Объёмные насосы и гидромоторы. Гидромотор и гидронасос разница
Технические характеристики гидромоторов, гидронасосов
Технические характеристики гидромоторов, гидронасосов
Прежде чем изучать технические характеристики гидромоторов и гидронасосов, давайте разберемся с определением этих механизмов. Гидромотор – механизм, служащий для преобразования энергии от потоков жидкости в механическую. На сегодняшний день самым распространенным считается поршневой гидромотор, предназначен он для техники, где есть высокая нагрузка на систему, как следствие и высокое давление. У поршневого гидромотора выделяют 2 разновидности: аксиально-поршневой и радиально-поршневой гидромотор.
Аксиально-поршневой гидромотор
Свое название аксиально-поршневые гидромоторы получили благодаря аксиальному расположению цилиндров в механизме. По сравнению с радиально-поршневым гидромотором, аксиально-поршневой гидромотор имеет меньшую массу и объем при примерно тех же показателях. Аксиально-поршневой гидромотор бывает 2 видов: регулируемый и нерегулируемый. Как правило, оборудования с аксиально-поршневым гидромотором используется в строительной технике за счет легкой выработки крутящего момента около 9000 нм. К достоинствам данных двигателей можно отнести высокий КПД и высокую частоту вращения. К недостаткам стоит отнести высокую стоимость и сложность конструкции данного гидромотора.
Радиально-поршневой гидромотор
Радиально-поршневой гидромотор отличается огромной выдаваемой мощность. Поэтому и предназначен для устройств с огромной потребляемой мощностью. Из положительных качеств радиально-поршневых гидромоторов можно выделить высокие создаваемые моменты, а также режим свободного вращения.
Гидронасос – устройство, предназначенное для преобразования механической энергии в гидравлическую. Разновидностей гидронасосов огромное множество на данный момент. Основные виды: поршневый, шестеренный и пластинчатый. Основное различие состоит в рабочих элементах гидронасоса. В поршневых гидронасосах рабочий элемент – поршень, в шестеренных – 2 вращающиеся шестерни, в пластинчатых – радиально расположенные пластины. Иногда пластины называют – шиберами, а насосы, соответственно – шиберными.
Более подробно ознакомиться с техническими характеристиками гидромоторов и гидронасосов вы можете ознакомиться в таблице, приведенной ниже.
Технические параметры
Технические характеристики насосов | ||||||||
Наименование параметра | Значение для насоса | |||||||
310.12 | 310.2.28 | 310.3.45 | 310...56 | 310.3.80 | 310...112 | 310.3.160 | 310.3.250 | |
210.12 | 310.4.45 | 310.4.80 | 310.4.160 | 310.4.250 | ||||
Рабочий объем (номинальный), куб.см. | 11,6 | 28 | 45 | 56 | 80 | 112 | 160 | 250 |
Частота вращения минимальная, с-1 (об/мин) | 6,7 (400) | |||||||
Частота вращения номинальная, с-1 (об/мин) | 40,0 (2400) | 32,0 (1920) | 25,0 (1500) | 25,0 (1500) | 20,0 (1200) | 20,0 (1200) | 20,0 (1200) | 16,0 (960) |
Частота вращения максимальная при минимальном давлении на входе, с-1 (об/мин) | 66,7 (4000) | 50,0 (3000) | 50,0 (3000) | 41,7 (2500) | 37,3 (2240) | 33,3 (2000) | 29,1 (1750) | 25,0 (1500) |
Частота вращения максимальная при давлении на входе 0,2 МПа (2кгс/кв.см), не менее, с-1 (об/мин) | 100 (6000) | 79 (4750) | 62,5 (3750) | 62,5 (3750) | 55,8 (3350) | 50,0 (3000) | 44,0 (2650) | 35,0 (2100) |
Подача номинальная, куб.дм/с (л/мин) | 0,44 (26) | 0,85 (51) | 1,07 (64) | 1,33 (80) | 1,9 (114) | 2,13 (128) | 3,04 (182) | 3,8 (228) |
Давление на входе минимальное (абсолютное), МПа (кгс/кв.см) | 0,08 (0,8) | |||||||
Давление на выходе номинальное, МПа (кгс/кв.см) | 20 (200) | |||||||
Давление на выходе максимальное , МПа (кгс/кв.см) | 35 (350) [для 310.4...-40 (400)] | |||||||
Насосы и гидромоторы
3.5. Аксиально-поршневые насосы и гидромоторы
Аксиально-поршневые гидромашины нашли широкое применение в гидроприводах, что объясняется рядом их преимуществ: меньшие радиальные размеры, масса, габарит и момент инерции вращающихся масс; возможность работы при большом числе оборотов; удобство монтажа и ремонта.
Аксиально-поршневой насос состоит из блока цилиндров 8 (рис.3.8) с поршнями (плунжерами) 4, шатунов 7, упорного диска 5, распределительного устройства 2 и ведущего вала 6.
Рис.3.8. Принципиальные схемы аксиально-поршневых насосов:1 и 3 - окна; 2 - распределительное устройство; 4 - поршни; 5 - упорный диск; 6 - ведущий вал; 7 - шатуны; 8 - блок цилиндрова - с иловым карданом; б - с несиловым карданом; в - с точечным касанием поршней; г - бескарданного типа
Во время работы насоса при вращении вала приходит во вращение и блок цилиндров. При наклонном расположении упорного диска (см. рис.3.8, а, в) или блока цилиндров (см. рис.3.8, б, г) поршни, кроме вращательного, совершают и возвратно-поступательные аксиальные движения (вдоль оси вращения блока цилиндров). Когда поршни выдвигаются из цилиндров, происходит всасывание, а когда вдвигаются - нагнетание. Через окна 1 и 3 в распределительном устройстве 2 цилиндры попеременно соединяются то с всасывающей, то с напорной гидролиниями. Для исключения соединения всасывающей линии с напорной блок цилиндров плотно прижат к распределительному устройству, а между окнами этого устройства есть уплотнительные перемычки, ширина которых b больше диаметра dк отверстия соединительных каналов в блоке цилиндров. Для уменьшения гидравлического удара при переходе цилиндрами уплотнительных перемычек в последних сделаны дроссельные канавки в виде небольших усиков, за счет которых давление жидкости в цилиндрах повышается равномерно.
Рабочими камерами аксиально-поршневых насосов являются цилиндры, аксиально расположенные относительно оси ротора, а вытеснителями - поршни. По виду передачи движения вытеснителям аксиально-поршневые насосы подразделяются на насосы с наклонным блоком (см. рис.3.8, б, г) и с наклонным диском (см. рис.3.8, а, в). Известные конструкции аксиально-поршневых насосов выполнены по четырем различным принципиальным схемам.
Насосы с силовым карданом (см. рис.3.8, а) приводной вал соединен с наклонным диском силовым карданом, выполненным в виде универсального шарнира с двумя степенями свободы. Поршни соединяются с диском шатунами. При такой схеме крутящий момент от приводящего двигателя передается блоку цилиндров через кардан и наклонный диск. Начальное прижатие блока цилиндров распределительному устройству обеспечивается пружиной, а во время работы насоса давлением жидкости. Передача крутящего момента блоку цилиндров необходима для преодоления сил трения между торцом блока цилиндров и распределительным устройством.
В насосах с двойным несиловым карданом (см. рис.3.8, б) углы между осью промежуточного вала и осями ведущего и ведомого валов принимают одинаковыми и равными 1 = 2 = /2. При такой схеме вращение ведущего и ведомого валов будет практически синхронным, а кардан полностью разгруженным, так как крутящий момент от приводящего двигателя передается блоку цилиндров через диск 5, изготавливаемый заодно с валом 6.
Насосы с точечным касанием поршней наклонного диска (см. рис.3.8, в) имеют наиболее простую конструкцию, поскольку здесь нет шатунов и карданных валов. Однако для того, чтобы машина работала в режиме насоса, необходимо принудительно выдвижение поршней из цилиндров для прижатия их к опорной поверхности наклонного диска (например, пружинами, помещенными в цилиндрах). По такой схеме чаще всего изготовляют гидромоторы типа Г15-2 (рис.3.9). Эти машины выпускаются небольшой мощности, т.к. в местах контакта поршней с диском создается высокое напряжение, которое ограничивает давление жидкости.
Рис.3.9. Аксиально-поршневой гидромотор типа Г15-2:1 - вал; 2 - манжета; 3 - крышка; 4, 9 - корпус; 5, 16 - подшипник;6 - радиально упорный подшипник; 7 - барабан; 8 - поводок; 10 - ротор; 11 - пружины; 12 - дренажное отверстие; 13 - распределительное устройство; 14 - полукольцевые пазы; 15 - отверстие напорное; 17 - поршни; 18 - шпонка; 19 - толкатель
Аксиально-поршневые машины бескарданного типа (см. рис.3.8, г) блок цилиндров соединяется с ведущим валом через шайбу и шатуны поршней. По сравнению с гидромашинами с карданной связью машины бескарданного типа проще в изготовлении, надежнее в эксплуатации, имеют меньший габарит блока цилиндров. По данной схеме отечественной промышленностью выпускается большинство аксиально-поршневых машин серии 200 и 300 (рис.3.10).
Рис.3.9. Аксиально-поршневой гидромотор типа Г15-2:1 - вал; 2 - манжета; 3 - крышка; 4, 9 - корпус; 5, 16 - подшипник;6 - радиально упорный подшипник; 7 - барабан; 8 - поводок; 10 - ротор; 11 - пружины; 12 - дренажное отверстие; 13 - распределительное устройство; 14 - полукольцевые пазы; 15 - отверстие напорное; 17 - поршни; 18 - шпонка; 19 - толкатель
Структура условного обозначения аксиально-поршневых машин серий 200 и 300 приведена на рис.3.11.
Подача (расход) аксиально-поршневой гидромашины зависит от хода поршня, который определяется углом γ наклона диска или блока цилиндров ( γ < 25 ). Если конструкция гидромашины в процессе ее эксплуатации допускает изменение угла γ, то такие машины регулируемые. При изменении угла наклона шайбы или блока цилиндров с + γ до - γ достигается реверсирование направления потока жидкости или вращения ротора гидромашины.
Рис.3.11. Структура условного обозначения аксиально-поршневых гидромашин серий 200 и 300
Подачу для машин с бесшатунным приводом определяют по формуле:
а для машин с шатунным приводом
где d - диаметр цилиндра; D и D - диаметр окружности, на которой расположены центры окружностей цилиндров или закреплены шатуны на диске; D tg γ и D' sin γ - ход поршня при повороте блока цилиндров на 180 ; z - число поршней (z = 7, 9, 11).
Крутящий момент аксиально-поршневого гидромотора определяют по формуле:
Наверх страницы
gidravl.narod.ru
Насосы и гидромоторы. Статьи компании «ООО Гидро-Максимум»
Насос - гидравлическая машина, в которой механическая энергия, приложенная к выходному валу, преобразуется в гидравлическую энергию потока рабочей жидкости.
Гидродвигатель - машина, в которой энергия потока рабочей жидкости преобразуется в энергию движения выходного звена. Если выходное звено получает вращательное движение, то такой гидродвигатель называют гидромотором, если поступательное, то силовым цилиндром.
Гидромашина, которая может работать в режиме насоса или гидромотора, называется обратимой.
Рабочий объем гидромашины в насосе - это объем жидкости вытесняемый в систему за один оборот вала насоса; в гидромоторе - объем жидкости, необходимый для получения одного оборота вала гидромотора. Гидромашины изготавливаются с постоянным и переменным рабочим объемом. В соответствии с этим с постоянным рабочим объемом называются нерегулируемые, а с переменным - регулируемые.
Гидролиния (магистраль) - как уже говорилось в лекции 2, это трубопровод, по которому транспортируется рабочая жидкость. Различают магистрали всасывающие, напорные, сливные и дренажные.
Производительность насоса (подача) - это отношение объема подаваемой жидкости ко времени.
Теоретическая производительность насоса QТ - это расчетный объем жидкости, вытесняемый в единицу времени из его полости нагнетания.
Действительная производительность насоса QД уменьшается на величину QН из-за обратного течения жидкости в насосе из полости нагнетания в полость всасывания и из-за утечки жидкости во внешнюю среду. Поэтому
QД = QТ - QН,
а отношение
где ηоб.н. - объемный КПД насоса.
Объемные потери и объемный КПД гидромотора. При работе машины в режиме гидромотора в приемную его полость поступает жидкость под давлением от насоса. Объемные потери в гидромоторе сводятся в основном к утечкам жидкости через зазоры между сопрягаемыми элементами. Это приводит к тому, что подводимый объем жидкости QП превышает теоретическое значение QТ. Поэтому
где ΔQМ - величина утечек в гидромоторе (объемные потери).
Мощность и крутящий момент на валу гидромотора. Фактическая мощность развиваемая гидромотором при данном перепаде давлений
NM факт = ΔPqMnMηM
где qм - рабочий объем гидромотора;nм - частота вращения гидромотора;ηм - общий КПД гидромотора.
Выразив крутящий момент через теоретическую мощность NТ = ΔPqn и угловую скорость ω= 2πn, получим теоретическую величину крутящего момента для гидромашины:
3.2. Гидравлические машины шестеренного типа
Шестеренные машины в современной технике нашли широкое применение. Их основным преимуществом является конструкционная простота, компактность, надежность в работе и сравнительно высокий КПД. В этих машинах отсутствуют рабочие органы, подверженные действию центробежной силы, что позволяет эксплуатировать их при частоте вращения до 20 с-1. В машиностроении шестеренные гидромашины применятся в системах с дроссельным регулированием.
Шестеренные насосы. Основная группа шестеренных насосов состоит из двух прямозубых шестерен внешнего зацепления (рис.3.1, а). Применяются также и другие конструктивные схемы, например, насосы с внутренним зацеплением (рис.3.1, б), трех- и более шестерные насосы (рис.3.1, в).
Рис.3.1. Схемы шестеренных насосов:а - с внешним зацеплением; б - с внутренним зацеплением; в - трехшестеренный
Шестеренный насос с внешним зацеплением (рис.3.1, а) состоит из ведущей 1 и ведомой 2 шестерен, размещенных с небольшим зазором в корпусе 3. При вращении шестерен жидкость, заполнившая рабочие камеры (межзубовые пространства), переносится из полости всасывания 4 в полость нагнетания 5. Из полости нагнетания жидкость вытесняется в напорный трубопровод.
В общем случае подача шестерного насоса определяется по формуле
где k - коэффициент, для некорригированных зубьев k = 7, для корригированных зубьев k = 9,4; D - диаметр начальной окружности шестерни; z - число зубьев; b - ширина шестерен; n - частота оборотов ведущего вала насоса; ηоб - объемный КПД.
Шестеренный насос в разобранном состоянии представлен на рис.3.2. Шестеренный насос состоит из корпуса 8, выполненного из алюминиевого сплава, внутри которого установлены подшипниковый блок 2 с ведущей 1 и ведомой 3 шестернями и уплотняющий блок 5, представляющий собой другую половину подшипника. Для радиального уплотнения шестерен в центральной части уплотняющего блока имеются две сегментные поверхности, охватывающие с установленным зазором зубья шестерен. Для торцевого уплотнения шестерен служат две поджимные пластины 7, устанавливаемые в специальные пазы уплотняющего блока с обеих сторон шестерен. В поджимных пластинах и в левой части уплотняющего блока есть фигурные углубления под резиновые прокладки 6. Давлением жидкости из полости нагнетания пластины 7 прижимаются к торцам шестерен, благодаря чему автоматически компенсируется зазор, а утечки остаются практически одинаковыми при любом рабочем давлении насоса. Ведущая и ведомая шестерни выполнены заодно с цапфами, опирающимися на подшипники скольжения подшипникового и уплотняющего блоков. Одна из цапф ведущей шестерни имеет шлицы для соединения с валом приводящего двигателя. Насос закрывается крышкой 4 с уплотнительным резиновым кольцом 9. Приводной вал насоса уплотнен резиновой манжетой, закрепленной специальными кольцами в корпусе насоса.
Рис.3.2. Шестеренный насос НШ-К и его составные элементы
Шестеренные насосы с внутренним зацеплением сложны в изготовлении, но дают более равномерную подачу и имеют меньшие размеры. Внутренняя шестерня 1 (см. рис.3.1, б) имеет на два-три зуба меньше, чем внешняя шестерня 2. Между внутренней и внешней шестернями имеется серпообразная перемычка 3, отделяющая полость всасывания от напорной полости. При вращении внутренней шестерни жидкость, заполняющая рабочие камеры, переносится в напорную полость и вытесняется через окна в крышках корпуса 4 в напорный трубопровод.
На рис.3.1, в приведена схема трехшестеренного насоса. В этом насосе шестерня 1 ведущая, а шестерни 2 и 3 - ведомые, полости 4 - всасывающие, а полости 5 - напорные. Такие насосы выгодно применять в гидроприводах, в которых необходимо иметь две независимые напорные гидролинии.
Равномерность подачи жидкости шестерным насосом зависит от числа зубьев шестерни и угла зацепления. Чем больше зубьев, тем меньше неравномерность подачи, однако при этом уменьшается производительность насоса. Для устранения защемления жидкости в зоне контакта зубьев шестерен в боковых стенках корпуса насоса выполнены разгрузочные канавки, через которые жидкость отводится в одну из полостей насоса.
Шестеренные гидромоторы. Работа шестеренных гидромоторов осуществляется следующим образом. Жидкость из гидромагистрали (см. рис.3.1, а) поступает в полость 4 гидродвигателя и, воздействуя на зубья шестерен, создает крутящий момент, равный
где ηм - механический КПД гидромотора.
Конструктивно шестерные гидромоторы отличаются от насосов меньшими зазорами в подшипниках, меньшими усилиями поджатия втулок к торцам шестерен, разгрузкой подшипников от неуравновешенных радиальных усилий. Пуск гидромоторов рекомендуется производить без нагрузки.
Шестеренные машины являются обратимыми, т.е. могут быть использованы и как гидромоторы и как насосы.
3.3. Пластинчатые насосы и гидромоторы
Пластинчатые насосы и гидромоторы так же, как и шестеренные, просты по конструкции, компактны, надежны в эксплуатации и сравнительно долговечны. В таких машинах рабочие камеры образованы поверхностями статора, ротора, торцевых распределительных дисков и двумя соседними вытеснителями-платинами. Эти пластины также называют лопастями, лопатками, шиберами.
Пластинчатые насосы могут быть одно-, двух- и многократного действия. В насосах однократного действия одному обороту вала соответствует одно всасывание и одно нагнетание, в насосах двукратного действия - два всасывания и два нагнетания.
Схема насоса однократного действия приведена на рис.3.3. Насос состоит из ротора 1, установленного на приводном валу 2, опоры которого размещены в корпусе насоса. В роторе имеются радиальные или расположенные под углом к радиусу пазы, в которые вставлены пластины 3. Статор 4 по отношению к ротору расположен с эксцентриситетом е. К торцам статора и ротора с малым зазором (0,02…0,03 мм) прилегают торцевые распределительные диски 5 с серповидными окнами. Окно 6 каналами в корпусе насоса соединено с гидролинией всасывания 7, а окно 8 - с напорной гидролинией 9. Между окнами имеются уплотнительные перемычки 10, обеспечивающие герметизацию зон всасывания и нагнетания. Центральный угол , образованный этими перемычками, больше угла между двумя соседними пластинами.
При вращении ротора пластины под действие м центробежной силы, пружин или под давлением жидкости, подводимой под их торцы, выдвигаются из пазов и прижимаются к внутренней поверхности статора. Благодаря эксцентриситету объем рабочих камер вначале увеличивается - происходит всасывание, а затем уменьшается - происходит нагнетание. Жидкость из линии всасывания через окна распределительных дисков вначале поступает в рабочие камеры, а затем через другие окна вытесняется из них в напорную линию.
При изменении эксцентриситета е изменяется подача насоса. Если е = 0 (ротор и статор расположены соосно), платины не будут совершать возвратно-поступательных движений, объем рабочих камер не будет изменяться, и, следовательно, подача насоса будет равна нулю. При перемене эксцентриситета с +е на -еизменяется направление потока рабочей жидкости (линия 7 становится нагнетательной, а линия 9 - всасывающей). Таким образом, пластинчатые насосы однократного действия в принципе регулируемые и реверсируемые.
Рис.3.3. Схема пластинчатого насоса однократного действия:1 - ротор; 2 - приводной вал; 3 - пластины; 4 - статор; 5 - распределительный диск; 6, 8 - окна; 7 - гидролиния всасывания; 9 - гидролиния нагнетания
Подачу пластинчатого насоса однократного действия определяют по формуле
где b - ширина пластин; е - эксцентриситет; D - диаметр статора; z - число платин; t - толщина платин; n - частота вращения ротора.
Число пластин z может быть от 2 до 12. С увеличением числа пластин подача насоса уменьшается, но при этом увеличивается ее равномерность.
В насосах двойного действия (рис.3.4) ротор 1 и 2 статор соосны. Эти насосы имеют по две симметрично расположенные полости всасывания и полости нагнетания. Такое расположение зон уравновешивает силы, действующие со стороны рабочей жидкости, и разгружает приводной вал 2, который будет нагружен только крутящим моментом. Для большей уравновешенности число пластин 3 в насосах двойного действия принимается четным. Торцевые распределительные диски 5 имеют четыре окна. Два окна 6 каналами в корпусе насоса соединяются с гидролинией всасывания 7, другие два 8 - с напорной гидролинией 9. Так же как и в насосах однократного действия, между окнами имеются уплотнительные перемычки 10. Для герметизации зон всасывания и нагнетания должно быть соблюдено условие, при котором ε < β.
Профиль внутренней поверхности статора выполнен из дуг радиусами R1 и R2 с центром в точке О. Пазы для пластин в роторе могут иметь радиальное расположение под углом 7…15 к радиусу, что уменьшает трение и исключает заклинивание пластин. Насосы с радиальным расположением пластин могут быть реверсивными.
a)1, 7 - распределительные диски; 3 - статор; 4 - ротор; 5 - пластины; 6, 8 - окна напорной полости; 2, 12 - окна всасывающей полости; 9 - штифт; 10 - внутренняя поверхность статора; 11 - отверстие
б)1 - крышка; 2, 8 - подшипники; 3, 7 - диски; 4 - окно; 5 - статор; 6 - ротор; 9 - фланец; 10 - манжеты; 11 - вал приводной; 12 - пружина; 13 - камера под давлением; 14 - окно всасывания; 15 - корпус; 16 - пластины; 17 - отверстие; 18 - штифт; 19 - окно
Рис.3.5. Рабочий комплект (а) и конструкция (б) пластинчатого насоса двойного действия Г12-2М
Рассмотрим еще раз устройство и принцип работы пластинчатого насоса двойного действия на примере насоса Г12-2М. Основными деталями насоса является корпус с крышкой, приводной вал с подшипниками и рабочий комплект (рис.3.5, а), состоящий из распределительных дисков 1 и 7, статора 3, ротора 4 и пластин 5. Диски и статор, зафиксированные в угловом положении относительно корпуса штифтом 9, прижимаются друг к другу пружинами (не показаны), а также давлением масла в напорной линии. При вращении ротора 4, связанного через шлицевое соединение с приводным валом, в направлении, указанном стрелкой, пластины 5 центробежной силой и давлением масла, подведенного в отверстия 11, прижимаются к внутренней поверхности 10 статора 3, имеющей форму овала, и, следовательно, совершают возвратно-поступательное движение в пазах ротора.
Во время движения пластин от точки А до точки В и от точки С до точки D объемы камер, образованных двумя соседними пластинами, внутренней поверхностью статора, наружной поверхностью ротора и торцевыми поверхностями дисков 1 и 7, увеличиваются, и масло заполняет рабочие камеры через окна 2 и 12 диска 1, связанные со всасывающей линией. При движении в пределах участков ВС и DА объемы камер уменьшаются, и масло вытесняется в напорную линию гидросистемы через окна 6 и 8 диска 7. Поскольку зоны нагнетания (ВС и DА) и всасывания (АВ и CD) расположены диаметрально относительно ротора, на него не действуют радиальные усилия, что положительно сказывается на долговечности подшипников приводного вала.
Конструкция насоса показана на рис.3.5, б. В расточках корпуса 15 и крышки 1 установлен рабочий комплект (диски 3 и 7, статор 5, ротор 6, пластины 16). Ротор через шлицевое соединение связан с приводным валом 11, опирающимся на шарикоподшипники 2 и 8. Наружные утечки или подсос воздуха по валу исключается манжетами 10, установленными в расточке фланца 9. Комплект сжимается тремя пружинами 12 и давлением масла в камере 13. Окна 4 диска 3 через отверстия 17 статора соединены с глухими окнами всасывания 14 диска 7, благодаря чему масло из всасывающей линии поступает в ротор с двух сторон, что облегчает условия всасывания. В напорную линию масло вытесняется через окна 19 диска 7. Поворот комплекта предотвращается штифтом 18 (или винтами), проходящими через отверстия в деталях 1, 3, 5, 7 и 15.
Подачу пластинчатого насоса двойного действия определяют по формуле
где b - ширина ротора; R1 и R2 - радиусы дуг, образующих профиль внутренней поверхности статора; t - толщина платин; z - число пластин; α - угол наклона пластин к радиусу.
Пластинчатые гидромоторы могут быть также одно-, двух- и многократного действия. Пластинчатые гидромоторы от пластинчатых насосов отличаются тем, что в их конструкцию включены устройства, обеспечивающие постоянный прижим пластин к статорному кольцу.
При подводе к машине жидкости на рабочую поверхность пластин действует сила, создающая крутящий момент на валу гидромотора, который для гидромоторов однократного действия определяется по формуле:
а для гидромоторов двойного действия
Гидромоторы двойного действия так же, как и насосы двойного действия, нерегулируемые.
Надежность и срок службы пластинчатых гидромашин зависят от материала пластин и статорного кольца. Во избежание отпуска материала пластин из-за нагрева от рения о статорное кольцо пластины изготовляют из стали с высокой температурой отпуска. Статорное кольцо цементируется и закаливается. Ротор изготовляют из закаленной хромистой стали, а торцевые распределительные диски из бронзы.
3.4. Радиально-поршневые насосы и гидромоторы
Радиально-поршневые гидромашины применяют при сравнительно высоких давлениях (10 МПа и выше). По принципу действия радиально-поршневые гидромашины делятся на одно-, двух- и многократного действия. В машинах однократного действия за один оборот ротора поршни совершают одно возвратно-поступательное движение.
Схема радиально-поршневого насоса однократного действия приведена на рис.3.6. Рабочими камерами в насосе являются радиально расположенные цилиндры, а вытеснителями - поршни. Ротор (блок цилиндров) 1 на скользящей посадке установлен на ось 2, которая имеет два канала 3 и 4 (один соединен с гидролинией всасывания, другой - с напорной гидролинией). Каналы имеют окна 5, которыми они могут соединяться с цилиндрами 6. Статор 7 по отношению к ротору располагается с эксцентриситетом.
Рис.3.6. Схема радиально-поршневого насоса однократного действия
Ротор вращается от приводного вала через муфту 8. При вращении ротора в направлении, указанном на рис.3.6. стрелкой, поршни 9 вначале выдвигаются из цилиндров (происходит всасывание), а затем вдвигаются (нагнетание). Соответственно рабочая жидкость вначале заполняет цилиндры, а затем поршнями вытесняется оттуда в канал 4 и далее в напорную линию гидросистемы. Поршни выдвигаются и прижимаются к статору центробежной силой или принудительно (пружиной, давлением рабочей жидкости или иным путем).
Подача радиально-поршневого насоса
где d - диаметр цилиндра; е - эксцентриситет; z - число поршней.
В серийных конструкциях радиально-поршневых насосов число поршней принимается нечетным (чаще всего z = 7 или z = 9). Число рядов цилиндров для увеличения подачи может быть увеличено от 2 до 6. Подача радиально-поршневого насоса с кратностью действия i и числом рядов m подсчитывается по формуле
где h - ход поршней.
В станкостроении применяют регулируемые радиально-поршневые насосы однократного действия типа НП, которые выпускают с максимальной подачей до 400 л/мин и давлением до 200 МПа.
На рис.3.7. представлен радиально-поршневой насос однократного действия типа НП с четырьмя рядами цилиндров, который состоит из корпуса 1 и крышки 25, внутри которых размещены все рабочие элементы насоса: скользящий блок 10 с крышкой 24, обойма 9 с крышкой 3 и реактивным кольцом 6, ротор 8 с радиально расположенными цилиндрами, поршни 7, распределительная ось 11, на которой на скользящей насадке установлены ротор, приводной вал 20 и муфта. Скользящий блок может перемещаться по направляющим 15, благодаря чему достигаются изменение эксцентриситета, а следовательно, и подача насоса. Величина эксцентриситета ограничивается указателем 19. Обойма вращается в двух подшипниках 12, а приводной вал - в подшипниках 14. Распределительная ось имеет каналы с отверстиями, через которые происходят всасывание и нагнетание. Муфта состоит из фланца 2, установленного на шлицах приводного вала промежуточного кольца 5 и четырех роликов 4, через которые крутящий момент предается от фланца к ротору. Для исключения утечек рабочей жидкости по валу служит уплотнение 21. Утечки по каналу 17 отводятся в корпус насоса, а из него через отверстие 13 в дренажную гидролинию.
Рис.3.7. Радиально-поршневой насос однократного действия типа НП
Насос работает следующим образом. При вращении ротора поршни под действием центробежной силы выдвигаются из цилиндров и прижимаются к реактивным кольцам обоймы. При этом если между ротором и обоймой есть эксцентриситет, то поршни, кроме вращательного, будут совершать и возвратно-поступательные (в радиальном направлении) движения. Изменение эксцентриситета вызывает соответствующее изменение хода поршней и подачи насоса. Вместе с ротором во вращение вовлекается обойма, вращающаяся в своих подшипниках. Такая конструкция позволяет уменьшить силы трения и повысить КПД гидромашины.
Для радиально-поршневых машин работающих в режиме гидромотора крутящий момент можно определить по формуле
где m - число рядов цилиндров; i - кратность хода поршней; h - величина хода поршней.
3.5. Аксиально-поршневые насосы и гидромоторы
Аксиально-поршневые гидромашины нашли широкое применение в гидроприводах, что объясняется рядом их преимуществ: меньшие радиальные размеры, масса, габарит и момент инерции вращающихся масс; возможность работы при большом числе оборотов; удобство монтажа и ремонта.
Аксиально-поршневой насос состоит из блока цилиндров 8 (рис.3.8) с поршнями (плунжерами) 4, шатунов 7, упорного диска 5, распределительного устройства 2 и ведущего вала 6.
Рис.3.8. Принципиальные схемы аксиально-поршневых насосов:1 и 3 - окна; 2 - распределительное устройство; 4 - поршни; 5 - упорный диск; 6 - ведущий вал; 7 - шатуны; 8 - блок цилиндрова - с иловым карданом; б - с несиловым карданом; в - с точечным касанием поршней; г - бескарданного типа
Во время работы насоса при вращении вала приходит во вращение и блок цилиндров. При наклонном расположении упорного диска (см. рис.3.8, а, в) или блока цилиндров (см. рис.3.8, б, г) поршни, кроме вращательного, совершают и возвратно-поступательные аксиальные движения (вдоль оси вращения блока цилиндров). Когда поршни выдвигаются из цилиндров, происходит всасывание, а когда вдвигаются - нагнетание. Через окна 1 и 3 в распределительном устройстве 2 цилиндры попеременно соединяются то с всасывающей, то с напорной гидролиниями. Для исключения соединения всасывающей линии с напорной блок цилиндров плотно прижат к распределительному устройству, а между окнами этого устройства есть уплотнительные перемычки, ширина которых b больше диаметра dк отверстия соединительных каналов в блоке цилиндров. Для уменьшения гидравлического удара при переходе цилиндрами уплотнительных перемычек в последних сделаны дроссельные канавки в виде небольших усиков, за счет которых давление жидкости в цилиндрах повышается равномерно.
Рабочими камерами аксиально-поршневых насосов являются цилиндры, аксиально расположенные относительно оси ротора, а вытеснителями - поршни. По виду передачи движения вытеснителям аксиально-поршневые насосы подразделяются на насосы с наклонным блоком (см. рис.3.8, б, г) и с наклонным диском (см. рис.3.8, а, в). Известные конструкции аксиально-поршневых насосов выполнены по четырем различным принципиальным схемам.
Насосы с силовым карданом (см. рис.3.8, а) приводной вал соединен с наклонным диском силовым карданом, выполненным в виде универсального шарнира с двумя степенями свободы. Поршни соединяются с диском шатунами. При такой схеме крутящий момент от приводящего двигателя передается блоку цилиндров через кардан и наклонный диск. Начальное прижатие блока цилиндров распределительному устройству обеспечивается пружиной, а во время работы насоса давлением жидкости. Передача крутящего момента блоку цилиндров необходима для преодоления сил трения между торцом блока цилиндров и распределительным устройством.
В насосах с двойным несиловым карданом (см. рис.3.8, б) углы между осью промежуточного вала и осями ведущего и ведомого валов принимают одинаковыми и равными 1 = 2 = /2. При такой схеме вращение ведущего и ведомого валов будет практически синхронным, а кардан полностью разгруженным, так как крутящий момент от приводящего двигателя передается блоку цилиндров через диск 5, изготавливаемый заодно с валом 6.
Насосы с точечным касанием поршней наклонного диска (см. рис.3.8, в) имеют наиболее простую конструкцию, поскольку здесь нет шатунов и карданных валов. Однако для того, чтобы машина работала в режиме насоса, необходимо принудительно выдвижение поршней из цилиндров для прижатия их к опорной поверхности наклонного диска (например, пружинами, помещенными в цилиндрах). По такой схеме чаще всего изготовляют гидромоторы типа Г15-2 (рис.3.9). Эти машины выпускаются небольшой мощности, т.к. в местах контакта поршней с диском создается высокое напряжение, которое ограничивает давление жидкости.
Рис.3.9. Аксиально-поршневой гидромотор типа Г15-2:1 - вал; 2 - манжета; 3 - крышка; 4, 9 - корпус; 5, 16 - подшипник;6 - радиально упорный подшипник; 7 - барабан; 8 - поводок; 10 - ротор; 11 - пружины; 12 - дренажное отверстие; 13 - распределительное устройство; 14 - полукольцевые пазы; 15 - отверстие напорное; 17 - поршни; 18 - шпонка; 19 - толкатель
Аксиально-поршневые машины бескарданного типа (см. рис.3.8, г) блок цилиндров соединяется с ведущим валом через шайбу и шатуны поршней. По сравнению с гидромашинами с карданной связью машины бескарданного типа проще в изготовлении, надежнее в эксплуатации, имеют меньший габарит блока цилиндров. По данной схеме отечественной промышленностью выпускается большинство аксиально-поршневых машин серии 200 и 300 (рис.3.10).
Рис.3.9. Аксиально-поршневой гидромотор типа Г15-2:1 - вал; 2 - манжета; 3 - крышка; 4, 9 - корпус; 5, 16 - подшипник;6 - радиально упорный подшипник; 7 - барабан; 8 - поводок; 10 - ротор; 11 - пружины; 12 - дренажное отверстие; 13 - распределительное устройство; 14 - полукольцевые пазы; 15 - отверстие напорное; 17 - поршни; 18 - шпонка; 19 - толкатель
Структура условного обозначения аксиально-поршневых машин серий 200 и 300 приведена на рис.3.11.
Подача (расход) аксиально-поршневой гидромашины зависит от хода поршня, который определяется углом γ наклона диска или блока цилиндров ( γ < 25 ). Если конструкция гидромашины в процессе ее эксплуатации допускает изменение угла γ, то такие машины регулируемые. При изменении угла наклона шайбы или блока цилиндров с + γ до - γ достигается реверсирование направления потока жидкости или вращения ротора гидромашины.
Рис.3.11. Структура условного обозначения аксиально-поршневых гидромашин серий 200 и 300
Подачу для машин с бесшатунным приводом определяют по формуле:
а для машин с шатунным приводом
где d - диаметр цилиндра; D и D - диаметр окружности, на которой расположены центры окружностей цилиндров или закреплены шатуны на диске; D tg γ и D' sin γ - ход поршня при повороте блока цилиндров на 180 ; z - число поршней (z = 7, 9, 11).
Крутящий момент аксиально-поршневого гидромотора определяют по формуле:
hydro-maximum.com.ua
Насосы и гидромоторы
Строительные машины и оборудование, справочник
Категория:
Машины для строительства цементобетонных дорожных покрытий
Насосы и гидромоторыВ гидравлических приводах машин для строительства цементобетонных дорожных покрытий применяют насосы объемного действия, в которых жидкость из полости всасывания перемещается в полость нагнетания путем вытеснения ее из рабочих камер подвижными элементами. Под рабочей камерой понимается внутреннее пространство насоса или гидромотора, ограниченное рабочими поверхностями деталей, периодически изменяющее свой объем и попеременно сообщающееся с местами входа и выхода рабочей жидкости. В зависимости от конструкции рабочего органа насосы подразделяют на шестеренные, пластинчатые и роторно-поршневые.
у шестеренного насоса рабочие камеры образованы рабочими поверхностями зубчатых колес и корпуса, у пластинчатого — корпуса и пластин, у поршневого — поршней и цилиндров.
По принципу распределения потоков рабочей жидкости между всасывающей и напорной гидролиниями насосы разделяются на насосы с замыканием рабочих органов (шестеренные и пластинчатые), с радиальным распределением потоков через вал и втулку (радиальные роторно-поршневые), с торцовым распределением потоков плоским или сферическим распределителем (аксиальные роторно-поршневые) .
Шестеренные и пластинчатые насосы применяют для рабочих давлений 12—16 МПа; аксиальные и радиальные роторно-поршневые — для давлений 20—35 МПа.
Основными характеристиками насосов являются подача, номинальное и максимальное развиваемое давление и направление вращения ведущего вала. В насосе правого вращения ведущий вал должен вращаться по часовой стрелке, если смотреть на торец ведущего вала, в насосе левого вращения— наоборот. Например, насос НШ-32Л — насос шестеренный, за один оборот подает 32 см3 рабочей жидкости, левого вращения.
Насосы можно выполнять в обратимых вариантах, т. е. одну и ту же машину использовать как насос или как гидромотор. Такие насосы-гидромоторы иногда называют низкомоментными в отличие от высокомоментных низкооборотных гидромоторов, частота вращения которых у различных конструкций составляет от 0,05 до 3,3 с-1 при крутящем моменте от 1500 до 30 000 Н- м.
Шестеренные насосы и гидромоторы благодаря простой конструкции и надежности в работе широко распространены в гидроприводах дорожных машин. Принцип действия шестеренного насоса (рис. 54) заключается в следующем. Две шестерни равной ширины —ведущая и ведомая находятся в зацеплении и располагаются в корпусе с минимальным радиальным зазором. К торцовым поверхностям шестерен прилегают боковые стенки насоса. При вращении шестерен жидкость, заполняющая впадины между зубьями, переносится шестернями по внутренней поверхности корпуса (как показано стрелками) из полости всасывания А в полость нагнетания Б.
КПД шестеренного насоса зависит от утечек жидкости через зазоры, образованные головками зубьев и корпусом насоса, а также между торцовыми поверхностями шестерен и боковыми стенками насоса. Чтобы уменьшить радиальные утечки, зазор между шестернями и корпусом насоса делают минимальным, а для уменьшения торцовых утечек предусматривается автоматическое прижатие боковых стенок к торцовым поверхностям шестерен жидкостью под рабочим давлением. Максимальное значение КПД шестеренных насосов может составлять 0,8—0,9.
Рис. 1. Схема шестеренного насоса:А — полость всасывания, Б — полость нагнетания; 1, 2— ведущая и ведомая шестерни, 3 — корпус насоса
Унифицированные шестеренные насосы-гидромоторы типа МНЩ с рабочим давлением 10 МПа отличаются один от другого только объемной подачей.
Рис. 55. Шестеренный насос-гидромотор МНШ:а — конструктивная схема, 6 —детали насоса; 1, 18 — винты, 2, 3 — стопорное и опорное кольца уплотнения, 4 — уплотнение, 5 — крышка, 6 — уплотнительное кольцо крышки, 7 — корпус, 8 — коническое резьбовое отверстие, 9, 12 — задние и передние втулки, 10, 11 — ведущий и ведомый валы-шестерни, 13— уплотни-тельные кольца передних втулок, 14—направляющие проволоки, 15 — разгрузочные пластины, 16 — уплотнительные кольца, 17 — патрубок
Конструкция насоса-гидромотора типа МНШ показана на рис. 2. Валы-шестерни заключены в корпус из алюминиевого сплава. Корпус закрыт крышкой, привернутой к нему винтами. Плавающие бронзовые втулки являются подшипниками скольжения для валов и одновременно выполняют роль подпятников для торцов шестерен. Между крышкой и корпусом проложено уплотнительное кольцо из маслостойкой резины. Для предупреждения вытекания рабочей жидкости и защиты втулки от попадания пыли и грязи установлено уплотнение, фиксируемое стопорным и опорным кольцами. Кроме того, в крышке выполнены расточки, в которые вводят дополнительные уплотнительные резиновые кольца. Передние втулки могут перемещаться вдоль валов-шестерен. Втулки автоматически прижимаются к шестерням независимо от их изнашивания путем подачи рабочей жидкости под давлением в торец втулки. Этим достигается высокий КПД насоса и увеличивается срок его службы.
Чтобы избежать перекоса втулок из-за неравномерной нагрузки в зоне камер всасывания и нагнетания, со стороны всасывающей камеры установлена фигурная разгрузочная пластина, обтянутая по контуру резиновым кольцом. Пластину располагают между крышкой и втулками. Между сопряженными поверхностями втулок и для упрощения сборки предусмотрен зазор 0,1 — 0,15 мм. После сборки этот зазор принудительно выбирают, поворачивая втулки и фиксируя их проволоками, установленными в отверстия втулок.
Рабочая жидкость, просочившаяся вдоль валов, поступает через отверстие в крышке и отверстие в ведомой шестерне в полости, соединенные с камерой всасывания. К боковым поверхностям корпуса насоса крепят винтами всасывающий и нагнетательный патрубки. Отверстие большого диаметра под всасывающим патрубком отмечено на корпусе надписью «Вход».
Насосы могут быть использованы как для левого, так и для правого вращения. Чтобы изменить направление вращения, нужно поменять местами ведущую и ведомую шестерни, переставить передние втулки так, чтобы их положение и направление разворота стыка и проволок было таким же, как у задних втулок, а также повернуть крышку 5 на 180°. Нельзя менять направление входа и выхода в насос, так как это может привести к выдавливанию рабочей жидкостью сальника ведущей шестерни.
В корпусе насоса-гидромотора типа МНШ сделано коническое резьбовое отверстие для отвода просочившейся рабочей жидкости при использовании гидромашины в режиме гидромотора. В это отверстие ввертывают штуцер, к которому прикрепляют дренажный трубопровод, соединяющий внутреннюю полость корпуса с баком гидравлической системы.
Пластинчатые насосы включают в себя ротор, размещенный в статоре, и пластины, расположенные в пазах ротора. При вращении ротора пластины под действием центробежных сил или давления рабочей жидкости прижимаются к внутренней поверхности статора и скользят по ней. Если у насоса каждая пластина за полный оборот ротора один раз всасывает жидкость и один раз нагнетает, то такой насос называется машиной однократного действия.
На рис. 2, а представлена схема пластинчатого насоса однократного действия с шестью пластинами. При вращении ротора, геометрическая ось вращения которого смещена относительно оси статора на эксцентриситет е, объем изменяется,по ве-личине, уменьшаясь от полости всасывания А к полости нагнетания Б и увеличиваясь при движении пластин от полости нагнетания к полости всасывания. В зоне всасывания увеличивающийся объем между пластинами заполняется рабочей жидкостью, которая поступает под действием атмосферного давления из бака через полость А. При уменьшении объема между пластинами жидкость из него выталкивается в напорную линию через полость Б.
Во избежание утечек жидкости из полости нагнетания в полость всасывания перемычку между всасывающим и нагнетательным окнами делают несколько большей расстояния между пластинами. Полный ход пластины h равен удвоенной величине эксцентриситета. Чем больше эксцентриситет, тем больше ход, а следовательно, и объемная подача насоса. Чтобы пластина была постоянно прижата к статору, под нее устанавливают пружину или подают давление под торец пластины. Объемную подачу пластинчатых насосов можно регулировать за счет изменения эксцентриситета ротора.
Более всего в гидроприводах машин распространен пластинчатый насос двукратного действия, схема которого дана на рис. 3, б. В нем за один оборот ротора каждая пластина совершает два хода, т. е. два раза выдвигается из паза и вдвигается в паз ротора.
Принцип действия пластинчатых насосов двукратного действия заключается в следующем. Внутренняя поверхность статора насоса выполнена в виде кривой, напоминающей в сечении овал. Для уравновешивания ротора полости всасывания А и нагнетания Б располагают крест-накрест. При вращении ротора по часовой стрелке в полости А1 происходит всасывание, а в полости Б\ — нагнетание жидкости, откуда она через окно в боковом диске вытесняется в напорную гидролинию. Затем в полости А2 вновь происходит всасывание, а на участке В2 жидкость снова подается в напорную гидролинию. Следовательно, за полный оборот ротора каждая пласти-иа насоса дважды участвует в процессе всасывания и дважды в процессе нагнетания.
Рис. 3. Схемы пластинчатых насосов: а — однократного действия, б — двукратного действия; 1 — пластины, 2— роторы, 3 — статоры; А, Л, и А2 — полости всасывания. Б, Бi и Б2—полости нагнетания
Пластинчатые насосы являются обратимыми гидромашинами и могут быть использованы в качестве гидромоторов. Однако в этом случае необходимо, чтобы пластины были надежно прижаты к статору.
Пластинчатый насос-гидромотор МГ16 состоит из корпуса, внутри которого установлен статор. Форма внутренней поверхности статора близка к овалу. По этой поверхности скользят двенадцать пластин, перемещающихся в пазах ротора. Статор зажат между двумя дисками, являющимися боковыми стенками насоса-гидромотора. В каждом диске выполнено по четыре отверстия, два из которых сообщены с полостью всасывания, а два других — с полостью нагнетания.
Рис. 4. Пластинчатый насос-гидромотор МГ16: 1 — пластина, 2— статор, 3 — вал, 4 — шарикоподшипники, 5 — дренажное отверстие, 6 — полости под пластинами, 7 — уплотнительное кольцо, 8 — сливное отверстие, 9. 14 — задний и передний диски, 10 — крышка, 11 — пружина, 12 — отверстие для подвода жидкости под высоким давлением, 13 — ротор, 15 — кольцевой канал, 16—подводящее отверстие, 17 — корпус
Ротор приводится во вращение валом, вращающимся в двух шарикоподшипниках. К корпусу насоса-гидромотора через резиновое уплотнительное кольцо прикреплена крышка. При работе насоса в режиме гидромотора рабочая жидкость подается к мотору через отверстие и кольцевой канал, а сливается через отверстие. Пластины прижимаются к внутренней поверхности статора рабочей жидкостью, подаваемой через отверстие в полости. В корпусе насоса-гидромотора сделано коническое дренажное отверстие для отвода просочившейся жидкости. Чтобы пластины не заклинивались, между задним диском и крышкой установлены пружины.
Рис. 5. Схемы аксиального роторно-поршневого насоса-гидромотора с наклонным диском:а — принципиальная, б— конструктивная; —ведущий вал, 2 — диск, 3— шток, 4— блок цилиндров, 5 — поршень, 6 — неподвижный распределитель, 7 — полукольцевые пазы, 8 — каналы для подвода и отвода рабочей жидкости
Роторно-поршневые насосы и гидромоторы подразделяют на две группы — аксиальные и радиальные.
Аксиальные роторно-поршневые насосы — обратимые и могут работать как в качестве насоса, так и гидромотора. Кинематической основой таких гидромашин служит кривошипно-шатунный механизм, в котором цилиндры перемещаются параллельно один другому, а поршни движутся вместе с цилиндрами и одновременно, вследствие вращения вала кривошипа, перемещаются относительно цилиндров. Аксиальные роторно-поршневые гидромашины выполняют по двум основным схемам: с наклонным диском и наклонным блоком цилиндров.
На рис. 5, а показана принципиальная схема устройства аксиального роторно-поршневого насоса-гидромотора с наклонным диском. Насос-гидромотор включает в себя блок цилиндров, ось которого совпадает с осью ведущего вала, а под некоторым углом к нему расположена ось диска, с которым связаны штоки поршней. Ведущий вал приводит во вращение блок цилиндров. Нри повороте блока вокруг оси насоса на 180° поршень совершает поступательное движение, выталкивая жидкость из цилиндра. При дальнейшем повороте на 180° поршень совершает ход всасывания. Блок цилиндров своей шлифованной торцовой поверхностью плотно прилегает к тщательно обработанной поверхности неподвижного распределителя, в котором сделаны полукольцевые пазы. Один из этих пазов соединен через каналы со всасывающим трубопроводом, другой — с напорным трубопроводом. В блоке цилиндров выполнены отверстия, соединяющие каждый из цилиндров блока с распределителем. Если в гидромашину через каналы подавать под давлением рабочую жидкость, то, действуя на поршни, она заставит их совершать возвратно-поступательное движение, а они, в свою очередь, будут вращать диск и связанный с ним вал. Таким образом работает аксиально-поршневой гидромотор.
На рис. 58, б показана конструктивная схема касоса-гидромотора с наклонным диском. Он создает крутящий момент 12,5 Н-м при давлении рабочей жидкости 5 МПа. В корпусе насоса-гидромотора укреплен наклонный диск в виде радиально-упорного подшипника, состоящего из двух обойм. Правая обойма подшипника может вращаться с угловой скоростью блока цилиндров. Движение от блока к правой обойме передается с помощью контактирующих с ней штоков поршней. Левая обойма подшипника не вращается. Радиально-упорный подшипник сохраняет постоянный наклон к оси вращения. Для распределения жидкости по цилиндрам служит неподвижный распределитель с полукольцевыми пазами и каналами для подвода и отвода рабочей жидкости.
При работе с регулируемыми насосами или в системах с дроссельным регулированием гидромоторы с наклонным диском допускают изменение частоты вращения на ходу в диапазоне 1—200 и более, а также изменение направления движения с многократными включениями.
Принцип действия аксиального роторно-поршневого насоса-гидромотора с наклонным блоком цилиндров заключается в следующем. Блок цилиндров с поршнями и шатунами наклонен относительно фланца вала на некоторый угол. Блок цилиндров получает вращение от вала через универсальный шарнир. Вал, приводимый в движение от двигателя, опирается на три подшипника, которые установлены в корпусе. Заодно с валом выполнен фланец, в котором завальцованы шаровые головки шатунов. Другие концы шатунов, также имеющие шаровые головки, крепят в поршнях. С помощью шатунов фланец вала заставляет поршни совершать возвратно-поступательное движение в цилиндрах блока. Блок цилиндров вращается вокруг оси 6 на подшипнике. Пружина, размещенная внутри блока, прижимает его к неподвижному распределительному диску, который этим же усилием прижимается к крышке насоса (крышка насоса на рисунке не показана).
Рис. 6. Аксиальный роторно-поршневой насос-гидромотор с наклонным блоком:1 — поршень, 2 — шатун, 3 — фланец, 4 — вал, 5 — подшипники вала, 6 —ось блока, 7 — подшипник блока, 8 —- распределительный диск, 9 — цилиндр блока, 10— блок цилиндров, 11 —универсальный шарнир
Жидкость подводится и отводится через окна в распределительном диске. Поршни, находящиеся в верхней части блока, совершают ход всасывания рабочей жидкости. В это же время нижние поршни, вытесняя жидкость из цилиндров, совершают ход нагнетания.
Объемную подачу насоса-гидромотора с наклонным блоком цилиндров можно регулировать, изменяя угол наклона оси блока относительно оси вала в пределах 15—20°. При соосном расположении блока цилиндров с ведущим валом поршни в них не перемещаются и объемная подача насоса равна нулю. У нерегулируемых насосов и гидромоторов угол наклона оси блока цилиндров составляет 30°. Число поршней в насосе может быть от 5 до 9.
В аксиальных роторно-поршневых насосах с наклонным диском угол его наклона изменяют вручную или с помощью специального привода. В этом случае диск закрепляют в корпусе на осях, допускающих его поворот. В машинах с наклонным блоком цилиндров диск закрепляют в поворотном устройстве — люльке. Изменяя угол наклона люльки, увеличивают или уменьшают ход поршней в цилиндрах блока и таким образом регулируют подачу насоса.
На рис. 7 показана конструктивная схема гидропривода с замкнутой циркуляцией гусеничных тележек и рабочих органов машин бетоноукладочного комплекта ДС-100, В схеме используются две аксиальные роторно-поршневые гидромашины: регулируемый гидронасос с наклонным диском и нерегулируемый, реверсивный гидромотор. Наклонный диск гидронасоса устанавливается под углом к оси поршневого блока с помощью рабочей жидкости, подаваемой подпиточным шестеренным насосом. Регулирование объемной подачи аксиального роторно-поршневого насоса производится рычагом, связанным с гидрораспределителем. Гидрораспределитель соединяет напорную гидролинию подпиточного насоса с верхним или нижним сервоцилиндрами через гидролинии. Сервоцилиндры через серьги изменяют угол установки наклонного диска гидронасоса. Направление вращения вала гидромотора зависит от того, в какую сторону отклонен наклонный диск, а скорость вращения пропорциональна величине угла поворота этого диска.
Рис. 7. Схема гидропривода гусеничных тележек и рабочих органов машин бетоноукладочного комплекта ДС-100:1, 5 6 8 9 12, 14 — гидролинии. 2 — рычаг, 3, 16 — сервоцилиндры, 4 — гидрораспределитель, 7 — подпиточный насос, 10 — гидромотор, 11, 12 — наклонные диски, 13— бак, 15 — клапаны подпитки, 17 — серьга, 19 — гидронасос
Рис. 8. Схема высокомоментного радиального роторно-поршневого гидромотора: а — с непосредственной передачей усилия от поршней, б — с передачей, усилия от поршней шатунами; 1 — поршень, 2 — ролик, 3 — статор, 4 — ротор, 5 — шатун
К радиальным роторно-поршневым гидромашинам относятся тихоходные высокомоментные гидромоторы, создающие крутящий момент не менее 1500 Н-м при частоте вращения выходного вала от 3 до 200 мин-1.
Радиальные роторно-поршневые гидромоторы выполняют с передачей усилия от поршней или от поршней шатунами (рис. 8).
На рис. 8,а показана принципиальная схема гидромотора с непосредственной передачей усилия от поршней. Гидромотор состоит из статора в виде профильного кольца и ротора с расположенными радиально поршнями. При подаче рабочей жидкости под поршень он через ролик давит на внутреннюю профильную поверхность статора с силой Р. Так как внутренняя поверхность статора наклонена под некоторым углом относительно оси поршня, возникает тангенциальная сила Т, создающая окружное усилие, которое и вращает ротор вместе с находящимися в нем поршнями.
Поршни, скользя по впадинам статора, поворачивают ротор, а при обратном ходе выталкивают жидкость через сливное отверстие гидрораспределителя. Одному двойному ходу поршня соответствует поворот ротора на один шаг, а за один оборот ротора каждый поршень сделает количество ходов, равное количеству шагов на внутренней поверхности статора. Число шагов может быть от 6 до 11. Число поршней в ряду до 11, а рядов в гидромоторе до трех. Если затормозить ротор гидромотора, то будет вращаться его статор.
На рис. 8,б показана принципиальная схема радиального роторно-поршневого гидромотора с передачей усилия от поршней шатунами. В отличие от предыдущего гидромотора эта конструкция включает в себя еще одно звено — шатун, который разгружает поршень от боковых усилий при перемещении ролика по внутренней профильной поверхности статора.
—
В гидросистемах экскаваторов применяют аксиально-поршневые, шестеренные и лопастные (пластинчатые) насосы.
Аксиально-поршневые насосы являются силовыми узлами объемного гидропривода, преобразующими механическую энергию вращения в энергию потока рабочей жидкости. Поток рабочей жидкости в регулируемых насосах типа 207 изменяется по величине и направлению путем изменения угла наклона качающих узлов.
Насосы типа 223 с регулятором мощности автоматически поддерживают постоянную мощность на приводном валу насоса при изменении нагрузки в заданных пределах. Подача насоса в процессе работы изменяется с помощью механического или гидравлического управления. Максимальное давление в системе ограничивается предохранительным клапаном
Индекс аксиально-поршневого насоса образуется четырьмя группами цифр.
Первые три цифры обозначают тип насоса: 223 — сдвоенный насос с регулятором мощности, 207 — регулируемый насос, 210 — нерегулируемый насос. Следующие две цифры (12; 20; 25; 32) обозначают диаметр поршня качающего узла (в мм), третья группа цифр — исполнение насоса и последние две цифры — исполнение приводного вала. Например, насос 207.20.11.00 — регулируемый насос с диаметром поршня качающего узла 20 мм, с подпиткой без обратных клапанов, со шпонкой на приводном валу.
Насосы типа 210 являются обратимыми, т. е. могут быть использованы и в качестве гидромоторов. Индекс мотора образуется так же, как и индекс насоса.
На экскаваторах непрерывного действия применяют также аксиально-поршневые насосы типа НПА-64, которые являются обратимыми.
Аксиально-поршневые насосы типа 207; 210 и 223 рассчитаны на номинальное давление 16 МПа и могут кратковременно (не более 2% времени работы) создавать давление 25 МПа, а насосы НПА-64 соответственно 7 и 7,5 МПа.
Насосы рассчитаны на работу при температуре рабочей жидкости —25 — + 70 °С и вязкости 20—200 сСт. Рекомендуемая вязкость рабочей жидкости 33 сСт.
Шестеренные насосы используют обычно для питания вспомогательных механизмов экскаваторов. Подача насосов не регулируется, направление потока масла постоянное, поэтому изготавливают насосы правого и левого вращения. Насосную установку типа БГ11-22 применяют в смазочных системах и для закачки масла в баки:
Лопастные насосы используют в системах гидроуправления экскаваторов. Насосы имеют постоянное направление потока масла и при данном давлении и частоте вращения приводного вала не имеют регулировки подачи.
Читать далее: Гидравлические цилиндры
Категория: - Машины для строительства цементобетонных дорожных покрытий
Главная → Справочник → Статьи → Форум
stroy-technics.ru
Шестеренные гидронасосы и гидромоторы.
Шестеренные гидронасосы отличаются простотой, надежностью, малой массой и компактностью. Благодаря этим качествам они получили широкое применение в гидроприводах сельскохозяйственных, строительно-дорожных, коммунальных и других самоходных машинах при давлении рабочей жидкости до 15 - 20 МПа и частоте вращения входного вала 1800 - 2400 об/мин
Шестеренные гидронасосы выполняются с шестернями внешнего и внутреннего зацепления. Наиболее распространенными являются гидронасосы с шестернями внешнего зацепления. Они состоят из пары сцепляющихся между собой цилиндрических шестерен, выполненных заодно с валами и помещенных в плотно обхватывающий их корпус, имеющий каналы в местах входа в зацепление и выхода из него (рис. 6а).
Рис. 6. Конструктивная (а) и расчетная (б) схема шестеренного гидронасоса:Шестеренный гидронасос Шестеренный гидронасос При вращении шестерен рабочая жидкость, заключенная во впадинах зубьев переносится в камеру нагнетания е, образованную корпусом насоса и зубьями а 1, в 1, в 2 и а 2 (рис. 6-б). Зубья а 1 и а 2 при вращении шестерен вытесняют больше рабочей жидкости, чем может поместиться в пространстве, освобождаемом зубьями в 1 и в 2, находящимися в зацеплении. В результате жидкость, в количестве, равном разности объемов, описываемых этими двумя парами зубьев, вытесняется в нагнетательную камеру е.
Наибольшее распространение, благодаря простоте изготовления, получили шестеренные гидронасосы с прямозубым зацеплением шестерен, которое характеризуется прямолинейным контактом рабочих поверхностей зубьев по всей их ширине (длине зуба). При неточном изготовлении зубьев возникает толчкообразное движение ведомой шестерни и шум, а также наблюдается быстрый износ рабочих поверхностей.
Эти недостатки устранены в косозубых и шевронных шестернях. Вход в зацепление зубьев и выход из него в этих шестернях происходит постепенно, благодаря чему уменьшается влияние погрешностей в профиле зуба и достигается плавная и относительно бесшумная работа. Такие гидронасосы выпускаются рядом фирм Западной Европы.
Многие развитые фирмы выпускают сдвоенные и строенные шестеренные гидронасосы различной производительности, на одном валу которых установлено до 3-х пар рабочих шестерен, часто с разной длиной зуба, т.е. с разными рабочими объемами.Часто для обеспечения синхронного движения исполнительных механизмов в гидравлическую схему машины включают шестеренный делитель потока рабочей жидкости (рис. 7). Объемный делитель разделяет поток рабочей жидкости на два или несколько (до шести) одинаковых или разных потоков с помощью двух или нескольких взаимосвязанных шестерен.
Рис. 7. Шестеренный делитель потока рабочей жидкости:Шестеренный делитель потока рабочей жидкостиРабочая жидкость подводится к входному отверстию и вращает в противоположные стороны рабочие пары шестерен. Рабочие пары шестерен (секции делителя потока) отличаются друг от друга длиной зуба. Этим достигается обеспечение различного рабочего объема секции делителя.Рабочая жидкость вытесняется в соответствующих объемах в выходные отверстия и обеспечивает деление потока рабочей жидкости в соответствующих пропорциях.
Шестеренные гидронасосы с внутренним зацеплением (рис. 8) отличаются компактностью и малыми габаритами по сравнению с их аналогами с шестернями внешнего зацепления. Преимуществом этих гидронасосов является также симметричное расположение приводного вала относительно корпуса. Принцип действия этих гидронасосов аналогичен насосам с шестернями внешнего зацепления. Рабочая жидкость, заполняющая междузубовые впадины шестерен, переносится в полость нагнетания, где и выдавливается зацепляющимися зубьями через серпообразные окна в боковых крышах корпуса (рис. 8-а) или через радиальные сверления в донышках впадин внешней (кольцевой) шестерни.
Для отделения (уплотнения) полостей всасывания и нагнетания применен серпообразный разделительный элемента (рис. 8-а). В соответствии с заказом шестеренные гидронасосы собирают только для правого или только для левого вращения.Рис.8. Шестеренный гидронасос с внутренним зацеплением:Шестеренный гидронасос с внутренним зацепление Шестеренный гидронасос с внутренним зацепление
ШЕСТЕРЕННЫЕ ГИДРОМОТОРЫ:
Конструкция шестеренных гидромоторов аналогична конструкции шестеренных гидронасосов. Рабочая жидкость, подведенная под давлением к шестеренному гидромотору, действует на неуравновешенные зубья шестерен и создает крутящий момент. Шестеренные гидромоторы работают с частотой вращения 100-5000 об/мин.Пластинчатые гидронасосы и гидромоторы.Пластинчатые насосы, часто называемые лопастными или шиберными, являются наиболее простыми из существующих типов гидронасосов.По числу циклов работы за один оборот вала различают пластинчатые гидронасосы и гидромоторы однократного и многократного (двух-, трех- и четырехкратного) действия. Гидронасос однократного действия выполняется как регулируемым (за счет изменения эксцентриситета), так и нерегулируемым, а гидронасосы многократного действия - нерегулируемыми. Гидронасос многократного действия имеет преимущество - уравновешенность радиальных сил давления жидкости на пластинчатый ротор, благодаря чему они пригодны для работы при более высоком, чем гидронасосы однократного действия, давлении рабочей жидкости (14,0 МПа и выше).Схема простейшего из пластинчатых гидронасосов приведена на рис. 9, где е - эксцентриситет насоса. В пластинчатых гидронасосах применяют положительное перекрытие, при котором рабочая камера в ее среднем положении размещается на перевальной (разделительной) перемычке, будучи отсеченной (изолированной) как от полости всасывания, так и от полости нагнетания.Рис. 9. Пластинчатый гидронасос. Схема:
Пластинчатый гидронасосДля избежания компрессии рабочей жидкости в камере, положительное перекрытие должно быть по возможности малым, однако таким, чтобы было обеспечено разделение полостей всасывания и нагнетания.Минимальное значение этого перекрытия соответствует соотношению размеров перемычки и раствора концов пластин, при котором кромки окон питания касались бы внутренних сторон пластин (соответствует углу b расположения пластин в роторе).Радиальное движение пластин и плотность их контакта со статором осуществляется с помощью давления рабочей жидкости, подводимой в прорези под пластины, или при помощи пружин.Пластинчатые гидронасосы обычно содержат 8 - 12 пластин. При увеличении числа пластин уменьшается действующая на них нагрузка и повышается равномерность потока нагнетаемой жидкости. При уменьшении числа пластин (меньше восьми) поток становится неравномерным.ПЛАСТИНЧАТЫЕ ГИДРОМОТОРЫ:Пластинчатые гидромашины применяют также для работы в качестве гидромоторов. Наиболее часто они применяются в качестве ротаторов на гидравлических кранах - манипуляторах. В пластинчатых гидромоторах без принудительного радиального движения пластин в роторе необходимо предусмотреть механизм прижима пластин к статору при пуске мотора.Гидромоторы однократного (одинарного) действия выпускаются реверсивными как в регулируемом, так и нерегулируемом исполнении, а моторы двукратного действия - нерегулируемыми в реверсивном и нереверсивном исполнениях.
gidrostanok.ru
Насосы и гидромоторы
3.1. Некоторые термины и определения
Насос- гидравлическая машина, в которой механическая энергия, приложенная к выходному валу, преобразуется в гидравлическую энергию потока рабочей жидкости.
Гидродвигатель - машина, в которой энергия потока рабочей жидкости преобразуется в энергию движения выходного звена. Если выходное звено получает вращательное движение, то такой гидродвигатель называют гидромотором, если поступательное, то силовым цилиндром.
Гидромашина, которая может работать в режиме насоса или гидромотора, называется обратимой.
Рабочий объем гидромашины в насосе - это объем жидкости вытесняемый в систему за один оборот вала насоса; в гидромоторе - объем жидкости, необходимый для получения одного оборота вала гидромотора. Гидромашины изготавливаются с постоянным и переменным рабочим объемом. В соответствии с этим с постоянным рабочим объемом называются нерегулируемые, а с переменным - регулируемые.
Гидролиния (магистраль)- как уже говорилось в лекции 2, это трубопровод, по которому транспортируется рабочая жидкость. Различают магистрали всасывающие, напорные, сливные и дренажные.
Производительность насоса (подача) - это отношение объема подаваемой жидкости ко времени.
Теоретическая производительность насоса QТ - это расчетный объем жидкости, вытесняемый в единицу времени из его полости нагнетания.
Действительная производительность насоса QД уменьшается на величину QН из-за обратного течения жидкости в насосе из полости нагнетания в полость всасывания и из-за утечки жидкости во внешнюю среду. Поэтому
QД = QТ - QН,
а отношение
где ηоб.н. - объемный КПД насоса.
Объемные потери и объемный КПД гидромотора. При работе машины в режиме гидромотора в приемную его полость поступает жидкость под давлением от насоса. Объемные потери в гидромоторе сводятся в основном к утечкам жидкости через зазоры между сопрягаемыми элементами. Это приводит к тому, что подводимый объем жидкости QП превышает теоретическое значение QТ. Поэтому
где ΔQМ - величина утечек в гидромоторе (объемные потери).
Мощность и крутящий момент на валу гидромотора. Фактическая мощность развиваемая гидромотором при данном перепаде давлений
NM факт = ΔPqMnMηM
где qм - рабочий объем гидромотора; nм - частота вращения гидромотора; ηм - общий КПД гидромотора.
Выразив крутящий момент через теоретическую мощность NТ = ΔPqn и угловую скорость ω= 2πn, получим теоретическую величину крутящего момента для гидромашины:
3.2. Гидравлические машины шестеренного типа
Шестеренные машины в современной технике нашли широкое применение. Их основным преимуществом является конструкционная простота, компактность, надежность в работе и сравнительно высокий КПД. В этих машинах отсутствуют рабочие органы, подверженные действию центробежной силы, что позволяет эксплуатировать их при частоте вращения до 20 с-1. В машиностроении шестеренные гидромашины применятся в системах с дроссельным регулированием.
Шестеренные насосы. Основная группа шестеренных насосов состоит из двух прямозубых шестерен внешнего зацепления (рис.3.1, а). Применяются также и другие конструктивные схемы, например, насосы с внутренним зацеплением (рис.3.1, б), трех- и более шестерные насосы (рис.3.1, в).
Рис.3.1. Схемы шестеренных насосов: а - с внешним зацеплением; б - с внутренним зацеплением; в - трехшестеренный
Шестеренный насос с внешним зацеплением (рис.3.1, а) состоит из ведущей 1 и ведомой 2 шестерен, размещенных с небольшим зазором в корпусе 3. При вращении шестерен жидкость, заполнившая рабочие камеры (межзубовые пространства), переносится из полости всасывания 4 в полость нагнетания 5. Из полости нагнетания жидкость вытесняется в напорный трубопровод.
В общем случае подача шестерного насоса определяется по формуле
где k - коэффициент, для некорригированных зубьев k = 7, для корригированных зубьев k = 9,4; D - диаметр начальной окружности шестерни; z - число зубьев; b - ширина шестерен; n - частота оборотов ведущего вала насоса; ηоб - объемный КПД.
Шестеренный насос в разобранном состоянии представлен на рис.3.2. Шестеренный насос состоит из корпуса 8, выполненного из алюминиевого сплава, внутри которого установлены подшипниковый блок 2 с ведущей 1 и ведомой 3 шестернями и уплотняющий блок 5, представляющий собой другую половину подшипника. Для радиального уплотнения шестерен в центральной части уплотняющего блока имеются две сегментные поверхности, охватывающие с установленным зазором зубья шестерен. Для торцевого уплотнения шестерен служат две поджимные пластины 7, устанавливаемые в специальные пазы уплотняющего блока с обеих сторон шестерен. В поджимных пластинах и в левой части уплотняющего блока есть фигурные углубления под резиновые прокладки 6. Давлением жидкости из полости нагнетания пластины 7 прижимаются к торцам шестерен, благодаря чему автоматически компенсируется зазор, а утечки остаются практически одинаковыми при любом рабочем давлении насоса. Ведущая и ведомая шестерни выполнены заодно с цапфами, опирающимися на подшипники скольжения подшипникового и уплотняющего блоков. Одна из цапф ведущей шестерни имеет шлицы для соединения с валом приводящего двигателя. Насос закрывается крышкой 4 с уплотнительным резиновым кольцом 9. Приводной вал насоса уплотнен резиновой манжетой, закрепленной специальными кольцами в корпусе насоса.
Рис.3.2. Шестеренный насос НШ-К и его составные элементы
Шестеренные насосы с внутренним зацеплением сложны в изготовлении, но дают более равномерную подачу и имеют меньшие размеры. Внутренняя шестерня 1 (см. рис.3.1, б) имеет на два-три зуба меньше, чем внешняя шестерня 2. Между внутренней и внешней шестернями имеется серпообразная перемычка 3, отделяющая полость всасывания от напорной полости. При вращении внутренней шестерни жидкость, заполняющая рабочие камеры, переносится в напорную полость и вытесняется через окна в крышках корпуса 4 в напорный трубопровод.
На рис.3.1, в приведена схема трехшестеренного насоса. В этом насосе шестерня 1 ведущая, а шестерни 2 и 3 - ведомые, полости 4 - всасывающие, а полости 5 - напорные. Такие насосы выгодно применять в гидроприводах, в которых необходимо иметь две независимые напорные гидролинии.
Равномерность подачи жидкости шестерным насосом зависит от числа зубьев шестерни и угла зацепления. Чем больше зубьев, тем меньше неравномерность подачи, однако при этом уменьшается производительность насоса. Для устранения защемления жидкости в зоне контакта зубьев шестерен в боковых стенках корпуса насоса выполнены разгрузочные канавки, через которые жидкость отводится в одну из полостей насоса.
Шестеренные гидромоторы. Работа шестеренных гидромоторов осуществляется следующим образом. Жидкость из гидромагистрали (см. рис.3.1, а) поступает в полость 4 гидродвигателя и, воздействуя на зубья шестерен, создает крутящий момент, равный
где ηм - механический КПД гидромотора.
Конструктивно шестерные гидромоторы отличаются от насосов меньшими зазорами в подшипниках, меньшими усилиями поджатия втулок к торцам шестерен, разгрузкой подшипников от неуравновешенных радиальных усилий. Пуск гидромоторов рекомендуется производить без нагрузки.
Шестеренные машины являются обратимыми, т.е. могут быть использованы и как гидромоторы и как насосы.
studfiles.net
Объёмные насосы и гидромоторы
ОБЬЕМНЫЕ ГИДРАВЛИЧЕСКИЕ МАШИНЫ
По способу преобразования механической энергии в гидравлическую все насосы разделяются на гидродинамические и объёмные. Примером гидродинамических машин являются центробежные насосы, у которых приращение энергии жидкости давления происходит за счет увеличения скорости ее движения во вращающемся колесе.
Объемными называют гидромашины, принцип действия которых основан на попеременном заполнении и опорожнении ограниченных пространств (далее рабочих камер), периодически сообщающихся с каналами входа и выхода рабочей жидкости. При работе объемных гидромашин (ОГМ) изменение энергии жидкости происходит в основном за счет гидростатической составляющей полного напора, что приводит к значительной (десятки МПа) разнице давлений во входящем и выходящем потоках. К классу ОГМ относятся гидронасосы – генераторы энергии потока жидкости и гидродвигатели – потребители энергии. Объемные гидродвигатели с возвратно-поступательным движением выходного звена называются гидроцилиндрами, а с неограниченным вращательным движением выходного звена – гидромоторами. ОГМ, допускающие эксплуатацию как в режиме насоса, так и в режиме гидромотора, называются насос-моторами.
Объёмные насосы и гидромоторы
Рабочие камеры ОГМ образуются различными конструктивными парами, например: поршень – цилиндр, зуб – впадина, смежные витки винтовых поверхностей и другие. При увеличении объема рабочих камер у насосов осуществляется процесс всасывания, а у гидродвигателей – нагнетания. При уменьшении объема происходит процесс нагнетания у насосов и слива у гидродвигателей. Попеременное увеличение и перенос в пространстве составляют полный рабочий цикл ОГМ. Если за один оборот вала гидромашины в каждой рабочей камере осуществляется несколько рабочих циклов, то такая ОГМ называется гидромашиной многократного действия.
Процессы всасывания и нагнетания рабочей жидкости осуществляются с помощью распределительных устройств, обеспечивающих соединение рабочих камер с магистралями гидросистемы. В ОГМ применяются три типа распределительных устройств: клапанные, клапанно-щелевые и золотниковые. Последние выполняют в виде цапф, торцовых распределителей с плоской или сферической рабочей поверхностью, а также в виде цилиндрических золотниковых распределителей. Некоторые ОГМ, такие, как винтовые и шестерные, не имеют распределительных устройств. Тип распределителя определяет возможность реверсирования ОГМ, т. е. возможность изменения направления движения потока при постоянном направлении вращения входного звена для насоса или возможность изменения направления вращения выходного звена гидромотора при постоянном направлении потока. Как правило, реверсивные ОГМ бывают регулируемыми, т. е. в процессе эксплуатации можно изменять величину рабочего объема гидромашин и тем самым управлять характеристиками ОГМ. Регулируемость, реверсивность и обратимость гидромашин являются важными эксплуатационными характеристиками.
Наиболее широко в приводах мобильных машин применяют ОГМ, у которых детали рабочей камеры (звенья) совершают простое или сложное вращательное движение. Такие ОГМ называют роторными. Их упрощенная классификация на примере роторных насосов приведена на рис. 1 [18]. Принадлежность машин к той или иной классификационной группе определяется формой рабочих звеньев, их кинематикой и конструктивными особенностями машины.
Рисунок 1.1 – Классификация роторных насосов
К группе роторно-вращательных ОГМ относятся гидромашины, у которых рабочие камеры совершают только вращательное движение. Эта группа объединяет шестеренные и винтовые ОГМ. Шестеренные гидромашины выполняются на базе двух или нескольких зубчатых колес с внешним либо внутренним зацеплением. У винтовых гидромашин рабочие камеры образуются винтовыми поверхностями и корпусом. В зависимости от числа винтов, входящих в конструкцию, различают одно-, двух- и многовинтовые ОГМ.
К группе роторно поступательных ОГМ относятся гидромашины, у которых подвижные рабочие звенья совершают сложное движение: вращательное и возвратно-поступательное. Рабочие звенья могут иметь формы пластин или поршней (пластинчатые или поршневые гидромашины соответственно). Если в конструкции ОГМ оси поршней располагаются перпендикулярно к оси блока цилиндров, гидромашину относят к группе радиально-поршневых. Если же оси поршней параллельны оси блока цилиндров или составляют с ней угол не более 45º, то такие ОГМ называют аксиально-поршневыми. Аксиально-поршневые гидромашины выполняются по двум основным схемам: с наклонным диском или с наклонным блоком цилиндров. В первом случае оси блока цилиндров и вала насоса лежат на одной прямой, а во втором – образуют ломаную линию.
В некоторых ОГМ рабочие камеры располагаются в нескольких параллельных плоскостях, перпендикулярных оси вала. Такие гидромашины называются многорядными.
Похожие статьи:
poznayka.org