежит единица измерения метр. Все остальные единицы измерения являются кратными степеням десяти от метра (например, километр — это 10? метров и т. п.), что позволяет облегчить подсчёты. До 1960 года у метра был специальный эталон, ныне хранящийся в Международном бюро мер и весов, расположенном в городе Севр (предместье Парижа, Франция). Сегодня, по определению, метр равен расстоянию, которое проходит свет в вакууме за 1/299 792 458 долю секунды.
Британская/Американская система
Исходными английскими мерами длины были миля, ярд, фут и дюйм. Миля пришла в Англию из Древнего Рима, где она определялась как тысяча двойных шагов вооружённого римского воина.
Лига (лье), Фурлонг, Чейн, Род, Линк, Ладонь, Линия
Старорусская система
В Древней Руси мерой длины, веса и т. п. являлся человек. На это указывают названия мер длины: локоть (расстояние от конца вытянутого среднего пальца руки или сжатого кулака до локтевого сгиба), пядь (расстояние между вытянутым большим и указательным пальцами руки), сажень (расстояние от конца пальцев одной руки до конца пальцев другой) и другие.
В частности, аршин был связан с длиной человеческого шага. Однако необходимость унификации систем измерений с британской в связи с развитием международной торговли потребовала введения во времена Петра I так называемого «казённого аршина». Это была мерная линейка с металлическими наконечниками с государственным клеймом. Казённый аршин равнялся 28 английским дюймам и делился на 16 вершков.
units-system.ru
Основные единицы СИ - это... Что такое Основные единицы СИ?
Семь основных единиц и зависимость их определенийСИ (SI, фр. Le Système International d'Unités), (Система Интернациональная) — международная система единиц, современный вариант метрической системы. Она определяет семь основных единиц измерения, являющихся основой для остальных единиц СИ. Основные единицы измерения СИ и их величины[1]:
Названия всех единиц СИ пишутся маленькими буквами (например , метр и его символ м). У этого правила есть исключение: название единиц, названных фамилиями учёных пишутся с большой буквы (например, ампер обозначается символом А).
Многие другие единицы измерения, такие как литр, формально не входят в СИ, но они «допускаются для использования совместно с СИ».
Метр | м | Длина | «Метр есть длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 секунды.»17я Конференция по мерам и весам (1983г, Резолюция 1) | 1⁄10 000 000 расстояния от экватора Земли до северного полюса на меридиане Парижа. |
Килограмм | кг | Масса | «Килограмм есть единица массы, равная массе международного прототипа килограмма»3я Конференция по мерам и весам (1901г) | Масса одного кубического дециметра (литра) чистой воды при температуре 4 °C и стандартном атмосферном давлении на уровне моря. |
Секунда | с | Время | «Секунда это — интервал времени, равный 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного (квантового) состояния атома цезия-133»13я Конференция по мерам и весам (1967/68г, Резолюция 1)«В покое при 0 К при отсутствии возмущения внешними полями.»(Добавлено в 1997году) | День делится на 24 часа, каждый час делится на 60 минут, каждая минута делится на 60 секунд.Секунда это — 1⁄(24 × 60 × 60) часть Дня |
Ампер | А | Сила тока | «Ампер - это сила постоянного тока, текущего в каждом из двух параллельных бесконечно длинных бесконечно малого кругового сечения проводников в вакууме на расстоянии 1 метр, и создающая силу взаимодействия между ними 2·10−7ньютонов на каждый метр длины проводника.»9я Конференция по мерам и весам(1948г) | |
Кельвин | К | Термодинамическая Температура | «Один кельвин равен 1/273,16 термодинамической температуры тройной точки воды.»13th Конференция по мерам и весам (1967/68г, Резолюция 4)"В обязательном Техническом приложении к тексту МТШ-90 Консультативный комитет по термометрии в 2005 г. установил требования к изотопному составу воды при реализации температуры тройной точки воды. | Шкала Кельвина использует тот же шаг градуса, что и шкала Цельсия, но 0 градусов это температура абсолютного нуля, а не температура плавления льда. Согласно современному определению ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 °C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15[3]: °C = K — 273,15 |
Моль | моль | Количество вещества | «Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц»[3]14я Конференция по мерам и весам (1971г, Резолюция 3) | |
Кандела | кд | «равна силе света, испускаемого в заданном направлении источником монохроматического излучения частотой 540·1012 герц, энергетическая сила света которого в этом направлении составляет (1/683) Вт/ср.»16я Конференция по мерам и весам (1979, Резолюция 3) |
Будущие изменения
С момента принятия Метрической конвенция в 1875 г. определения основных единиц измерения несколько раз изменялись. С переопределения метра 1960, килограмм остался последней единицей, которая определяется не как свойство природы, а как физический артефакт. Тем не менее, моль, ампер и кандела тоже привязаны к платиново-иридиевым эталонам, которые находятся в хранилище. Длительное время метрология искала пути для определения килограмма фундаментальными константами, также, как метр определяется через скорость света.
В 21-м веке Конференция по мерам и весам (1999 г.) предложил официально приложить все усилия и рекомендовала «Национальным лабораториям продолжить исследования для привязки массы к фундаментальным или массовым константам для определения массы килограмма.» Большинство ожиданий связывают с постоянной Планка и числом Авогадро.
В 2005 году Международный комитет мер и весов (CIPM) утвердив подготовку к новым определениям килограмма, ампера и кельвина, также отметил возможность нового определения моля основанное на числе Авогадро[4] 23-я Генеральная конференция по мерам и весам (CGPM) в 2007 году решила отложить узаконивание любых изменений до следующей конференции в 2011 году.[5]
В пояснительной записке, адресованной CIPM, в октябре 2009 года,[6] президент консультативного совета CIPM по единицам перечислил неопределенности физических фундаментальных констант при использовании текущих определений и тех, какими эти неопроеделенности станут при использовании новых предложенных определений единиц. Он рекомендовал CIPM принять предложенные изменения в «определении килограмма, ампера, кельвина и моля, чтобы они выражались через величины фундаментальных констант h[7], e[8], k[9], и NA».[10]
См. также
Примечания
Ссылки
dic.academic.ru
Международная система единиц (СИ) | Измерения. Системы, единицы, стандарты
Система единиц физических величин, современный вариант метрической системы. СИ является наиболее широко используемой системой единиц в мире, как в повседневной жизни, так и в науке и технике. В настоящее время СИ принята в качестве основной системы единиц большинством стран мира и почти всегда используется в области техники, даже в тех странах, в которых в повседневной жизни используются традиционные единицы. В этих немногих странах (например, в США) определения традиционных единиц были изменены таким образом, чтобы связать их фиксированными коэффициентами с соответствующими единицами СИ.
СИ была принята XI Генеральной конференцией по мерам и весам в 1960 году, некоторые последующие конференции внесли в СИ ряд изменений.
В 1971 году XIV Генеральная конференция по мерам и весам внесла изменения в СИ, добавив, в частности, единицу количества вещества (моль).
В 1979 году XVI Генеральная конференция по мерам и весам приняла новое, действующее поныне, определение канделы.
В 1983 году XVII Генеральная конференция по мерам и весам приняла новое, действующее поныне, определение метра.
СИ определяет семь основных и производные единицы физических величин (далее — единицы), а также набор приставок. Установлены стандартные сокращённые обозначения для единиц и правила записи производных единиц.
Основные единицы: килограмм, метр, секунда, ампер, кельвин, моль и кандела. В рамках СИ считается, что эти единицы имеют независимую размерность, то есть ни одна из основных единиц не может быть получена из других.
Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в СИ присвоены собственные названия, например, радиану.
Приставки можно использовать перед названиями единиц; они означают, что единицу нужно умножить или разделить на определённое целое число, степень числа 10. Например, приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.
Многие внесистемные единицы, такие как, например, тонна, час, литр и электронвольт не входят в СИ, но они «допускаются к применению наравне с единицами СИ».
Семь основных единиц и зависимость их определений
Основные единицы СИ
Единица | Обозначение | Величина | Определение | Исторические происхождения / Обоснование |
Метр | м | Длина | Метр есть длина пути, проходимого светом в вакууме за интервал времени 1/299 792 458 секунды.XVII Генеральная конференция по мерам и весам (ГКМВ) (1983 г, Резолюция 1) | 1⁄10000000 расстояния от экватора Земли до северного полюса на меридиане Парижа. |
Килограмм | кг | Масса | Килограмм есть единица массы, равная массе международного прототипа килограмма.I ГКМВ (1899 г.) и III ГКМВ (1901 г.) | Масса одного кубического дециметра (литра) чистой воды при температуре 4 C и стандартном атмосферном давлении на уровне моря. |
Секунда | с | Время | Секунда есть время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133.XIII ГКМВ (1967 г., Резолюция 1)«В покое при 0 К при отсутствии возмущения внешними полями»(Добавлено в 1997 году) | День делится на 24 часа, каждый час делится на 60 минут, каждая минута делится на 60 секунд.Секунда это — 1⁄(24 × 60 × 60) часть дня |
Ампер | А | Сила электрического тока | Ампер есть сила не изменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызвал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2·10−7 ньютонов.Международный комитет мер и весов (1946 г., Резолюция 2, одобренная IX ГКМВ в 1948 г.) |
|
Кельвин | К | Термодинамическая Температура | Кельвин есть единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды.XIII ГКМВ (1967 г., Резолюция 4)В 2005 г. Международный комитет мер и весов установил требования к изотопному составу воды при реализации температуры тройной точки воды: 0,00015576 моля 2H на один моль 1Н, 0,0003799 моля 17О на один моль 16О и 0,0020052 моля 18О на один моль 16О. | Шкала Кельвина использует тот же шаг, что и шкала Цельсия, но 0 кельвинов это температура абсолютного нуля, а не температура плавления льда. Согласно современному определению ноль шкалы Цельсия установлен таким образом, что температура тройной точки воды равна 0,01 C. В итоге, шкалы Цельсия и Кельвина сдвинуты на 273,15°C =K - 273,15. |
Моль | моль | Количество вещества | Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц.XIV ГКМВ (1971 г., Резолюция 3) |
|
Кандела | кд | Сила света | Кандела есть сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540·1012 герц, энергетическая сила света которого в этом направлении составляет (1/683) Вт/ср.XVI ГКМВ (1979 г., Резолюция 3) |
|
Величина | Единица | |||||
Наименование | Размерность | Наименование | Обозначение | |||
русское | французское/английское | русское | международное | |||
Длина | L | метр | mètre/metre | м | m | |
Масса | M | килограмм | kilogramme/kilogram | кг | kg | |
Время | T | секунда | seconde/second | с | s | |
Сила электрического тока | I | ампер | ampère/ampere | А | A | |
Термодинамическая температура | Θ | кельвин | kelvin | К | K | |
Количество вещества | N | моль | mole | моль | mol | |
Сила света | J | кандела | candela | кд | cd |
Производные единицы с собственными названиями
Величина | Единица | Обозначение | Выражение | ||
русское название | французское/английское название | русское | международное | ||
Плоский угол | радиан | radian | рад | rad | м·м−1= 1 |
Телесный угол | стерадиан | steradian | ср | sr | м2·м−2= 1 |
Температура по шкале Цельсия | градус Цельсия | degré Celsius/degree Celsius | °C | °C | K |
Частота | герц | hertz | Гц | Hz | с−1 |
Сила | ньютон | newton | Н | N | кг·м·c−2 |
Энергия | джоуль | joule | Дж | J | Н·м = кг·м2·c−2 |
Мощность | ватт | watt | Вт | W | Дж/с = кг·м2·c−3 |
Давление | паскаль | pascal | Па | Pa | Н/м2= кг·м−1·с−2 |
Световой поток | люмен | lumen | лм | lm | кд·ср |
Освещённость | люкс | lux | лк | lx | лм/м² = кд·ср/м² |
Электрический заряд | кулон | coulomb | Кл | C | А·с |
Разность потенциалов | вольт | volt | В | V | Дж/Кл = кг·м2·с−3·А−1 |
Сопротивление | ом | ohm | Ом | Ω | В/А = кг·м2·с−3·А−2 |
Электроёмкость | фарад | farad | Ф | F | Кл/В = с4·А2·кг−1·м−2 |
Магнитный поток | вебер | weber | Вб | Wb | кг·м2·с−2·А−1 |
Магнитная индукция | тесла | tesla | Тл | T | Вб/м2= кг·с−2·А−1 |
Индуктивность | генри | henry | Гн | H | кг·м2·с−2·А−2 |
Электрическая проводимость | сименс | siemens | См | S | Ом−1= с3·А2·кг−1·м−2 |
Активность радиоактивного источника | беккерель | becquerel | Бк | Bq | с−1 |
Поглощённая доза ионизирующего излучения | грей | gray | Гр | Gy | Дж/кг = м²/c² |
Эффективная доза ионизирующего излучения | зиверт | sievert | Зв | Sv | Дж/кг = м²/c² |
Активность катализатора | катал | katal | кат | kat | моль/с |
Единицы, не входящие в СИ, но по решению Генеральной конференции по мерам и весам «допускаются для использования совместно с СИ».
Единица | Французское/английское название | Обозначение | Величина в единицах СИ | |
русское | международное | |||
минута | minute | мин | min | 60 с |
час | heure/hour | ч | h | 60 мин = 3600 с |
сутки | jour/day | сут | d | 24 ч = 86 400 с |
градус | degré/degree | ° | ° | (π/180) рад |
угловая минута | minute | ′ | ′ | (1/60)° = (π/10 800) |
угловая секунда | seconde/second | ″ | ″ | (1/60)′ = (π/648 000) |
литр | litre | л | l, L | 1/1000 м³ |
тонна | tonne | т | t | 1000 кг |
непер | neper | Нп | Np | безразмерна |
бел | bel | Б | B | безразмерна |
электронвольт | electronvolt | эВ | eV | ≈1,602 177 33·10−19 Дж |
атомная единица массы, дальтон | unité de masse atomique unifiée, dalton/unified atomic mass unit, dalton | а. е. м. | u, Da | ≈1,660 540 2·10−27 кг |
астрономическая единица | unité astronomique/astronomical unit | а. е. | au | 149 597 870 700 м (точно) |
морская миля | mille marin/nautical mile | миля | M | 1852 м (точно) |
узел | nœud/knot | уз | kn | 1 морская миля в час = (1852/3600) м/с |
ар | are | а | a | 10² м² |
гектар | hectare | га | ha | 104 м² |
бар | bar | бар | bar | 105 Па |
ангстрем | ångström | Å | Å | 10−10 м |
барн | barn | б | b | 10−28 м² |
Правила написания обозначений единиц
Обозначения единиц печатают прямым шрифтом, точку как знак сокращения после обозначения не ставят.
Обозначения помещают за числовыми значениями величин через пробел, перенос на другую строку не допускается. Исключения составляют обозначения в виде знака над строкой, перед ними пробел не ставится. Примеры: 10 м/с, 15°.
Если числовое значение представляет собой дробь с косой чертой, его заключают в скобки, например: (1/60) с−1.
При указании значений величин с предельными отклонениями их заключают в скобки или проставляют обозначение единицы за числовым значением величины и за её предельным отклонением: (100,0 ± 0,1) кг, 50 г ± 1 г.
Обозначения единиц, входящие в произведение, отделяют точками на средней линии (Н·м, Па·с), не допускается использовать для этой цели символ «×». В машинописных текстах допускается точку не поднимать или разделять обозначения пробелами, если это не может вызвать недоразумения.
В качестве знака деления в обозначениях можно использовать горизонтальную черту или косую черту (только одну). При применении косой черты, если в знаменателе стоит произведение единиц, его заключают в скобки. Правильно: Вт/(м·К), неправильно: Вт/м/К, Вт/м·К.
Допускается применять обозначения единиц в виде произведения обозначений единиц, возведённых в степени (положительные и отрицательные): Вт·м−2·К−1, А·м². При использовании отрицательных степеней не разрешается использовать горизонтальную или косую черту (знак деления).
Допускается применять сочетания специальных знаков с буквенными обозначениями, например: °/с (градус в секунду).
Не допускается комбинировать обозначения и полные наименования единиц. Неправильно: км/час, правильно: км/ч.
Обозначения единиц, произошедшие от фамилий, пишутся с заглавной буквы, в том числе с приставками СИ, например: ампер — А, мегапаскаль — МПа, килоньютон — кН, гигагерц — ГГц.
e-pasp.ru
Си (система единиц) — Традиция
Материал из свободной русской энциклопедии «Традиция»
У этого термина существуют и другие значения, см. Си. Международный эталон метра, использовавшийся с 1889 по 1960 годСИ (SI, франц. Système International d’Unités) — международная система единиц, современный вариант метрической системы. СИ является наиболее широко используемой системой единиц в мире, как в повседневной жизни, так и в науке и технике. В настоящее время СИ принята в качестве законной системы единиц большинством стран мира и почти всегда используется в области науки, даже в тех странах, в которых в повседневной жизни используются традиционные единицы. В этих немногих странах (например, в США), определения традиционных единиц были изменены — они стали определяться через единицы СИ.
Общие сведения[править]
СИ была принята XI Генеральной конференцией по мерам и весам, некоторые последующие конференции внесли в СИ ряд изменений. СИ определяет семь основных и производные единицы физических величин (далее — единицы), а также набор приставок. Установлены стандартные сокращённые обозначения для единиц и правила записи производных единиц. Основные единицы: килограмм, метр, секунда, ампер, кельвин, моль и кандела. В рамках СИ считается, что эти единицы имеют независимую размерность, т. е. ни одна из основных единиц не может быть получена из других. Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в СИ присвоены собственные названия. Приставки можно использовать перед названиями единиц; они означают, что единицу нужно умножить или разделить на определённое целое число, степень числа 10. Например, приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.
Международные и русские обозначения[править]
В России действует ГОСТ 8.417—2002, предписывающий обязательное использование единиц СИ. В нём перечислены единицы физических величин, разрешённые к применению, приведены их международные и русские обозначения и установлены правила их использования. По этим правилам, при договорно-правовых отношениях в области сотрудничества с зарубежными странами, а также в поставляемых за границу вместе с экспортной продукцией технических и других документах разрешается применять только международные обозначения единиц. Применение международных обозначений обязательно также на шкалах и табличках измерительных приборов. В остальных случаях, например, во внутренних документах и обычных публикациях можно использовать либо международные, либо русские обозначения. Не допускается одновременно применять международные и русские обозначения, за исключением публикаций по единицам величин.
СИ является развитием метрической системы мер, которая была создана французскими учёными и впервые широко внедрена после Великой Французской революции. До введения метрической системы единицы выбирались случайно и независимо друг от друга. Поэтому пересчёт из одной единицы в другую был сложным. К тому же в разных местах применялись разные единицы, иногда с одинаковыми названиями. Метрическая система должна была стать удобной и единой системой мер и весов. В 1799 г. были утверждены два эталона — для единицы длины (метр) и для единицы массы (килограмм). В 1874 г. была введена система СГС, основанная на трёх единицах — сантиметр, грамм и секунда. Были также введены десятичные приставки от микро до мега. В 1889 г. 1-ая Генеральная конференция по мерам и весам приняла систему мер, сходную с СГС, но основанную на метре, килограмме и секунде, так как эти единицы были признаны более удобными для практического использования. В последующем были введены базовые единицы для физических величин в области электричества и оптики. В 1960 XI Генеральная конференция по мерам и весам приняла стандарт, который впервые получил название «Международная система единиц (СИ)». В 1971 IV Генеральная конференция по мерам и весам внесла изменения в СИ, добавив, в частности, единицу количества вещества (моль).
Названия единиц СИ пишутся со строчной буквы, после обозначений единиц СИ точка не ставится, в отличие от обычных сокращений.
Основные единицы[править]
Производные единицы[править]
Производные единицы могут быть выражены через основные с помощью математических операций умножения и деления. Некоторым из производных единиц, для удобства, присвоены собственные названия, такие единицы тоже можно использовать в математических выражениях для образования других производных единиц. Математическое выражение для производной единицы измерения вытекает из физического закона, с помощью которого эта единица измерения определяется или определения физической величины, для которой она вводится. Например, скорость — это расстояние, которое тело проходит в единицу времени; соответственно, единица измерения скорости — м/с (метр в секунду). Часто одна и та же единица может быть записана по-разному, с помощью разного набора основных и производных единиц (см., например, последнюю колонку в таблице Производные единицы с собственными названиями). Однако на практике используются установленные (или просто общепринятые) выражения, которые наилучшим образом отражают физический смысл величины. Например, для записи значения момента силы следует использовать Н·м, и не следует использовать м·Н или Дж.
Единицы, не входящие в СИ[править]
Некоторые единицы, не входящие в СИ, по решению Генеральной конференции по мерам и весам «допускаются для использования совместно с СИ».
Кроме того, ГОСТ 8.417-2002 разрешает применение следующих единиц: град, световой год, парсек, диоптрия, киловатт-час, вольт-ампер, вар, ампер-час, карат, текс, гал, оборот в секунду, оборот в минуту. Разрешается применять единицы относительных и логарифмических величин, такие как процент, промилле, миллионная доля, фон, октава, декада. Допускается также применять единицы времени, получившие широкое распространение, например, неделя, месяц, год, век, тысячелетие. Другие единицы применять не разрешается. Тем не менее, в различных областях иногда используются и другие единицы.
Некоторые страны не приняли систему СИ, или приняли её лишь частично и продолжают использовать английскую систему мер или сходные единицы.
Кратные и дольные единицы[править]
Десятичные кратные и дольные единицы образуют с помощью стандартных множителей и приставок СИ, присоединяемых к названию или обозначению единицы.
Правила написания обозначений единиц[править]
- Обозначения единиц печатают прямым шрифтом, точку как знак сокращения после обозначения не ставят.
- Обозначения помещают за числовыми значениями величин через пробел, перенос на другую строку не допускается. Исключения составляют обозначения в виде знака над строкой, перед ними пробел не ставится. Примеры: 10 м/с, 15°.
- Если числовое значение представляет собой дробь с косой чертой, его заключают в скобки, например: (1/60) с–1.
- При указании значений величин с предельными отклонениями их заключают в скобки или проставляют обозначение единицы за числовым значением величины и за её предельным отклонением: (100,0 ± 0,1) кг, 50 г ± 1 г.
- Обозначения единиц, входящие в произведение, отделяют точками на средней линии (Н·м, Па·с), не допускается использовать для этой цели символ «х». В машинописных текстах допускается точку не поднимать или разделять обозначения пробелами, если это не может вызвать недоразумения.
- В качестве знака деления в обозначениях можно использовать горизонтальную черту или косую черту (только одну). При применении косой черты, если в знаменателе стоит произведение единиц, его заключают в скобки. Правильно: Вт/(м·К), неправильно: Вт/м/К, Вт/м·К.
- Допускается применять обозначения единиц в виде произведения обозначений единиц, возведённых в степени (положительные и отрицательные): Вт·м–2·К–1, А·м². При использовании отрицательных степеней не разрешается использовать горизонтальную или косую черту (знак деления).
- Допускается применять сочетания специальных знаков с буквенными обозначениями, например: °/с (градус в секунду).
- Не допускается комбинировать обозначения и полные наименования единиц. Неправильно: км/час, правильно: км/ч.
- Обозначения единиц, произошедшие от фамилий, пишутся с заглавной буквы, в том числе с приставками СИ, например: ампер - А, мегапаскаль - МПа, килоньютон - кН, гигагерц - ГГц.
См. также правила использования приставок СИ.
- ГОСТ 8.417-2002. Единицы величин.
- Единицы величин: Словарь-справочник. — М.: Издательство стандартов, 1990, ISBN 5-7050-0118-5
traditio.wiki
Основные единицы системы СИ - Тихоокеанский государственный университет
Метрическая система - это общее название международной десятичной системы единиц, основными единицами которой являются метр и килограмм. При некоторых различиях в деталях элементы системы одинаковы во всем мире.
Эталоны длины и массы, международные прототипы. Международные прототипы эталонов длины и массы - метра и килограмма - были переданы на хранение Международному бюро мер и весов, расположенному в Севре - пригороде Парижа. Эталон метра представлял собой линейку из сплава платины с 10% иридия, поперечному сечению которой для повышения изгибной жесткости при минимальном объеме металла была придана особая X-образная форма. В канавке такой линейки была продольная плоская поверхность, и метр определялся как расстояние между центрами двух штрихов, нанесенных поперек линейки на ее концах, при температуре эталона, равной 0° С. За международный прототип килограмма была принята масса цилиндра, сделанного из того же платино-иридиевого сплава, что и эталон метра, высотой и диаметром около 3,9 см. Вес этой эталонной массы, равной 1 кг на уровне моря на географической широте 45°, иногда называют килограмм-силой. Таким образом, ее можно использовать либо как эталон массы для абсолютной системы единиц, либо как эталон силы для технической системы единиц, в которой одной из основных единиц является единица силы.
Международная система СИ. Международная система единиц (СИ) представляет собой согласованную систему, в которой для любой физической величины, такой, как длина, время или сила, предусматривается одна и только одна единица измерения. Некоторым из единиц даны особые названия, примером может служить единица давления паскаль, тогда как названия других образуются из названий тех единиц, от которых они произведены, например единица скорости - метр в секунду. Основные единицы вместе с двумя дополнительными геометрического характера представлены в табл. 1. Производные единицы, для которых приняты особые названия, даны в табл. 2. Из всех производных механических единиц наиболее важное значение имеют единица силы ньютон, единица энергии джоуль и единица мощности ватт. Ньютон определяется как сила, которая придает массе в один килограмм ускорение, равное одному метру за секунду в квадрате. Джоуль равен работе, которая совершается, когда точка приложения силы, равной одному ньютону, перемещается на расстояние один метр в направлении действия силы. Ватт - это мощность, при которой работа в один джоуль совершается за одну секунду. Об электрических и других производных единицах будет сказано ниже. Официальные определения основных и дополнительных единиц таковы.
Метр - это длина пути, проходимого в вакууме светом за 1/299 792 458 долю секунды.
Килограмм равен массе международного прототипа килограмма.
Секунда - продолжительность 9 192 631 770 периодов колебаний излучения, соответствующего переходам между двумя уровнями сверхтонкой структуры основного состояния атома цезия-133.
Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды.
Моль равен количеству вещества, в составе которого содержится столько же структурных элементов, сколько атомов в изотопе углерода-12 массой 0,012 кг.
Радиан - плоский угол между двумя радиусами окружности, длина дуги между которыми равна радиусу.
Стерадиан равен телесному углу с вершиной в центре сферы, вырезающему на ее поверхности площадь, равную площади квадрата со стороной, равной радиусу сферы.
Величина | Единица | Обозначение | |
Наименование | русское | международное | |
Длина | метр | м | m |
Масса | килограмм | кг | kg |
Время | секунда | с | s |
Сила электрического тока | ампер | А | A |
Термодинамическая температура | кельвин | К | K |
Сила света | кандела | кд | cd |
Количество вещества | моль | моль | mol |
Величина | Единица | Обозначение | |
Наименование | русское | международное | |
Плоский угол | радиан | рад | rad |
Телесный угол | стерадиан | ср | sr |
Величина | Единица | Выражение производной единицы | ||
Наименование | Обозначение | через другие единицы СИ | через основные и дополнительные единицы СИ | |
Частота | герц | Гц | - | с-1 |
Сила | ньютон | Н | - | м кг с-2 |
Давление | паскаль | Па | Н/м2 | м-1 кг с-2 |
Энергия, работа, количество теплоты | джоуль | Дж | Н м | м2 кг с-2 |
Мощность, поток энергии | ватт | Вт | Дж/с | м2 кг с-3 |
Количество электричества, электрический заряд | кулон | Кл | А с | с А |
Электрическое напряжение, электрическийпотенциал | вольт | В | Вт/А | м2 кгс-3 А-1 |
Электрическая емкость | фарада | Ф | Кл/В | м-2 кг-1 с4 А2 |
Электрическое сопротивление | ом | Ом | В/А | м2 кг с-3 А-2 |
Электрическая проводимость | сименс | См | А/В | м-2 кг-1 с3 А2 |
Поток магнитной индукции | вебер | Вб | В с | м2 кг с-2 А-1 |
Магнитная индукция | тесла | Т, Тл | Вб/м2 | кг с-2 А-1 |
Индуктивность | генри | Г, Гн | Вб/А | м2 кг с-2 А-2 |
Световой поток | люмен | лм | кд ср | |
Освещенность | люкс | лк | м2 кд ср | |
Активность радиоактивного источника | беккерель | Бк | с-1 | с-1 |
Поглощенная доза излучения | грэй | Гр | Дж/кг | м2 с-2 |
Для образования десятичных кратных и дольных единиц предписывается ряд приставок и множителей, указываемых в табл. 3.
экса | Э | 1018 | деци | д | 10-1 |
пета | П | 1015 | санти | с | 10-2 |
тера | Т | 1012 | милли | м | 10-3 |
гига | Г | 109 | микро | мк | 10-6 |
мега | М | 106 | нано | н | 10-9 |
кило | к | 103 | пико | п | 10-12 |
гекто | г | 102 | фемто | ф | 10-15 |
дека | да | 101 | атто | а | 10-18 |
Таким образом, километр (км) - это 1000 м, а миллиметр - 0,001 м. (Эти приставки применимы ко всем единицам, как, например, в киловаттах, миллиамперах и т.д.)
Масса, длина и время. Все основные единицы системы СИ, кроме килограмма, в настоящее время определяются через физические константы или явления, которые считаются неизменными и с высокой точностью воспроизводимыми. Что же касается килограмма, то еще не найден способ его реализации с той степенью воспроизводимости, которая достигается в процедурах сравнения различных эталонов массы с международным прототипом килограмма. Такое сравнение можно проводить путем взвешивания на пружинных весах, погрешность которых не превышает 1 10-8. Эталоны кратных и дольных единиц для килограмма устанавливаются комбинированным взвешиванием на весах.
Поскольку метр определяется через скорость света, его можно воспроизводить независимо в любой хорошо оборудованной лаборатории. Так, интерференционным методом штриховые и концевые меры длины, которыми пользуются в мастерских и лабораториях, можно проверять, проводя сравнение непосредственно с длиной волны света. Погрешность при таких методах в оптимальных условиях не превышает одной миллиардной (1 10-9). С развитием лазерной техники подобные измерения весьма упростились, и их диапазон существенно расширился.
Точно так же секунда в соответствии с ее современным определением может быть независимо реализована в компетентной лаборатории на установке с атомным пучком. Атомы пучка возбуждаются высокочастотным генератором, настроенным на атомную частоту, и электронная схема измеряет время, считая периоды колебаний в цепи генератора. Такие измерения можно проводить с точностью порядка 1 10-12 - гораздо более высокой, чем это было возможно при прежних определениях секунды, основанных на вращении Земли и ее обращении вокруг Солнца. Время и его обратная величина - частота - уникальны в том отношении, что их эталоны можно передавать по радио. Благодаря этому всякий, у кого имеется соответствующее радиоприемное оборудование, может принимать сигналы точного времени и эталонной частоты, почти не отличающиеся по точности от передаваемых в эфир.
Механика. Исходя из единиц длины, массы и времени, можно вывести все единицы, применяемые в механике, как было показано выше. Если основными единицами являются метр, килограмм и секунда, то система называется системой единиц МКС; если - сантиметр, грамм и секунда, то - системой единиц СГС. Единица силы в системе СГС называется диной, а единица работы - эргом. Некоторые единицы получают особые названия, когда они используются в особых разделах науки. Например, при измерении напряженности гравитационного поля единица ускорения в системе СГС называется галом. Имеется ряд единиц с особыми названиями, не входящих ни в одну из указанных систем единиц. Бар, единица давления, применявшаяся ранее в метеорологии, равен 1 000 000 дин/см2. Лошадиная сила, устаревшая единица мощности, все еще применяемая в британской технической системе единиц, а также в России, равна приблизительно 746 Вт.
Температура и теплота. Механические единицы не позволяют решать все научные и технические задачи без привлечения каких-либо других соотношений. Хотя работа, совершаемая при перемещении массы против действия силы, и кинетическая энергия некой массы по своему характеру эквивалентны тепловой энергии вещества, удобнее рассматривать температуру и теплоту как отдельные величины, не зависящие от механических.
Термодинамическая шкала температуры. Единица термодинамической температуры Кельвина (К), называемая кельвином, определяется тройной точкой воды, т.е. температурой, при которой вода находится в равновесии со льдом и паром. Эта температура принята равной 273,16 К, чем и определяется термодинамическая шкала температуры. Данная шкала, предложенная Кельвином, основана на втором начале термодинамики. Если имеются два тепловых резервуара с постоянной температурой и обратимая тепловая машина, передающая тепло от одного из них другому в соответствии с циклом Карно, то отношение термодинамических температур двух резервуаров дается равенством T2 /T1 = -Q2Q1, где Q2 и Q1 - количества теплоты, передаваемые каждому из резервуаров (знак <минус> говорит о том, что у одного из резервуаров теплота отбирается). Таким образом, если температура более теплого резервуара равна 273,16 К, а теплота, отбираемая у него, вдвое больше теплоты, передаваемой другому резервуару, то температура второго резервуара равна 136,58 К. Если же температура второго резервуара равна 0 К, то ему вообще не будет передана теплота, поскольку вся энергия газа была преобразована в механическую энергию на участке адиабатического расширения в цикле. Эта температура называется абсолютным нулем. Термодинамическая температура, используемая обычно в научных исследованиях, совпадает с температурой, входящей в уравнение состояния идеального газа PV = RT, где P - давление, V - объем и R - газовая постоянная. Уравнение показывает, что для идеального газа произведение объема на давление пропорционально температуре. Ни для одного из реальных газов этот закон точно не выполняется. Но если вносить поправки на вириальные силы, то расширение газов позволяет воспроизводить термодинамическую шкалу температуры.
Международная температурная шкала. В соответствии с изложенным выше определением температуру можно с весьма высокой точностью (примерно до 0,003 К вблизи тройной точки) измерять методом газовой термометрии. В теплоизолированную камеру помещают платиновый термометр сопротивления и резервуар с газом. При нагревании камеры увеличивается электросопротивление термометра и повышается давление газа в резервуаре (в соответствии с уравнением состояния), а при охлаждении наблюдается обратная картина. Измеряя одновременно сопротивление и давление, можно проградуировать термометр по давлению газа, которое пропорционально температуре. Затем термометр помещают в термостат, в котором жидкая вода может поддерживаться в равновесии со своими твердой и паровой фазами. Измерив его электросопротивление при этой температуре, получают термодинамическую шкалу, поскольку температуре тройной точки приписывается значение, равное 273,16 К.
Существуют две международные температурные шкалы - Кельвина (К) и Цельсия (С). Температура по шкале Цельсия получается из температуры по шкале Кельвина вычитанием из последней 273,15 К.
Точные измерения температуры методом газовой термометрии требуют много труда и времени. Поэтому в 1968 была введена Международная практическая температурная шкала (МПТШ). Пользуясь этой шкалой, термометры разных типов можно градуировать в лаборатории. Данная шкала была установлена при помощи платинового термометра сопротивления, термопары и радиационного пирометра, используемых в температурных интервалах между некоторыми парами постоянных опорных точек (температурных реперов). МПТШ должна была с наибольшей возможной точностью соответствовать термодинамической шкале, но, как выяснилось позднее, ее отклонения весьма существенны.
Температурная шкала Фаренгейта. Температурную шкалу Фаренгейта, которая широко применяется в сочетании с британской технической системой единиц, а также в измерениях ненаучного характера во многих странах, принято определять по двум постоянным опорным точкам - температуре таяния льда (32° F) и кипения воды (212° F) при нормальном (атмосферном) давлении. Поэтому, чтобы получить температуру по шкале Цельсия из температуры по шкале Фаренгейта, нужно вычесть из последней 32 и умножить результат на 5/9.
Единицы теплоты. Поскольку теплота есть одна из форм энергии, ее можно измерять в джоулях, и эта метрическая единица была принята международным соглашением. Но поскольку некогда количество теплоты определяли по изменению температуры некоторого количества воды, получила широкое распространение единица, называемая калорией и равная количеству теплоты, необходимому для того, чтобы повысить температуру одного грамма воды на 1° С. В связи с тем что теплоемкость воды зависит от температуры, пришлось уточнять величину калории. Появились по крайней мере две разные калории - <термохимическая> (4,1840 Дж) и <паровая> (4,1868 Дж). <Калория>, которой пользуются в диететике, на самом деле есть килокалория (1000 калорий). Калория не является единицей системы СИ, и в большинстве областей науки и техники она вышла из употребления.
Электричество и магнетизм. Все общепринятые электрические и магнитные единицы измерения основаны на метрической системе. В согласии с современными определениями электрических и магнитных единиц все они являются производными единицами, выводимыми по определенным физическим формулам из метрических единиц длины, массы и времени. Поскольку же большинство электрических и магнитных величин не так-то просто измерять, пользуясь упомянутыми эталонами, было сочтено, что удобнее установить путем соответствующих экспериментов производные эталоны для некоторых из указанных величин, а другие измерять, пользуясь такими эталонами.
Единицы системы СИ. Ниже дается перечень электрических и магнитных единиц системы СИ.
Ампер, единица силы электрического тока, - одна из шести основных единиц системы СИ. Ампер - сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины с ничтожно малой площадью кругового поперечного сечения, расположенным в вакууме на расстоянии 1 м один от другого, вызывал бы на каждом участке проводника длиной 1 м силу взаимодействия, равную 2 10-7 Н.
Вольт, единица разности потенциалов и электродвижущей силы. Вольт - электрическое напряжение на участке электрической цепи с постоянным током силой 1 А при затрачиваемой мощности 1 Вт.
Кулон, единица количества электричества (электрического заряда). Кулон - количество электричества, проходящее через поперечное сечение проводника при постоянном токе силой 1 А за время 1 с.
Фарада, единица электрической емкости. Фарада - емкость конденсатора, на обкладках которого при заряде 1 Кл возникает электрическое напряжение 1 В.
Генри, единица индуктивности. Генри равен индуктивности контура, в котором возникает ЭДС самоиндукции в 1 В при равномерном изменении силы тока в этом контуре на 1 А за 1 с.
Вебер, единица магнитного потока. Вебер - магнитный поток, при убывании которого до нуля в сцепленном с ним контуре, имеющем сопротивление 1 Ом, протекает электрический заряд, равный 1 Кл.
Тесла, единица магнитной индукции. Тесла - магнитная индукция однородного магнитного поля, в котором магнитный поток через плоскую площадку площадью 1 м2, перпендикулярную линиям индукции, равен 1 Вб.
Практические эталоны. На практике величина ампера воспроизводится путем фактического измерения силы взаимодействия витков провода, несущих ток. Поскольку электрический ток есть процесс, протекающий во времени, эталон тока невозможно сохранять. Точно так же величину вольта невозможно фиксировать в прямом соответствии с его определением, так как трудно воспроизвести с необходимой точностью механическими средствами ватт (единицу мощности). Поэтому вольт на практике воспроизводится с помощью группы нормальных элементов. В США с 1 июля 1972 законодательством принято определение вольта, основанное на эффекте Джозефсона на переменном токе (частота переменного тока между двумя сверхпроводящими пластинами пропорциональна внешнему напряжению).
Свет и освещенность. Единицы силы света и освещенности нельзя определить на основе только механических единиц. Можно выразить поток энергии в световой волне в Вт/м2, а интенсивность световой волны - в В/м, как в случае радиоволн. Но восприятие освещенности есть психофизическое явление, в котором существенна не только интенсивность источника света, но и чувствительность человеческого глаза к спектральному распределению этой интенсивности.
Международным соглашением за единицу силы света принята кандела (ранее называвшаяся свечой), равная силе света в данном направлении источника, испускающего монохроматическое излучение частоты 540 1012 Гц (l = 555 нм), энергетическая сила светового излучения которого в этом направлении составляет 1/683 Вт/ср. Это примерно соответствует силе света спермацетовой свечи, которая когда-то служила эталоном.
Если сила света источника равна одной канделе во всех направлениях, то полный световой поток равен 4p люменов. Таким образом, если этот источник находится в центре сферы радиусом 1 м, то освещенность внутренней поверхности сферы равна одному люмену на квадратный метр, т.е. одному люксу.
Рентгеновское и гамма-излучение, радиоактивность. Рентген (Р) - это устаревшая единица экспозиционной дозы рентгеновского, гамма- и фотонного излучений, равная количеству излучения, которое с учетом вторичноэлектронного излучения образует в 0,001 293 г воздуха ионы, несущие заряд, равный одной единице заряда СГС каждого знака. В системе СИ единицей поглощенной дозы излучения является грэй, равный 1 Дж/кг. Эталоном поглощенной дозы излучения служит установка с ионизационными камерами, которые измеряют ионизацию, производимую излучением.
Кюри (Ки) - устаревшая единица активности нуклида в радиоактивном источнике. Кюри равен активности радиоактивного вещества (препарата), в котором за 1 с происходит 3,700 1010 актов распада. В системе СИ единицей активности изотопа является беккерель, равный активности нуклида в радиоактивном источнике, в котором за время 1 с происходит один акт распада. Эталоны радиоактивности получают, измеряя периоды полураспада малых количеств радиоактивных материалов. Затем по таким эталонам градуируют и поверяют ионизационные камеры, счетчики Гейгера, сцинтилляционные счетчики и другие приборы для регистрации проникающих излучений.
pnu.edu.ru
Система СИ
Система СИ была принята XI Генеральной конференцией по мерам и весам, некоторые последующие конференции внесли в СИ ряд изменений.
Система СИ определяет семь основных и производные единицы измерения, а также набор приставок. Установлены стандартные сокращённые обозначения для единиц измерения и правила записи производных единиц.
В России действует ГОСТ 8.417-2002, предписывающий обязательное использование системы СИ. В нем перечислены единицы измерения, приведены их русские и международные названия и установлены правила их применения. По этим правилам в международных документах и на шкалах приборов допускается использовать только международные обозначения. Во внутренних документах и публикациях можно использовать либо международные либо русские обозначения (но не те и другие одновременно).
Основные единицы системы СИ: килограмм, метр, секунда, ампер, кельвин, моль и кандела. В рамках системы СИ считается, что эти единицы имеют независимую размерность, т. е. ни одна из основных единиц не может быть получена из других.
Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в Системе СИ присвоены собственные названия.
Приставки можно использовать перед названиями единиц измерения; они означают, что единицу измерения нужно умножить или разделить на определенное целое число, степень числа 10. Например приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.
История
Система СИ основана на метрической системе мер, которая была создана французскими учеными и впервые была широко внедрена после Великой Французской революции. До введения метрической системы, единицы измерения выбирались случайно и независимо друг от друга. Поэтому пересчет из одной единицы измерения в другую был сложным. К тому же в разных местах применялись разные единицы измерения, иногда с одинаковыми названиями. Метрическая система должна была стать удобной и единой системой мер и весов.
В 1799 г. были утверждены два эталона — для единицы измерения длины (метр) и для единицы измерения веса (килограмм).
В 1874 г. была введена система СГС, основанная на трех единицах измерения - сантиметр, грамм и секунда. Были также введены десятичные приставки от микро до мега.
В 1889 г. 1-ая Генеральная конференция по мерам и весам приняла систему мер, сходную с СГС, но основанную на метре, килограмме и секунде, т. к. эти единицы были признаны более удобными для практического использования.
В последующем были введены базовые единицы для измерения физических величин в области электричества и оптики.
В 1960 г. XI Генеральная конференция по мерам и весам приняла стандарт, который впервые получил название «Международная система единиц (СИ)».
В 1971 г. IV Генеральная конференция по мерам и весам внесла изменения в СИ, добавив, в частности, единицу измерения количества вещества (моль).
В настоящее время система СИ принята в качестве законной системы единиц измерения большинством стран мира и почти всегда используется в области науки (даже в тех странах, которые не приняли СИ).
Метрическая система единиц.
Метрическая система – это общее название международной десятичной системы единиц, основными единицами которой являются метр и килограмм. При некоторых различиях в деталях элементы системы одинаковы во всем мире.
История. Метрическая система выросла из постановлений, принятых Национальным собранием Франции в 1791 и 1795 по определению метра как одной десятимиллионной доли участка земного меридиана от Северного полюса до экватора.
Декретом, изданным 4 июля 1837, метрическая система была объявлена обязательной к применению во всех коммерческих сделках во Франции. Она постепенно вытеснила местные и национальные системы в других странах Европы и была законодательно признана как допустимая в Великобритании и США. Соглашением, подписанным 20 мая 1875 семнадцатью странами, была создана международная организация, призванная сохранять и совершенствовать метрическую систему.
Ясно, что, определяя метр как десятимиллионную долю четверти земного меридиана, создатели метрической системы стремились добиться инвариантности и точной воспроизводимости системы. За единицу массы они взяли грамм, определив его как массу одной миллионной кубического метра воды при ее максимальной плотности. Поскольку было бы не очень удобно проводить геодезические измерения четверти земного меридиана при каждой продаже метра ткани или уравновешивать корзинку картофеля на рынке соответствующим количеством воды, были созданы металлические эталоны, с предельной точностью воспроизводящие указанные идеальные определения.
Вскоре выяснилось, что металлические эталоны длины можно сравнивать друг с другом, внося гораздо меньшую погрешность, чем при сравнении любого такого эталона с четвертью земного меридиана. Кроме того, стало ясно, что и точность сравнения металлических эталонов массы друг с другом гораздо выше точности сравнения любого подобного эталона с массой соответствующего объема воды.
В связи с этим Международная комиссия по метру в 1872 постановила принять за эталон длины «архивный» метр, хранящийся в Париже, «такой, каков он есть». Точно так же члены Комиссии приняли за эталон массы архивный платино-иридиевый килограмм, «учитывая, что простое соотношение, установленное создателями метрической системы, между единицей веса и единицей объема представляется существующим килограммом с точностью, достаточной для обычных применений в промышленности и торговле, а точные науки нуждаются не в простом численном соотношении подобного рода, а в предельно совершенном определении этого соотношения». В 1875 многие страны мира подписали соглашение о метре, и этим соглашением была установлена процедура координации метрологических эталонов для мирового научного сообщества через Международное бюро мер и весов и Генеральную конференцию по мерам и весам.
Новая международная организация незамедлительно занялась разработкой международных эталонов длины и массы и передачей их копий всем странам-участницам.
Эталоны длины и массы, международные прототипы.
Международные прототипы эталонов длины и массы – метра и килограмма – были переданы на хранение Международному бюро мер и весов, расположенному в Севре – пригороде Парижа. Эталон метра представлял собой линейку из сплава платины с 10% иридия, поперечному сечению которой для повышения изгибной жесткости при минимальном объеме металла была придана особая X-образная форма. В канавке такой линейки была продольная плоская поверхность, и метр определялся как расстояние между центрами двух штрихов, нанесенных поперек линейки на ее концах, при температуре эталона, равной 0° С. За международный прототип килограмма была принята масса цилиндра, сделанного из того же платино-иридиевого сплава, что и эталон метра, высотой и диаметром около 3,9 см. Вес этой эталонной массы, равной 1 кг на уровне моря на географической широте 45°, иногда называют килограмм-силой. Таким образом, ее можно использовать либо как эталон массы для абсолютной системы единиц, либо как эталон силы для технической системы единиц, в которой одной из основных единиц является единица силы.
Международные прототипы были выбраны из значительной партии одинаковых эталонов, изготовленных одновременно. Другие эталоны этой партии были переданы всем странам-участницам в качестве национальных прототипов (государственных первичных эталонов), которые периодически возвращаются в Международное бюро для сравнения с международными эталонами. Сравнения, проводившиеся в разное время с тех пор, показывают, что они не обнаруживают отклонений (от международных эталонов), выходящих за пределы точности измерений.
Международная система СИ.
Метрическая система была весьма благосклонно встречена учеными 19 в. частично потому, что она предлагалась в качестве международной системы единиц, частично же по той причине, что ее единицы теоретически предполагались независимо воспроизводимыми, а также благодаря ее простоте. Ученые начали выводить новые единицы для разных физических величин, с которыми они имели дело, основываясь при этом на элементарных законах физики и связывая эти единицы с единицами длины и массы метрической системы. Последняя все больше завоевывала различные европейские страны, в которых ранее имело хождение множество не связанных друг с другом единиц для разных величин.
Хотя во всех странах, принявших метрическую систему единиц, эталоны метрических единиц были почти одинаковы, возникли различные расхождения в производных единицах между разными странами и разными дисциплинами. В области электричества и магнетизма появились две отдельные системы производных единиц: электростатическая, основанная на силе, с которой действуют друг на друга два электрических заряда, и электромагнитная, основанная на силе взаимодействия двух гипотетических магнитных полюсов.
Положение еще более усложнилось с появлением системы т.н. практических электрических единиц, введенной в середине 19 в. Британской ассоциацией содействия развитию науки для удовлетворения запросов быстро развивающейся техники проводной телеграфной связи. Такие практические единицы не совпадают с единицами обеих названных выше систем, но от единиц электромагнитной системы отличаются лишь множителями, равными целым степеням десяти.
Таким образом, для столь обычных электрических величин, как напряжение, ток и сопротивление, существовало несколько вариантов принятых единиц измерения, и каждому научному работнику, инженеру, преподавателю приходилось самому решать, каким из этих вариантов ему лучше пользоваться. В связи с развитием электротехники во второй половине 19 и первой половине 20 вв. находили все более широкое применение практические единицы, которые стали в конце концов доминировать в этой области.
Для устранения такой путаницы в начале 20 в. было выдвинуто предложение объединить практические электрические единицы с соответствующими механическими, основанными на метрических единицах длины и массы, и построить некую согласованную (когерентную) систему. В 1960 XI Генеральная конференция по мерам и весам приняла единую Международную систему единиц (СИ), дала определение основных единиц этой системы и предписала употребление некоторых производных единиц, «не предрешая вопроса о других, которые могут быть добавлены в будущем». Тем самым впервые в истории международным соглашением была принята международная когерентная система единиц. В настоящее время она принята в качестве законной системы единиц измерения большинством стран мира.
Международная система единиц (СИ) представляет собой согласованную систему, в которой для любой физической величины, такой, как длина, время или сила, предусматривается одна и только одна единица измерения. Некоторым из единиц даны особые названия, примером может служить единица давления паскаль, тогда как названия других образуются из названий тех единиц, от которых они произведены, например единица скорости – метр в секунду. Основные единицы вместе с двумя дополнительными геометрического характера представлены в табл. 1. Производные единицы, для которых приняты особые названия, даны в табл. 2. Из всех производных механических единиц наиболее важное значение имеют единица силы ньютон, единица энергии джоуль и единица мощности ватт. Ньютон определяется как сила, которая придает массе в один килограмм ускорение, равное одному метру за секунду в квадрате. Джоуль равен работе, которая совершается, когда точка приложения силы, равной одному ньютону, перемещается на расстояние один метр в направлении действия силы. Ватт – это мощность, при которой работа в один джоуль совершается за одну секунду.
Источник: www.metrob.ru
kilometru.com
Основные механические величины и единицы их измерения
Для количественного описания механического движения физических тел используются величины, характеризующие пространство, время и рассматриваемое тело: длина l, время t и масса m. Длина l определяется как геометрическое расстояние между двумя точками в пространстве.
В Международной системе единиц (СИ) за единицу длины принят метр (м).
\[\left[l\right]=м\]Первоначально метр определяли как десятимиллионную долю четверти земного меридиана. Этим создатели метрической системы стремились добиться инвариантности и точной воспроизводимости системы. Эталон метра представлял собой линейку из сплава платины с 10% иридия, поперечному сечению которой для повышения изгибной жесткости при минимальном объеме металла была придана особая X-образная форма. В канавке такой линейки была продольная плоская поверхность, и метр определялся как расстояние между центрами двух штрихов, нанесенных поперек линейки на ее концах, при температуре эталона, равной 0${}^\circ$ С. В настоящее время, ввиду возросших требований к точности измерений, метр определяется как длина пути, проходимого в вакууме светом за 1/299 792 458 долю секунды. Это определение было принято в октябре 1983 г.
Время t между двумя событиями в заданной точке пространства определяется как разность показаний часов (прибора, работа которого основывается на строго периодическом и равномерном физическом процессе).
В Международной системе единиц (СИ) за единицу измерения времени принята секунда (с).
\[\left[t\right]=c\]Согласно современным представлениям, 1 секунда представляет собой интервал времени, равный 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного (квантового) состояния атома цезия-133 в покое при 0о К при отсутствии возмущения внешними полями. Это определение было принято в 1967 году (уточнение относительно температуры и состояния покоя появилось в 1997 году).
Масса m тела характеризует усилие, которое надо приложить, чтобы вывести его из положения равновесия, а также усилие, с которым оно способно притягивать другие тела. Это свидетельствует о дуализме понятия массы -- как меры инертности тела и меры его гравитационных свойств. Как свидетельствуют эксперименты, гравитационная и инертная масса тела равны, по крайней мере, в пределах точности измерений. Потому, кроме специальных случаев, говорят просто о массе -- не уточняя, инертной или гравитационной.
В Международной системе единиц (СИ) за единицу измерения массы принят килограмм.
$\left[m\right]=кг\ $
За международный прототип килограмма принята масса цилиндра, сделанного из платино-иридиевого сплава, высотой и диаметром около 3,9 см, хранящегося в о дворце Бретейль под Парижем. Вес этой эталонной массы, равный 1 кг на уровне моря на географической широте 45${}^\circ$, иногда называют килограмм-силой. Таким образом, ее можно использовать либо как эталон массы для абсолютной системы единиц, либо как эталон силы для технической системы единиц, в которой одной из основных единиц является единица силы. В практических измерениях 1 кг можно считать равным весу 1 л чистой воды при температуре +4оС.
В механике сплошных сред основными также являются единицы измерения термодинамической температуры и количества вещества.
Единицей измерения температуры в системе СИ служит Кельвин:
$\left[Т\right]=К$.
1 Кельвин равен 1/273,16 части термодинамической температуры тройной точки воды. Температура является характеристикой энергии, которой обладают молекулы.
Количество вещества измеряют в молях: $\left[N\right]=Моль$
1 Моль равен количеству вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 кг. При применении моля структурные элементы должны быть специфицированы и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц.
Прочие единицы измерения механических величин являются производными от основных, представляя собой их линейную комбинацию.
Производными от длины являются площадь S и объём V. Они характеризуют области пространств, соответственно, двух и трёх измерений, занимаемых протяжёнными телами.
Единицы измерения: площади -- метр квадратный, объёма -- метр кубический:
\[\left[S\right]=м^2 \left[V\right]=м^3\]Единицей измерения скорости в СИ является метр в секунду: $\left[v\right]=м/c$
Единица измерения силы в СИ --ньютон: $\left[F\right]=Н$ $1Н=1\frac{кг\cdot м}{с^2}$
Такие же производные единицы измерения есть для всех других механических величин: плотности, давления, импульса, энергии, работы и т.д.
Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в СИ присвоены собственные наименования, например, единице радиан.
Приставки можно использовать перед наименованиями единиц. Они означают, что единицу нужно умножить или разделить на определённое целое число, степень числа 10. Например, приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.
В технических системах измерений вместо единицы массы основной считается единица силы. Есть ряд других систем, близких к СИ, но использующих другие основные единицы. Например, в системе СГС, общепринятой до появления системы СИ, основной единицей измерения является грамм, а основной единицей длины -- сантиметр.
spravochnick.ru