Энциклопедия по машиностроению XXL. Коррозионностойкие сплавы
Коррозионно-стойкие стали и сплавы. Жаростойкие стали и сплавы. Жаропрочные стали и сплавы. Коррозионно-стойкие стали и сплавы. Жаростойкие стали и сплавы. Лекция 20 Коррозионностойкие стали и сплавы. Жаростойкие стали и сплавы. Жаропрочные стали и сплавы
Коррозионно-стойкие стали и сплавы. Жаростойкие стали и сплавы. Жаропрочные стали и сплавы
- Коррозия электрохимическая и химическая.
- Классификация коррозионно-стойких сталей и сплавов
- Хромистые стали.
- Жаростойкость, жаростойкие стали и сплавы.
- Жаропрочность, жаропрочные стали и сплавы
- Классификация жаропрочных сталей и сплавов
Коррозия электрохимическая и химическая.
Разрушение металла под воздействием окружающей среды называют коррозией.
Коррозия помимо уничтожения металла отрицательно влияет на эксплуатационные характеристики деталей, содействуя всем видам разрушения.
Коррозия в зависимости от характера окружающей среды может быть химической и электрохимической.
Электрохимическая коррозия имеет место в водных растворах, а так же в обыкновенной атмосфере, где имеется влага.
Сущность этой коррозии в том, что ионы металла на поверхности детали, имея малую связь с глубинными ионами, легко отрываются от металла молекулами воды.
Металл, потеряв часть положительно заряженных частиц, ионов, заряжается отрицательно за счет избыточного количества оставшихся электронов. Одновременно слой воды, прилегающий к металлу, за счет ионов металла приобретает положительный заряд. Разность зарядов на границе металл – вода обуславливает скачок потенциала, который в процессе коррозии изменяется, увеличиваясь от растворения металла, и уменьшаясь от осаждения ионов из раствора на металле.
Если количество ионов переходящих в раствор и осаждающихся на металле одинаково, то скорости растворения и осаждения металла равны и процесс коррозии (разрушения металла) не происходит. Этому соответствует равновесный потенциал .
За нулевой потенциал принимают равновесный потенциал водородного иона в водном растворе при концентрации положительных ионов водорода, равной 1 моль ионов + на 1 литр.
Стандартные потенциалы других элементов измерены по отношению к водородному потенциалу.
Металлы, стандартный потенциал которых отрицательный – корродируют в воде, в которой растворен кислород тем активнее, чем отрицательней значение электрохимического потенциала.
Уходящие ионы металла, взаимодействуя с ионами , образуют гидроксиды, нерастворимые в воде, которые называют ржавчиной, а процесс их образования – ржавлением.
Схема ржавления железа:
;
Гидроксид железа в присутствии кислорода, растворенного в воде, превращается в . Так как это нерастворимое соединение, то равновесный потенциал не может быть достигнут и коррозия будет продолжаться до полного разрушения.
В зависимости от структуры коррозия имеет разное проявление: при однородном металле – коррозия происходит равномерно по всей поверхности. При неоднородном металле – коррозия избирательная и называется точечной. Это явление наиболее опасно, так как приводит к быстрой порче всего изделия. Избирательная коррозия создает очаги концентрации напряжений, что содействует разрушению.
Химическая коррозия может происходить за счет взаимодействия металла с газовой средой при отсутствии влаги. Продуктом коррозии являются оксиды металла. Образуется пленка на поверхности металла толщиной в 1…2 периода кристаллической решетки. Этот слой изолирует металл от кислорода и препятствует дальнейшему окислению, защищает от электрохимической коррозии в воде. При создании коррозионно-стойких сплавов – сплав должен иметь повышенное значение электрохимического потенциала и быть по возможности однофазным.
Классификация коррозионно-стойких сталей и сплавов
Коррозионная стойкость может быть повышена, если содержание углерода свести до минимума, если ввести легирующий элемент, образующий с железом твердые растворы в таком количестве, при котором скачкообразно повысится электродный потенциал сплава.
Важнейшими коррозионно-стойкими техническими сплавами являются нержавеющие стали с повышенным содержанием хрома: хромистые и хромоникелевые. На рис. 20.1 показано влияние количества хрома в железохромистых сплавах на электрохимический потенциал сплава.
Рис 20.1. Влияние хрома на потенциал сплавов
Хромистые стали.
Содержание хрома должно быть не менее 13% (13…18%).
Коррозионная стойкость объясняется образованием на поверхности защитной пленки оксида .
Углерод в нержавеющих сталях является нежелательным, так как он обедняет раствор хромом, связывая его в карбиды, и способствует получению двухфазного состояния. Чем ниже содержание углерода, тем выше коррозионная стойкость нержавеющих сталей.
Различают стали ферритного класса 08Х13, 12Х17, 08Х25Т, 15Х28. Стали с повышенным содержанием хрома не имеют фазовых превращений в твердом состоянии и поэтому не могут быть подвергнуты закалке. Значительным недостатком ферритных хромистых сталей является повышенная хрупкость из-за крупнокристаллической структуры. Эти стали склонны к межкристаллитной коррозии (по границам зерен) из-за обеднения хромом границ зерен. Для избежания этого вводят небольшое количество титана. Межкристаллитная коррозия обусловлена тем, что часть хрома около границ зерна взаимодействует с углеродом и образует карбиды. Концентрация хрома в твердом растворе у границ становится меньше 13% и сталь приобретает отрицательный потенциал.
Из-за склонности к росту зерна ферритные стали требуют строгих режимов сварки и интенсивного охлаждения зоны сварного шва. Недостатком является и склонность к охрупчиванию при нагреве в интервале температур 450…500oС
Из ферритных сталей изготавливают оборудование азотно-кислотных заводов (емкости, трубы).
Для повышения механических свойств ферритных хромистых сталей в них добавляют 2…3 % никеля. Стали 10Х13Н3, 12Х17Н2 используются для изготовления тяжелонагруженных деталей, работающих в агрессивных средах.
После закалки от температуры 1000oC и отпуска при 700…750oС предел текучести сталей составляет 1000 МПа.
Термическую обработку для ферритных сталей проводят для получения структуры более однородного твердого раствора, что увеличивает коррозионную стойкость.
Стали мартенситного класса 20Х13, 30Х13, 40Х13. После закалки и отпуска при 180…250oС стали 30Х13, 40Х13 имеют твердость 50…60 HRC и используются для изготовления режущего инструмента (хирургического), пружин для работы при температуре 400…450o, предметов домашнего обихода.
Стали аустенитного класса – высоколегированные хромоникелевые стали.
Никель – аустенитообразующий элемент, сильно понижающий критические точки превращения. После охлаждения на воздухе до комнатной температуры имеет структуру аустенита.
Нержавеющие стали аустенитного класса 04Х18Н10, 12Х18Н9Т имеют более высокую коррозионную стойкость, лучшие технологические свойства по сравнению с хромистыми нержавеющими сталями, лучше свариваются. Они сохраняют прочность до более высоких температур, менее склонны к росту зерна при нагреве и не теряют пластичности при низких температурах.
Хромоникелевые стали коррозионностойки в окислительных средах. Основным элементом является хром, никель только повышает коррозионную стойкость.
Для большей гомогенности хромоникелевые стали подвергают закалке с температуры 1050…1100oCв воде. При нагреве происходит растворение карбидов хрома в аустените. Выделение их из аустенита при закалке исключено, так как скорость охлаждения велика. Получают предел прочности = 500…600 МПа, и высокие характеристики пластичности, относительное удлинение = 35…45%.
Упрочняют аустенитные стали холодной пластической деформацией, что вызывает эффект наклепа. Предел текучести при этом может достигнуть значений 1000…1200 МПа, а предел прочности – 1200…1400 МПа.
Для уменьшения дефицитного никеля часть его заменяют марганцем (сталь 40Х14Г14Н3Т) или азотом (сталь 10Х20Н4АГ11).
Аустенитно-ферритные стали 12Х21Н5Т, 08Х22Н6Т являются заменителями хромоникелевых сталей с целью экономии никеля.
Свойства сталей зависят от соотношения ферритной и аустенитной фаз (оптимальные свойства получают при соотношении – Ф:А=1:1 ). Термическая обработка сталей включает закалку от температуры 1100…1150oC и отпуск-старение при температуре 500…750oC.
Аустенитно-ферритные стали не подвержены коррозионному растрескиванию под напряжением: трещины могут возникать только на аустенитных участках, но ферритные участки задерживают их развитие. При комнатных температурах аустенитно-ферритные стали имеют твердость и прочность выше, а пластичность и ударную вязкость ниже, чем стали аустенитного класса.
Кроме нержавеющих сталей в промышленности применяют коррозионно-стойкие сплавы – это сплавы на никелевой основе. Сплавы типа хастеллой содержат до 80 % никеля, другим элементом является молибден в количестве до 15…30 %. Сплавы являются коррозионно-стойкими в особо агрессивных средах (кипящая фосфорная или соляная кислота), обладают высокими механическими свойствами. После термической обработки – закалки и старения при температуре 800oС – сплавы имеют предел прочности МПа, и твердость . Недостатком является склонность к межкристаллической коррозии, поэтому содержание углерода в этих сплавах должно быть минимальным.
Жаростойкость, жаростойкие стали и сплавы.
Жаростойкость (окалиностойкость) – это способность металлов и сплавов сопротивляться газовой коррозии при высоких температурах в течение длительного времени.
Если изделие работает в окислительной газовой среде при температуре 500..550oC без больших нагрузок, то достаточно, чтобы они были только жаростойкими (например, детали нагревательных печей).
Сплавы на основе железа при температурах выше 570oC интенсивно окисляются, так как образующаяся в этих условиях на поверхности металла оксид железа (вюстит) с простой решеткой, имеющей дефицит атомов кислорода (твердый раствор вычитания), не препятствует диффузии кислорода и металла. Происходит интенсивное образование хрупкой окалины.
Рис. 20.2. Влияние хрома на жаростойкость хромистой стали
Для повышения жаростойкости в состав стали вводят элементы, которые образуют с кислородом оксиды с плотным строением кристаллической решетки (хром, кремний, алюминий).
Степень легированости стали, для предотвращения окисления, зависит от температуры. Влияние хрома на жаростойкость хромистой стали показано на рис.20.2.
Чем выше содержание хрома, тем более окалиностойки стали (например, сталь 15Х25Т является окалиностойкой до температуры 1100…1150oC).
Высокой жаростойкостью обладают сильхромы, сплавы на основе никеля – нихромы, стали 08Х17Т, 36Х18Н25С2, 15Х6СЮ.
Жаропрочность, жаропрочные стали и сплавы
Жаропрочность – это способность металла сопротивляться пластической деформации и разрушению при высоких температурах.
Жаропрочные материалы используются для изготовления деталей, работающих при высоких температурах, когда имеет место явление ползучести.
Критериями оценки жаропрочности являются кратковременная и длительная прочности, ползучесть.
Кратковременная прочность определяется с помощью испытаний на растяжение разрывных образцов. Образцы помещают в печь и испытывают при заданной температуре. Обозначают кратковременную прочность =, например 300oС= 300МПа.
Прочность зависит от продолжительности испытаний.
Пределом длительной прочности называется максимальное напряжение , которое вызывает разрушение образца при заданной температуре за определенное время.
Например = 200 МПа, верхний индекс означает температуру испытаний, а нижний – заданную продолжительность испытания в часах. Для котельных установок требуется невысокое значение прочности, но в течение нескольких лет.
Ползучесть – свойство металла медленно пластически деформироваться под действием постоянной нагрузки при постоянной температуре.
При испытаниях образцы помещают в печь с заданной температурой и прикладывают постоянную нагрузку. Измеряют деформацию индикаторами.
При обычной температуре и напряжениях выше предела упругости ползучесть не наблюдается, а при температуре выше 0,6Тпл, когда протекают процессы разупрочнения, и при напряжениях выше предела упругости наблюдается ползучесть.
В зависимости от температуры скорость деформации при постоянной нагрузке выражается кривой состоящей из трех участков (рис. 20.3):
Рис. 20.3. Кривая ползучести
- ОА – упругая деформация образца в момент приложения нагрузки;
- АВ – участок, соответствующий начальной скорости ползучести;
- ВС – участок установившейся скорости ползучести, когда удлинение имеет постоянную скорость.
Предел ползучести – напряжение, которое за определенное время при заданной температуре вызывает заданное суммарное удлинение или заданную скорость деформации .
НапримерМПа, где верхний индекс – температура испытания вoС, первый нижний индекс – заданное суммарное удлинение в процентах, второй – заданная продолжительность испытания в часах.
Классификация жаропрочных сталей и сплавов
В качестве современных жаропрочных материалов можно отметить перлитные, мартенситные и аустенитные жаропрочные стали, никелевые и кобальтоавые жаропрочные сплавы, тугоплавкие металлы.
При температурах до 300oC обычные конструкционные стали имеют высокую прочность, нет необходимости использовать высоколегированные стали.
Для работы в интервале температур 350…500oC применяют легированные стали перлитного, ферритного и мартенситного классов.
Перлитные жаропрочные стали. К этой группе относятся котельные стали и сильхромы. Эти стали применяются для изготовления деталей котельных агрегатов, паровых турбин, двигателей внутреннего сгорания. Стали содержат относительно мало углерода. Легирование сталей хромом, молибденом и ванадием производится для повышения температуры рекристаллизации (марки 12Х1МФ, 20Х3МФ). Используются в закаленном и высокоотпущенном состоянии. Иногда закалку заменяют нормализацией. В результате этого образуются пластинчатые продукты превращения аустенита, которые обеспечивают более высокую жаропрочность. Предел ползучести этих сталей должен обеспечить остаточную деформацию в пределах 1 % за время 10000…100000 ч работы.
Перлитные стали обладают удовлетворительной свариваемостью, поэтому используются для сварных конструкций (например, трубы пароперегревателей).
Для деталей газовых турбин применяют сложнолегированные стали мартенситного класса 12Х2МФСР, 12Х2МФБ, 15Х12ВНМФ. Увеличение содержания хрома повышает жаростойкость сталей. Хром, вольфрам, молибден и ванадий повышают температуру рекристаллизации, образуются карбиды, повышающие прочность после термической обработки. Термическая обработка состоит из закалки от температур выше 1000oС в масле или на воздухе и высокого отпуска при температурах выше температуры эксплуатации.
Для изготовления жаропрочных деталей, не требующих сварки (клапаны двигателей внутреннего сгорания), применяются хромокремнистые стали – сильхромы: 40Х10С2М, 40Х9С2, Х6С.
Жаролрочные свойства растут с увеличением степени легированности. Сильхромы подвергаются закалке от температуры около 1000oС и отпуску при температуре 720…780oС.
При рабочих температурах 500…700oC применяются стали аустенитного класса. Из этих сталей изготавливают клапаны двигателей, лопатки газовых турбин,сопловые аппараты реактивных двигателей и т.д.
Основными жаропрочными аустенитными сталями являются хромоникелевые стали, дополнительно легированные вольфрамом, молибденом, ванадием и другими элементами. Стали содержат 15…20 % хрома и 10…20 % никеля. Обладают жаропрочностью и жаростойкостью, пластичны, хорошо свариваются, но затруднена обработка резанием и давлением, охрупчиваются в интервале температур около 600oС, из-за выделения по границам различных фаз.
По структуре стали подразделяются на две группы:
1. Аустенитные стали с гомогенной структурой 17Х18Н9, 09Х14Н19В2БР1,12Х18Н12Т. Содержание углерода в этих сталях минимальное. Для создания большей однородности аустенита стали подвергаются закалке с 1050…1100oС в воде, затем для стабилизации структуры – отпуску при 750oС.
2. Аустенитные стали с гетерогенной структурой 37Х12Н8Г8МФБ, 10Х11Н20Т3Р.
Термическая обработка сталей включает закалку с 1050…1100oС. После закалки старение при температуре выше эксплуатационной (600…750oС). В процессе выдержки при этих температурах в дисперсном виде выделяются карбиды, карбонитриды, вследствие чего прочность стали повышается.
Детали, работающие при температурах 700…900oC, изготавливают из сплавов на основе никеля и кобальта (например, турбины реактивных двигателей).
Никелевые сплавы преимущественно применяют в деформированном виде. Они содержат более 55 % никеля и минимальное количество углерода (0,06…0,12 %). По жаропрочным свойствам превосходят лучшие жаропрочные стали.
По структуре никелевые сплавы разделяют на гомогенные (нихромы) и гетерогенные (нимоники).
Нихромы. Основой этих сплавов является никель, а основным легирующим элементом – хром (ХН60Ю, ХН78Т).
Нихромы не обладают высокой жаропрочностью, но они очень жаростойки. Их применяют для малонагруженных деталей, работающих в окислительных средах, в том числе и для нагревательных элементов.
Нимоники являются четвертными сплавами никель – хром (около 20 %) – титан (около 2%) – алюминий (около 1 %) (ХН77ТЮ, ХН70МВТЮБ, ХН55ВМТФКЮ). Используются только в термически обработанном состоянии. Термическая обработка состоит из закалки с 1050…1150oС на воздухе и отпуска – старения при 600…800oС.
Увеличение жаропрочности сложнолегированных никелевых сплавов достигается упрочнением твердого раствора введением кобальта, молибдена, вольфрама.
Основными материалами, которые могут работать при температурах выше 900oC (до 2500oС), являются сплавы на основе тугоплавких металлов – вольфрама, молибдена, ниобия и других.
Температуры плавления основных тугоплавких металлов: вольфрам – 3400oС, тантал – 3000oС, молибден – 2640oС, ниобий – 2415oС, хром – 1900oС.
Высокая жаропрочность таких металлов обусловлена большими силами межатомных связей в кристаллической решетке и высокими температурами рекристаллизации.
Наиболее часто применяют сплавы на основе молибдена. В качестве легирующих добавок в сплавы вводят титан, цирконий, ниобий. С целью защиты от окисления проводят силицирование, на поверхности сплавов образуется слой MoSi2 толщиной 0,03…0,04 мм. При температуре 1700oС силицированные детали могут работать 30 часов.
Вольфрам – наиболее тугоплавкий металл. Его используют в качестве легирующего элемента в сталях и сплавах различного назначения, в электротехнике и электронике (нити накала, нагреватели в вакуумных приборах).
В качестве легирующих элементов к вольфраму добавляют молибден, рений, тантал. Сплавы вольфрама с рением сохраняют пластичность до –196oС и имеют предел прочности 150 МПа при температуре 1800oС.
Для сплавов на основе вольфрама характерна низкая жаростойкость, пленки образующихся оксидов превышают объем металла более, чем в три раза, поэтому они растрескиваются и отслаиваются Изготавливают изделия, работающие в вакууме).
topuch.ru
Коррозионно-стойкие сплавы
ГОСТ 5632-72 «Стали высоколегированные и сплавы корозионно-стойкие, жаростойкие и жаропрочные. Марки».
Корозионно-стойкие (нержавеющие) стали и сплавы обладают стойкостью против электрохимической и химической коррозии (атмосферной, почвенной, щелочной, кислотной, солевой), межкристаллитной коррозии, коррозии под напряжением и др.
Корозионно- стойкие материалы, обладают повышенной стойкостью к коррозии; применяются для изготовления деталей, узлов, аппаратов и конструкций, работающих в коррозионноактивных средах без дополнительной мер защиты от коррозии. К коррозионно-стoйким материалам относят собственно коррозионно-стoйкие материалы, а также антикоррозионные материалы. В зависимости от природы материала коррозионно-стoйкие материалы подразделяют на металлические и неметаллические. Последние используют в качестве конструкционных, футеровочных, обкладочных и прослоечных материалов, лакокрасочных покрытий и композиций. К металлическим коррозионно-стoйким материалам относят коррозионно-стойкие сплавы, биметаллические материалы, композиционные материалы с металлической матрицей, металлочерепицу.
Коррозионно-стойкие сплавы. Их коррозионная стойкость зависит от химического состава и структуры, наличия механические напряжений, состояния поверхности, агрессивности и условий воздействия внешней среды, наличия контактов с другими материалами, а также конструкционных особенностей изделий.
Под стойкостью материала понимают его способность сопротивляться коррозии в конкретной среде или в группе сред. Материал, стойкий в одной среде, может интенсивно разрушаться в другой. Способность материалов сопротивляться окислению при высоких температурах в газообразных средах (воздух, О2, СО2 и т. д.) называется жаростойкостью. К жаростойким материалам относятся сплавы железа с хромом (нержавеющие стали), сплавы титана, циркония, молибдена, тантала. Основной метод повышения жаростойкости сплавов на основе железа — легирование их элементами, способными создать на поверхности металла защитную окисную плёнку, препятствующую дальнейшему окислению. Такими элементами, кроме хрома, являются кремний, алюминий. В тех случаях, когда наряду с жаростойкостью требуется высокая прочность, применяют сплавы на никелевой основе, типа нимоников, инконелей.
В кислых окислительных средах, например в азотной кислоте, коррозионно-стойки хромоникелевые и хромистые нержавеющие стали. Наиболее широко применяется хромоникелевая аустенитная нержавеющая сталь 10X18h20T, содержащая 0,1% С, 18—20% Cr, 9—11% Ni и 0,35—0,8% Ti. Титан или заменяющий его ниобий вводятся для устранения специфического вида разрушения — межкристаллитной коррозии. При указанном содержании никеля сталь имеет аустенитную структуру, обеспечивающую высокую пластичность и способность к технологическим обработкам, в частности к сварке. Однако никель — дорогой и дефицитный легирующий элемент. Поэтому в ряде аустенитных нержавеющих сталей он частично или полностью заменен на марганец Нержавеющая сталь, содержащая лишь хром, труднее поддаётся технологической обработке, но более прочна. Для изделий, в которых требуется сочетание высокой коррозионной стойкости и прочности, применяют хромистые стали мартенситного класса, содержащие 0,2—0,4% С и 12—14% Cr. Стали с 25%-ным содержанием Cr обладают высокой стойкостью, но непрочны и плохо поддаются технологической обработке.
Сталь коррозионно-стойкая жаропрочная |
||||
06Х18Н10Т |
08Х18Н10Т |
12Х13 |
12Х18Н9Т |
20Х13 |
08Х13 |
08Х18Т1 |
12Х17 |
14Х17Н2 |
30Х13 |
08Х17Т |
09Х18Н10Т |
12Х18Н12Т |
15Х25Т |
40Х13 |
08Х18Н10 |
10Х18Н10Т |
12Х18Н9 |
15Х28 |
|
www.askoplast.com.ua
Коррозионностойкие сплавы на основе железа
Практическое значенне П. м. исключительно велико. Она обеспечивает необходимую коррозионную стойкость конструкций и изделий, изготовляемых из разл. сталей, алюминия, титана и др. нестойких металлов во многих прир. и технол. средах. Широко применяется самопассивация металлич. материалов, достигаемая путем легирования добавками, к-рые снижают критич. ток (напр., №, Мо) или и ток, и потенциал пассивации (напр., Сг в кристаллич. сплавах на основе железа, Р и С в аморфных сплавах) (см. Коррозионностойкие материалы). Т. наз. катодное легирование сводится к ускорению катодного восстановления окислителя из-за того, что на пов-сти накапливаются частицы коррозионностойкой добавки (напр., Рс1 или Мо в сплавах на основе Т1), на к-рых катодный процесс происходит при меньшем перенапряжении. Такого же результата добиваются введением в среду дополнит, окислителя или повышением его концентрации. Во всех этих случаях должны выполняться условия [c.449] Металлические покрытия делят на две группы коррозионностойкие и протекторные. Например, для покрытия сплавов на основе железа в первую группу входят никель, серебро, медь, свинец, хром. Они более электроположительны по отношению к железу, т. е. в электрохимическом ряду напряжений металлов стоят правее железа. Во вторую группу входят цинк, кадмий, алюминий. По отношению к железу они более электроотрицательны, т. е. в ряду напряжений находятся левее железа. [c.144]Справочник-атлас Структура и коррозия металлов и сплавов содержит сведения об используемых в промышленности коррозионностойких сплавах на основе железа (стали), никеля, титана, меди и алюминия. [c.6]
Несмотря на большое значение в технике сплавов на основе алюминия, магния, меди, никеля, а в последнее время— титана, циркония и ряда других, наиболее широкое применение среди коррозионностойких имеют сплавы на основе железа — коррозионностойкие (нержавеющие) стали. [c.141]
В производстве химических волокон для ремонта оборудования широко применяются металлические конструкционные коррозионностойкие материалы металлы на основе железа (стали и чугуны) и цветные металлы и их сплавы (никель, медь, цинк, свинец и др.). [c.14]BOB повышенной коррозионной стойкости. Методы повышения коррозион ной СТОЙКО СБИ сплава путем повышения их пассивируемости катодным модифицированием в значительной мере являются достижениями советской науки. Однако их практическое использование в нашей стране, к сожалению, пока несколько отстает по сравнению с широким их применением в зарубежной практике. Поэтому мы считали необходимым в этой главе более детально описать принцип и возможности применения катодного модифицирования сплавав для повышения их коррозионной стойкости. В гл. V дается краткий обзор и основные характеристики важнейших современных коррозионностойких сплавов, главным образом иа основе железа. [c.8]
КОРРОЗИОННОСТОЙКИЕ СПЛАВЫ НА ОСНОВЕ железа [c.200]
Нержавеющими сталями обычно называют коррозионностойкие сплавы на основе железа и хрома, содержащие углерод, а в некоторых случаях и другие легирующие элементы никель, молибден, марганец, медь, титан и т. д. [c.96]
Диапазон их свойств необычайно велик от мягкого как свинец чистого железа до твердой как алмаз инструментальной стали, от динамного и трансформаторного листа с особыми магнитными свойствами до немагнитных сплавов железа, от износостойких специальных сталей до коррозионностойких и нержавеющих. Легированием и термической обработкой с использованием давления и излучения удается получать железные материалы с невероятными свойствами. И мы отнюдь не в конце, а лишь в начале грандиозного пути развития металлургии железа. Наука неустанно занята получением новых данных, способствующих совершенствованию и созданию новых способов получения и обработки материалов на основе железа. Ваша задача усвоить сегодняшний уровень знаний, чтобы завтра вместе со сталеплавильщиками, литейщиками, прокатчиками, кузнецами, технологами, занятыми механической и термической обработкой, способствовать техническому прогрессу в металлургии. X [c.197]
Для никеля характерно благоприятное сочетание свойств высокой коррозионной стойкости во многих агрессивных средах, высоких механических свойств, хорошей обрабатываемости в горячем и холодном состоянии. Никель является основой коррозионностойких, жаростойких и жаропрочных сплавов. Никель обладает способностью растворять в большом количестве многие элементы, такие как хром, молибден, железо, медь, кремний. Наиболее важные легирующ,ие элементы в коррозионностойких никелевых сплавах — хром, молибден, медь. Коррозионная стойкость одних никелевых сплавов связана с пассивностью, а других — с тем, что они имеют достаточно высокий равновесный потенциал и не замещают водород в кислых средах. Этим объясняется большое число сред, в которых никелевые сплавы могут с успехом использоваться кислоты, соли и щелочи (как с окислительным, так и с неокислительным характером), морская и пресная вода, а также атмосфера. [c.167]
МЕЛЬХИОР м. Общее название группы коррозионностойких пластичных сплавов на основе меди, содержащих 5-33% никеля, 1% железа, 1% марганца применяются в машиностроении, судостроении, для изготовления посуды, в ювелирном деле. [c.253]
Сплавы железа с хромом являются основой коррозионностойких сталей, которые по составу делят на хромистые (Ре—Сг), хромоникелевые (Ре—Сг—N1) и хромоникель-марганцевые (Ре—Сг—N1—Мп) и хромомарганцевые (Ре— Сг —Мп). Кроме основных перечисленных компонентов, в эти стали могут входить дополнительные легирующие элементы молибден, медь, кремний, титан, ниобий и др., вводимые главным образом, для повышения их коррозионной стойкости. Ниже приведены табл. 10 и 11, в которых указаны классы нержавеющих сталей, характерные марки и основные области их применения. [c.142]
Сплавы на основе железа. Само железо стойко к коррозии лишь в р-рах щелочей. Повышения стойкости добиваются с помощью легирования разл. элементами (см. Же.1еза сп.ювы). К коррозионностойким сталям относят хромистые, хромоникелевые, хромомарганцевоникелевые и хромомарганцевые. Их стойкость в разл. средах определяется структурой, а также св-вами образующихся пассивирующих поверхностных слоев (см. Пассивность металлов). При Hap>TiieHHH пассивирующей пленки в нейтральных н кислых р-рах хлоридов возникает питтинговая, щелевая и язвенная коррозия, а при т-рах больше 80 °С - коррозионное растрескивание. Для предупреждения структурно-избира-тельных видов коррозии (межкристаллитная, ножевая) стали дополнительно легируют Ti или Nb, а также снижают содержание в них С до 0.02%. [c.478]
В 16-18 вв. достижения научного и техн. прогресса послужили решению практич. задач пром-сти и мореплавания. В 18-20 вв. развитие черной М. привело к созданию сплавов и материалов на основе железа для массового потребления и машиностроения. В 60-е гг. 20 в. открытие потребительских св-в большинства металлов периодич. системы и совершенствование М. способствовали развитию электроники, космонавтики и др. В 80-е гг. 20 в. разработка новых легких, прочных и коррозионностойких материалов для массового потребления на основе широко распространенных в природе металлов выдвинула на первое место цветную М. [c.52]
Наряду с высокой коррозионной стойкостью в агрессивных средах никелевые сплавы имеют ряд других особенностей, к которым относятся высокая пластичность от отрицательных температур до 1200 °С, в 1,5—2 раза более высокие значения прочностных свойств, твердости и электросопротивления, чем у стали 12Х18Н10Т, и в 1,5—2 раза более низкие значения коэффициента линейного расширения (N1—Мо-сплавы) и теплопроводности, чем у широко распространенных коррозионностойких сплавов на основе железа [3.1 ]. В табл. 3.2 приведены механические свойства никеля и его сплавов при 20 °С. Сплавы немагнитны. Сплавы обладают способностью к деформации в горячем и холодном состоянии, обрабатываются механическими способами и свариваются. [c.169]
ЭЛЕКТРОДЫ для РУЧНОЙ ДУГОВОЙ СВАРКИ ВЫСОКОЛЕГИРОВАННЫХ КОРРОЗИОННОСТОЙКИХ СТАЛЕЙ И СПЛАВОВ НА ЖЕЛЕЗО НИКЕЛЕВОЙ ОСНОВА АУСТЕННТНОГО И АУСТЕНИТО-ФЕРРИТНОГО КЛАССОВ [c.210]
КИСЛОТОСТОЙКИЕ МАТЕРИАЛЫ — материалы, отличающиеся повышенной кислотостойкостью, вид химически стойких материалов. В пром. масштабах используются с середины 18 в. Различают К. м. металлические и неметаллические. К металлическим К. м. относятся сплавы на основе железа, а также цветные металлы и их сплавы (см. также Кислотостойкие сплавы). Кислотостойкие сплавы на основе железа углеродистые стам (нелегированные, низколегированные), содержащие до 1% С высоколегированные стали, имеющие в своем составе хром, никель, медь, марганец, титан и др. хим. элементы чугуны (нелегированные, высоколегированные), содержащие более 2,5—2,8% С. Кислотостойкие цветные металлы никель, медь, алюминий, титан, цирконий, олово, свинец, серебро, ниобий, тантал, золото, платина и др. Углеродистые стали стойки в растворах холодной азотной к-ты (концентрация 80—95%), серной к-ты (выше 65%) до т-ры 80° С, в плавиковой к-те (выше 65%), а также в смесях азотной и серной к-т. На углеродистые стали сильно действуют органические к-ты (адипиновая, муравьиная, карболовая, уксусная, щавелевая), особенно с повышением их т-ры. Высоколегированные стали, отличаясь повышенной стойкостью к коррозии металлов (см. также Коррозионностойкие материалы), являются в то же время кислотостойкими. Большинство легирующих добавок значительно повышают кислотостойкость сталей. Так, медь придает хромоникелевым сталям повышенную стойкость к серной к-те. Сталь с 17—19% Сг, 8-10% Мп, 0,75-1% Си, 0,1% С и 0,2—0,5% Si стойка в азотной к-те (любой концентрации и т-ры вплоть до т-ры кипения) и многих др. хим. соединениях (см. Кислотостойкая сталь). Кислотостойки высоколегированные чугуны никелевые, хромистые (см. Хромистый чугун), алюминиевые (см. Чугалъ), высококремнистые (ферросилиды), хромоникель-медистые (см. Нирезист), хромони-келькремнистые (никросилал). Наиболее распространены ферросилиды [c.586]
Коррозонная стойкость титана и его сплавов наблюдается в гораздо более широком наборе агрессивных сред, чем сплавов на основе железа или алюминия. Для широкого технологического использования титана и его сплавов особо важна их повышенная стойкость в средах, содержащих хлор-ионы. Это как раз то качество, которого так недостает наиболее широкому классу конструкционных сплавов на основе железа, включая коррозионностойкие стали, а также алюминиевые и магниевые сплавы. [c.239]
Коррозионностойкие сплавы на основе железа. К ним относятся хромистые, хромоникелевые, хромомарганцовые, хромоникель-марганцовые стали и стали с др. легирующими элементами (алюминий, молибден, кремний), а также чу-гуны, легированные кремнием, хромом и др. Сплавы железа, содержащие не менее 12% хрома, имеют повышенную коррозионную стойкость, т. к. хром пассивирует их и способствует сохранению высоких механич. свойств при высоких темп-рах. Введение в хромистые стали кремния усиливает их жаростойкость . [c.319]
Никель и его сплавы можно успешно применять в растворах серной кислоты, Монель —сплав никеля с медью, характеризуется большой однородностью и высокими механическими свойствами. Хастеллой — сплав, содержащий в качестве основных компонентов никель, молибден, железо и другие элементы, отличается хорошими механическими свойствами и высокой коррозионной стойкостью. Ранее известные коррозионностойкие сплавы на основе никеля имеют следующий состав монель — 70% N1, 30% Си, хастеллой А и В — Н70М27Ф, хастеллой С — Х15Н55М16В (ЭП-567) и другие (ГОСТ 5632—72). При обычной температуре монель устойчив в серной кислоте п применяется для изготовления теплообменников, насосов. [c.330]
Никель находит применение как конструкционный металл в химическом аппаратостроении, особенно для щелочных растворов, а также в качестве основы или легирующего компонента для создания коррозионностойких сплавов или сплавов с особыми физическими свойствами. Наиболее известные коррозионностойкие сплавы на основе никеля монель (70% Ni, 30% u), хастеллой А и В —Н70М27Ф (70% Ni, 30% Мо), хастеллой С — Х15Н5527Ф (15% Сг, 55% Ni, 16% Мо). Ранее были рассмотрены сплавы железо — никель, литой сплав никель — кремний — медь. [c.222]
Общее. Считают в общем, что двухфазные сплавы вследствие электрохи-мического взаи.модействия между фазами более склонны к коррозии, чем однофазные сплавы. В жидкостях, в которых пассивность невозможна, это утверждение правильно, но в среде, благоприятствующей пассивности, присутствие второй фазы, увеличивая начальную плотность тока, может вызвать более быстрое и более полное наступление пассивного состояния. При.меро.м этого (см. стр. 550) может служить влияние серебра в свинце при действии на него серной кислоты. Тем не менее общим является случай, когда двухфазные сплавы. менее устойчивы, чем чистые. металлы, тогда как однофазные сплавы большей частью имеют преимущество, по крайней мере, по сравнению с одной из составляющих. Гюртлер - отмечает, что энергия образования твердого раствора наиболее велика у тяжелых металлов с сравнительно высокой температурой плавления (железо, никель, медь и т. д.) и именно на основе этих металлов изготовляют главные коррозионностойкие сплавы. В случае, когда устойчивость вызывается образованием защитной пленки, число фаз, присутствующих в оксиде, может оказаться столь же важным, как число фаз в металлической основе. Большое значение железохромовых и железоалюминиевых сплавов придает интерес следующему наблюдению Пассерини з, а именно, [c.465]
Введение в твердый раствор никеля придает хромистым сталям более высокую химическую стойкость как за счет образования пассивной пленки оксида никеля, так и за счет перевода стали в более гомогенную (и, следовательно, в более коррозионностойкую) аустенитную структуру. Наряду с повышением коррозионвой стойкости никель способствует повышению пластичности, ударной вязкости, жаростойкости, а при использовании его в качестве основы вместо железа - и жаропрочности сплавов. В качестве аустенитообразующих элементов используют также азот, марганец, медь и кобальт. [c.14]
КОРРОЗИОННОСТОЙКИЕ МАТЕРИА л Ы — материалы, отличающиеся повышенной коррозионной стойкостью. Различают К. ы. конструкционные (металлические, неметаллические, композиционные), используемые для изготовления конструкций, и защитные, предохраняющие металлические сооружения от коррозии. Материалы, обладающие повышенной хим. стойкостью к активным газовым средам при повышенных т-рах, обычно выделяют в разряд жаростойких материалов (см. также Коррозия металлов. Коррозия бетона, Защитные покрытия). К м е т а л л и ч е с к и м К. м. относятся стали, чугуны, сплавы на основе никеля, меди (бронзы, латуни), алюминия, титана, циркония, тантала, ниобия и др. Их стойкость против электрохимической коррозии в принципе можно повышать увеличением термодинамической стабильности или торможением катодного и анодного нроцессов. На практике повышения коррозионной стойкости технических сплавов обычно добиваются легированием, тормозящим анодный процесс, т. е. улучшающим пассивационные характеристики (см. Пассивирование), обусловливая возможность самопассивиро-вания сплава в условиях эксплуатации. Наиболее легко пассивируются хром и титан. Повышенная способность хрома к пассивации нри его введении в менее пассивирующиеся металлы, напр, железо, может передаваться сплаву. На этом принципе основано получение нержавеющих сталей. Чем больше введено хрома, тем выше коррозионная стойкость [c.625]
Основой коррозионностойких сталей являются сплавы железо—хром, содержащие 12—30 % Сг. Хром принадлежит к легкопассивирующимся металлам и является легирующим элементом эффективно повышающим коррозионную стойкость железа вследствие перевода сплава в пассивное состояние. Из рис. 48, на котором представлены анодные [c.146]
Сплавы на основе кобальта представляют интерес и как коррозионностойкие конструкционные материалы. Также как в сплавах на основе никеля, введение хрома в кобальт сильно повышает его пассивируемость. Установлено, что введение 10 % (масс.) Сг в кобальт сообщает сплаву способность пассивироваться в 1 н. h3SO4 при 25 °С. Для пассивации никеля и железа в этих условиях необходимо ввести соответственно хрома 14 и 12% [194]. [c.232]
chem21.info
Коррозионностойкие сплавы определение - Справочник химика 21
Одного определенного способа конструирования коррозионностойких сплавов нет. В зависимости от условий предполагаемой эксплуатации пути созданий стойких сплавов могут весьма различаться. Например, легирование титана молибденом повышает стойкость сплавов в соляной и серной кислотах, но сильно снижает его устойчивость в НМОз. [c.130]При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]
С целью определения коррозионностойких конструкционных материалов для указанного производства проведены исследования химической стойкости ряда металлов и сплавов, используемых в химическом машиностроении. [c.27]Метод измерения электродных потенциалов очень полезен при быстрой оценке способности сплавов восстанавливать пассивное состояние, например- при зачистке поверхности. Этим методом пользуются также прр определении склонности коррозионностойких сталей к межкристаллитной коррозии, при определении эффективности действия ингибиторов. [c.49]
Коррозионностойкие промышленные стали и сплавы подвергают коррозионным испытаниям на МКК. В настоящее время во всех странах испытания па МКК проводят стандартными химическими методами, основанными на длительном (от 8 до 240 ч) кипячении в определенных агрессивных средах. [c.107]
Исследование коррозионно-электрохимических свойств фаз находится на начальной стадии и проводится пока в основном в двух направлениях снятие поляризационных кривых и определение коррозионной (химической) стойкости в некоторых средах. Лишь в отдельных работах в последнее время получены данные по зависимости скорости растворения (окисления) от потенциала для некоторых фаз и сделаны попытки расшифровать природу процессов, осуществляющихся на наиболее характерных участках поляризационных кривых. В то же время исследование свойств фаз в широкой области потенциалов совершенно необходимо, так как в зависимости от области потенциалов и, следовательно, типа агрессивной среды влияние фазы на коррозионную стойкость сплава может быть принципиально различным. Кроме того, получающиеся при этом результаты необходимы для выявления условий, в которых материалы на основе фаз могут быть использованы как коррозионностойкие. Они содержат также весьма ценную информацию для решения ряда задач фазового анализа и металловедения, на которых в данном обзоре не было возможности остановиться. [c.76]
Эти стали, часто называемые нержавеющими, стойки далеко не во всех средах, не при всех возможных концентрациях и температурных условиях. Для определенных условий разработаны специальные составы сталей. Этим именно объясняется, что в настоящее время разработано и существует под различными марками множество аналогичных железных сплавов. Эти стали рассматриваются как коррозионностойкие, если потери от коррозии составляют до 0,1 м -ч), т. е. 2,4 г м сутки). Всегда следует иметь данные по коррозионной стойкости, так как термин нержавеющий носит общий характер и не исключает растворения металла, хотя и незначительного. Перед применением коррозионностойких сталей рекомендуется исключать испытания, в ходе которых может появиться местная коррозия, язвы или межкристаллитная коррозия. [c.152]
В схеме обозначений имеется раздел определения центрифуги по материалам основных деталей, соприкасающихся с обрабатываемыми продуктами. Эти детали можно изготовлять из следующих материалов из углеродистой конструкционной стали, легированной стали, коррозионностойких сталей, из титана и его сплавов, а также из других металлов и сплавов. [c.123]
Помещенные в книге цифровые материалы по коррозионной стойкости металлов и сплавов соответствуют определенным условиям проведения опытов и могут служить ориентировочными данными при выборе коррозионностойких материалов. [c.18]
Сплав, содержащий 79,5 /о N1, 13% Сг и 6,5 /о Ее (инконель), применяется как коррозионностойкий во многих средах. Другие сплавы этого типа являются жаропрочными (стр. 731). Характерным представителем сплавов N1—Сг служит сплав, содержащий 80% N1, 13 /о Сг и 7 /о Ее, коррозионными свойствами которого можно руководствоваться для определения пригодности материала к применению в той или иной среде. [c.275]
К качественным методам исследования процесса коррозии специальных легированных сталей и некоторых сплавов следует отнести также определение склонности коррозионностойких сталей к межкристаллитной коррозии по потере звука. Для этого образцы после выдержки в растворе серной кислоты и медного купороса бросают с высоты 300—500 мм на каменную или мраморную плиту. Если при падении металл издает не звонкий, а глухой звук, то, следовательно, он подвержен межкристаллитной коррозии. [c.38]
Никель — одни из основных легирующих элементов, служащих для получения коррозионностойких сталей. Он повышает механическую прочность и пластичность стали, а также улучшает свариваемость и обрабатываемость. Для получения стали с высокими кислотоупорными свойствами необходимо добавлять никель и хром в определенных соотношениях. Классической хромоникелевой сталью является сплав с 18% Сг и 8% N1, который широко применяют для изготовления химической аппаратуры, работающей и среде азотной кислоты. [c.96]
Медь с никелем дает непрерывный ряд твердых растворов. Сплавы с содержанием никеля менее 50 % (ат.) обычно относят к медным сплавам, из них нашли широкое применение коррозионностойкие сплавы — мельхиор (20—30 % ат. N1), нейзильбер (15-— 20 % N1) и куниаль (1,5—15 % N1). Они находят применение в морском судостроении. Из них изготавливают медицинский инструмент, изделия домашнего обихода и т. п. В определенных условиях они подвергаются коррозии. [c.220]
Рис. 28. Неразъемные днища [67]. а -точеное днище в литой болванке (неограниченное давление, внутренний диаметр аппарата до 150 — 200 лтемпература зависит от выбора металла, твердые коррозионностойкие сплавы с обычной футеровкой или с гальванопокрытием, достаточная площадь для монтажа коммуникационных линий, простота конструкции и изготовления) б —кованое днище (неограниченное давление, внутренний диаметр аппарата 150—1800 мм, температура ограничивается только выбором металла, без футеровки или с гальванопокрытием, достаточная площадь для монтажа коммуникационных линий, расчет прост, высокая стоимость оборудования, необходимого для изготовления) в—приварное плоское днище (давление до 70—135 ат, внутренний диаметр аппарата до 150 мм, днище непригодно для работы при высокой температуре, без футеровки и с футеровкой из листового металла, ограниченная площадь для вспомогательных отверстий, простота расчета и изготовления) г—сферическое днище, приваренное встык (давление до 650— 1000 ат, диаметр аппарата ограничен, толщина стенки не больше 150 мм, температура лимитируется выбором металла для сварки, цельная конструкция только при небольших размерах аппарата. площадь для вспомогательнык отверстий зависит от расчета, расчет и изготовление просты, для каждого определенного давления в продаже имеются трубы соответствующего размера). |
Коррозионностойкие стали — это прежде всего сплавы железа с хромом, содержание которого в стали не менее 12 %. Хром, являющийся элементом, хорощо пассивирующимся в нейтральных и окислительных средах, обусловливает резкое повышение способности к пассивации сплавов железо—хром при содержании его 12 %. Иа других легирующих элементов наиболее важным является никель, стабилизирующий аустенитную структуру нержавеющих сталей, обеспечивающий высокие пластичные и технологические свойства и повышение в ряде случаев коррозионных свойств. Заменителем никеля до определенного предела является марганец, стабилизирующий, подобно никелю, аустенитную структуру. [c.69]
Определенные требования к воздушной среде некоторых производственных помещений, обслуживаемых вентиляторными установками, обусловили появление различных специальных исполнений вентиляторов, например, радиальных из нержавеющей стали, пылевых, пылезащищенных, из алюминиевых сплавов с повышенной защитой от искрообра-зования, взрывозащитных коррозионностойких, коррозионностойких из титановых сплавов или пластмассовых, осевых из разнородных металлов с повышенной защитой от искро-образования, крышных. [c.961]
В процессе изготовления аппаратуры и оборудования из коррозионностойких сталей, вследс -вие неправильной термической обработки или при сварке могут возникнуть условия, вызывающие межкристаллитную коррозию. По современным представлениям преимущественное разрушение границ зерен обусловлено электрохимической неоднородностью поверхности, возникающей в определенном для данного сплава интервале температур в результате структурных превращений. Например, при нагреве хромоникелевых сталей при 600—800 °С происходит выделение из твердого раствора сложных карбидов, содержащих хром, железо и никель. Эти карбиды выпадают преимущественно но границам зереи, что приводит к обеднению отдельных участков сплава хромом. Наиболее сильное обеднение наблюдается в зоне, непосредственно прилегающей к границе рерна. Имеются и другие факторы, способствующие межкристаллитной коррозии. Например, для коррозионностойких сталей, содержащих молибден, большое значение приобретает выделение о-фазы, также способствующей обеднению хромом прилегающих к границам участков. Перераспределение хрома в коррозионностойких сталях возможно и в результате выпадения высокохромистого феррита — продукта распада аустенита, что вызывает межкристаллитную коррозию, например, сварных швов. Существует мнение, что на склонность к межкристаллитной коррозии влияют также и внутренние напряжения. [c.55]
Из приведенных выше электрохимических методов для коррозионностойких сталей аустенитного класса наиболее надежным является определение разницы в скорости анодного процесса на недеформированном и деформированном образцах при заданном потенциале [26]. Чем меньше разница токов, определяющих скорость анодного процесса металла в напряженном и ненапряженном состояниях, тем меньше сплав склонен к коррозионному растрескиванию. Недостаток этого метода состоит в том, что необходимо знать области потенциалов, при которых возможйа коррозия под напряжением исследуемого материала в данной среде. [c.72]
При электролитическом растворении ниобиевого сплава с кремниевым покрытием (см. таблицу) была изолирована в анодный осадок коррозионностойкая фаза, не растворяющаяся в кислотах и не разлагающаяся при прокаливании и сплавлении с пиросульфатом калия. Ее можно разложить лишь сплавлением с содой или обработкой плавиковой кислотой. Рентгеноструктурным анализом установлено, что фаза представляет собой дисилицид ниобия N5512, а химическим методом определен ее состав (в ат., %) 31,14% МЬ, 1,80% Мо и 67,07% 51. Таким образом, примерная химическая формула изолированного дисилицида ниобия с растворенным в нем молибденом имеет вид (N5, Мо) 512,06. [c.93]
Однофазные сплавы (твердые растворы) представляют особенно большой интерес. Их коррозионная стойкость зависит от свойств компонентов и состава сплава. Для многих сплавов плавной зависимости между составом и коррозионной стойкостью нет, а она изменяется скачкообразно. Это явление было обнаружено Тамманном, который назвал его порогом устойчивости и показал, что он наступает при определенном содержании в сплаве более коррозионностойкого компонента и зависит от раствора, в котором происходит коррозия. [c.52]
В условиях непрерывного синтеза меламина из мочевины при давлении 150—200 кг см , температуре 350—425°С и при соблюдении определенных конструктивных принципов коррозионностойкими являются титан марки ВТ 1-1 и его сплав ВТ5-1. В условиях предварительного нагрева мочевины до температуры не выще 280°С устойчивы те же материалы. В условиях нагрева аммиака до температур 500— 600°С коррозионностойка медь. [c.124]
В настоящее время предложены новые методы потенциостатичес-кого травления для определения склонности коррозионностойких сталей и сплавов к МКК- [c.143]
Правило п/8 Таммана позволяет рационально корректировать содержание легирующего элемента твердого раствора, вводимого в целях повышения коррозионной стойкости сплава. При этом (по указанию А. И. Шулти-на) следует учитывать возможность обеднения твердого раствора легирующим элементом за счет связывания его другими компонентами сплава (например, связывания хрома углеродом в карбиды) и в связи с этим необходимость введения в сплав дополнительного количества легирующего элемента для обеспечения определенного содержания его в твердом растворе. Так, например, содержание хрома в коррозионностойких хромистых сталях составляет 12—14% при содержании углерода 0,1—0,2%. [c.197]
chem21.info
Коррозионностойкие сплавы титана - Энциклопедия по машиностроению XXL
Производство и применение специальных коррозионностойких сплавов титана. Технологическая рекомендация ВИЛС ТРосв 84—27—72. М., 1972. [c.313]Коррозионностойкие сплавы титана [c.243]
Очень важным и перспективным считается применение высокопрочных коррозионностойких сплавов титана для изготовления аппаратуры, работающей под давлением, а также деталей скоростных центрифуг, сепараторов. В этом направлении ведутся большие работы. Например, скоростные насосы из титанового сплава Т1 — 6% А1 — 4% V предполагается использовать для перекачки горячих минерализованных подземных вод при температуре 180—345 °С [613]. [c.260]
В химической промышленности развитых капиталистических стран наряду с различными сортами технически чистого титана широко используется сплав Ti — 0,2% Pd (до 5%) [445]. Очень важным и перспективным считается применение высокопрочных коррозионностойких сплавов титана для изготовления аппаратуры, работающей под давлением, а также деталей скоростных центрифуг, сепараторов. В этом направлении ведутся большие работы [446]. Например, скоростные насосы из титанового сплава Ti — 6% А — 4% V предполагается использовать для перекачки горячих минерализованных подземных вод при температуре 180—345 °С [447], [c.163]Рациональное, с технологической точки зрения, назначение материалов имеет очень большое значение, учитывая широкое применение в современных машинах труднообрабатываемых материалов таких, как высокопрочные, жаростойкие и коррозионностойкие стали, высокопрочные чугуны, сплавы титана, молибдена и др. [c.473]
Справочник-атлас Структура и коррозия металлов и сплавов содержит сведения об используемых в промышленности коррозионностойких сплавах на основе железа (стали), никеля, титана, меди и алюминия. [c.6]
ПРИНЦИПЫ ПОСТРОЕНИЯ КОРРОЗИОННОСТОЙКИХ СПЛАВОВ НА ОСНОВЕ ТИТАНА [c.184]
Как уже указывалось в предыдущих статьях сборника [14], [15 ], коррозия титана в серной и соляной кислотах протекает с преимущественным анодным контролем. В соответствии с разработанными ранее принципами построения коррозионностойких сплавов [16] наибольший эффект повышения стойкости титана следует ожидать при легировании его элементами, которые бз дут снижать анодную активность титана. Снижение анодной активности титана можно осуществить [c.184]
Состав и механические свойства новых коррозионностойких сплавов на основе титана, никеля и ниобия [c.412]
ПРИМЕНЕНИЕ СПЛАВОВ ТИТАНА — КОРРОЗИОННОСТОЙКИХ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ [c.211]
Перспективной представляется работа выпарных аппаратов при температуре рассола более 120 С, что позволило бы не только повысить их производительность, но и снизить энергозатраты. Однако препятствием для этого является реальнейшая опасность щелевой коррозии титана. Поэтому изучается возможность использования более коррозионностойкого сплава 4207 для изготовления такого выпарного оборудования [11]. [c.212]
ОСОБЕННОСТИ ПРИМЕНЕНИЯ СПЛАВОВ ТИТАНА В КАЧЕСТВЕ КОРРОЗИОННОСТОЙКИХ КОНСТРУКЦИОННЫХ МАТЕРИАЛОВ ЗА РУБЕЖОМ [c.255]
Эти стали весьма перспективные. Они очень коррозионностойкие, прочные, достаточно теплостойкие (сохраняют прочность, особенно сопротивление ползучести, до 400—500°С). По удельной прочности эти стали превосходят, особенно при повышенных температурах, сплавы титана и алюминия и многие другие стали. [c.22]
В отличие от сплава ВТ6 и всех других сплавов титана сплав ИРМ-2 хорошо обрабатывается резанием, что обусловлено благоприятным влиянием добавок ниобия и рения. Он обладает также повышенной технологической пластичностью и очень коррозионностойкий в агрессивных средах при 20° С и нагревании. [c.75]
В последние годы быстро расширяется применение титана в раз личных областях техники. Некоторые из сплавов титана (АТ-3 АТ-4, АТ-6, Т5-Т) относятся к числу коррозионностойких мате риалов. Однако титан нестоек в горячих кислотах и щелочах интенсивно окисляется и взаимодействует с азотом при- нагрева НИИ в воздухе. Поэтому ведутся поиски средств защиты титана В частности, эффективным способом защиты титана является эма лирование. [c.309]
Процесс получения металлических порошков является исходным в технологии изготовления ППМ и изделий из них. Свойства металлических порошков зависят от способов их получения и от природы соответствующих металлов. Методами порошковой металлургии в настоящее время изготавливают ППМ из порошков меди, бронзы, латуни, железа, коррозионностойких сталей, никеля и его сплавов, титана, алюминия, волы >рама, молибдена, ниобия и др. [c.5]
Титан и его сплавы широко применяются в качестве конструкционных материалов для изготовления аппаратов химических производств " Отечественной промышленностью выпускаются титановые сплавы в широком ассортименте для химического машиностроения предназначаются в первую очередь коррозионностойкий технически чистый титан ВТ1, а также сплавы титана с алюминием и добавками других легирующих элементов, например сплав ОТВ табл. 24 представлены химический состав, физические и механические свойства сплавов титана и сортамент полуфабрикатов из них . [c.62]
Требования новых отраслей техники, а также все возрастающие запросы химической и металлургической промышленностей обусловили разработку пористых материалов на основе жаропрочных и коррозионностойких никелевых сплавов, титана, вольфрама, молибдена и тугоплавких соединений. [c.383]
Коррозионная стойкость и технология изготовления аппаратуры из промышленных плавок коррозионностойких сплавов на основе титана........ 30 [c.57]
Аргонодуговая сварка меди, медноникелевых сплавов, титана, коррозионностойкой стали [c.76]
Аргонодуговая сварка в импульсном режиме с подачей присадочной проволоки коррозионностойкой стали, алюминия и его сплавов, титана [c.77]
При легировании танталом коррозионная стойкость титана в кислотах повышается. В 5%-ной H 1 при 100°С коррозионностойки сплавы с 20% Та и более [102]. Сплав титана с 5% Та имеет высокую коррозионную стойкость в 18%-ной НС1 при 90°С, однако только в присутствии окислителей ( l и др.). [c.227]
Получение ППМ состоит из процесса приготовления порошков, их формования и спекания. Методами порошковой металлургии в настоящее время изготавливают ППМ из порошков меди, бронзы железа, коррозионностойкой стали, никеля и его сплавов, титана, иэ порошков на основе тугоплавких металлов и соединений, алюминия. [c.63]
Требования новых отраслей техники, а также все возрастающие запросы химической и металлургической промышленности обусловили разработку пористых материалов на основе жаропрочных и коррозионностойких никелевых сплавов, титана, вольфрама, молибдена и тугоплавких соединений. Выпуск спеченных фильтров быстро расширяется и их производство в настоящее время выделилось в самостоятельную отрасль порошковой металлургии. [c.390]
Для защиты сооружений в морской воде с использованием внешнего тока могут быть рекомендованы коррозионностойкие аноды из плакированной платиной меди, сплава серебра с 2 % РЬ, платинированных титана или ниобия 12—14. Магниевые протекторы требуют замены примерно каждые 2 года, аноДы из сплава серебра с 2 % РЪ служат более 10 лет, а аноды из сплава, содержащего 90 % Pt и 10 % 1г, — еще дольше [13]. [c.223]
Титан. Для защиты титана и сплавов на его основе разработаны коррозионностойкие стеклоэмали, характеризующиеся высоким суммарным содержанием кремнезема и других химически устойчивых окислов, — двуокиси циркония, окиси алюминия, двуокиси титана, окиси хрома и др., и низким содержанием окислов щелочных металл од. Стеклоэмали наплавляются на титан в атмосфере воздуха. Эмали испытывались в расплавах галоидных солей таллия при 550° С, в парах тетрахлорида титана при 950° С, в кипящих минеральных кислотах, а также в качестве электроизоляционных покрытий, работающих в морской воде при высоком давлении. Испытания показали, что эмали для титана обладают несравненно более высокой химической стойкостью, чем эмали, предназначенные для стальной химической аппаратуры. [c.6]
К новым коррозионностойким материалам относятся титан и его сплавы. Титан легко пассивируется, образуя очень прочную, сплошную, хорошо сцепляющуюся с основным металлом пленку окиси титана, которая способствует возрастанию потенциала титана до положительного значения. В нашей стране выпускаются коррозионностойкий технически чистый титан ВТ1, а так- [c.72]
Коррозионная стойкость на воздухе и в электролитах большинства материалов с матрицами из алюминия и магния в общем ниже, чем у гомогенных сплавов. Особенно она понижается, когда воздействию коррозионной среды подвергаются торцы материала. При этом происходит усиленное растворение матрицы вследствие ускоряющего воздействия волокон и других упрочняющих фаз, являющихся катодами. Для защиты от коррозии следует применять те же методы которые используются для обычных алюминиевых и магниевых сплавов с исключением контакта с коррозионной средой торцов материала. Коррозионностойкими материалами могут считаться композиционные материалы с матрицами на основе титана, свинца, меди. Особые преимущества могут быть достигнуты по характеристикам усталости п по торможению развития коррозионных трещин. [c.79]
За последние ]годы были разработаны, новые высокопрочные, коррозионностойкие, жаропрочные стали и сплавы на основе никеля, меди, алюминия, титана и других металлов. [c.3]
Обработанные детали обдувают сжатым воздухом при д влс-нни 122—203 кПа для удаления остатков металлического песке. Метод непригоден для поверхности деталей из алюминия, магнии и их сплавов. Для очистки паяных поверхностей деталей из коррозионностойких сталей, титана, алюминия и их сплавов (плотная трудноудаляемая окалнна) применяют электрокорунд зернистостью № 16—80 в сочетании с гидропескоструйным методом обработки. Прн металлопескоструйной обработке деталей на коррознониостой-ких сталей во избежание контактной коррозии оставшиеся частицы песка удаляют травлением или электрополированием. [c.97]
Одного определенного способа конструирования коррозионностойких сплавов нет. В зависимости от условий предполагаемой эксплуатации пути созданий стойких сплавов могут весьма различаться. Например, легирование титана молибденом повышает стойкость сплавов в соляной и серной кислотах, но сильно снижает его устойчивость в HNO3. [c.130]
Проанализируем некоторые возможности создания коррозионностойких сплавов на основе титана. Сначала рассмотрим коррозионностойкие титановые сплавы с пассивирующими легирующими компонентами. Как уже указывалось, титан является одним из наиболее склонных к пассивации металлов, однако несмотря на это, для улучшения пассивационных и коррозионных свойств титана можно при некоторых условиях использовать в качестве легирующих присадок ряд других металлов, в первую очередь Та, Nb, Мо, Zr. [c.243]
Следует заключить, что не существует единого пути создания коррозионностойкого сплава, как не существует и металлического сплава, устойчивого в любых условиях. В зависимости от условий коррозии пути подбора и создания коррозионностойких сплавов будут весьма сильно видоизменяться. Легирование стали значительным количеством хрома (переход к хромистым сталям) является созершенным методом защиты в условиях работы сплава в пассивном состоянии (анодный контроль), но будет совершенно бесполезным при работе коя-струкдии в неокислительной кислоте (НС1, h3SO4), где протекает коррозия этих сталей с катодным контролем. Легирование титана большим количеством (до 32%) молибдена повышает устойчивость сплава в солянокислых растворах, но будет вредно, если в этих растворах присутствуют окислители и кислород наоборот, в этих средах более положительный эффект будет получен от модифицирования титана ничтожными присадками (0,2—0,5%) палладия. Может быть приведено большое число подобных примеров. Общей ориентировкой может служить такое правило. Изменение состава сплава следует производить в том направлении, чтобы в предполагаемых условиях эксплуатации достигалось дальнейшее повышение основного контролирующего фактора коррозии. Например, если основной металл в данных условиях не склонен к пассивации п корродирует в активном состоянии с выделением водорода, то следует изыскивать методы изменения состава и структуры поверхности сплава, вызывающие повышение катодного контроля, например повышение перенапряжения водорода, снижение поверхности активных катодов. Для условий, в которых возможна пассивация основы сплава, наибольший эффект будет получен от добавления в сплав присадок, повышающих пассивируемость основы или повышающих эффективность катодного процесса. [c.21]
Сплавы на основе титана, изготовляемые промышленностью обладают высокими механическими свойствами по сравнению с нелегированным титаном, но в ряде случаев имеют пониженнз ю коррозионную стойкость. Проблеме создания коррозионностойких сплавов на основе титана уделяется большое внимание. Установлено, что подходящим легированием можно повышать химическую стойкость титана. Нарщено, в частности, что легирование титана молибденом, танталом, цирконием, медью, палладием, платиной, иридием и др. повышает его коррозионную стойкость [1—5]. [c.173]
В сборнике рассматриваются закономерности коррозионного поведения металлов и методы защиты их от коррозии различными покрытиями. Также расошатриваются факторы, влияюще на коррозию, механизм ингибирования, особенности электрохимического поведения сплавов титана в различных средах, принципы конструирования металлического оборудования в коррозионностойком исполнении в электрохимических производствах. [c.2]
Сплав ВТ9 наиболее теплопрочен, чем все другие отечественные сплавы титана. Упрочняется закалкой с 900—950° С в воде и старением при 500—600° С. Сплав удовлетворительно сваривается, деформируется в горячем состоянии в интервале 1100—900° С, обрабатывается резанием, очень коррозионностойкий и может длительно работать при нагревании до 500° С и кратковрер,1ен-но — до 650° С. Сплав поставляют в прутках, поковках, штамповках, плитах и полосах. [c.77]
Из данных табл. 20 следует, что механические свойства прутков из слитков среднего состава и с уровнем легирования, близким к нижнему пределу, имеют вполне удовлетворительные значения. Свойства прутков из слитков с высокой концентрацией легирующих элементов и примесей, особенно характеристики пластичности, недостаточно высоки. Целесообразно снижение содержания легирующих элементов в сплаве, достигаемого освежением шихты губчатым титаном (не менее 20%). Проведены коррозионные испытания сплава ТВ2 в растворах азотной, соляной, щавелевой, уксусной и молочной кислот, едкого натра, хлористого алюминия и других агрессивных оред, где он показал удовлетворительную коррозионную стойкость, близкую к сплаву ВТ1 (2—3 балла по ГОСТ 1Э819—68). Такие сплавы титана можно использовать не только как конструкционные материалы, но одновременно как коррозионностойкие в различных агрессивных средах. [c.61]
К четвертой группе относятся сплавы, используемые для работы при температуре ниже 77 К. К этой группе принадлежат материалы, используемые в космической технике, производстве и потреблении водорода, экспериментальной физике. Для работы при таких температурах пригодны лишь высоколегированные коррозионностойкие стали типа 03Х20Н16АГ6, 10Х11Н23ТЗМР (ЭПЗЗ), некоторые бронзы, никелевые, алюминиевые сплавы, легированные Mg, и сплавы титана на основе а-фазы. [c.260]
Лордкипанидзе И. Н. и др. Титановые сплавы как коррозионностойкие материалы для оборудования химико-фармацевтических производств. Труды II совещания по коррозионностойким сплавам на основе титана и ниобия. М., Наука, 1968. [c.300]
При обычной температуре коррозионная стойкость других сплавов титана мало отличается от стойкости чистого титана за исключением сплавов титана, содержащих Ag, которые более коррозионностойки в 10%-ной НС1, и сплавор титана с Си, которые более стойки в 80%-ной Н2504. [c.93]
Хотя сведений о коррозионной стойкости сплавов на основе титана опубликовано очень мало, считается, что в основном она сравнима с коррозионной стойкостью нелегированного титана. Разработка специальных коррозионностойких сплавов на основе титана была осуществлена вслед за разработкой высокопрочных титановых сплавов. Разработано два типа специальных коррознонностойких титановых сплавов. Сообщалось, что один из них на основе Р-титана, содержащий 25—40% молибдена, обладает превосходной коррозионной стойкостью в кипящей серной и соляной кислотах. Другой, содержащий небольшие добавки палладия или платины, обладает превосходной коррозионной стойкостью против действия соляной и серной кислот. [c.765]
mash-xxl.info
Сплавы коррозионностойкие - Энциклопедия по машиностроению XXL
Борьбу с химической коррозией металлоконструкций в жидких неэлектролитах ведут путем подбора устойчивых в данной среде металлов и сплавов (например, алюминия и его сплавов, коррозионностойких сталей в крекинг-бензинах) или нанесением защитных покрытий (например, покрытие стали алюминием для сероводородных сред). [c.142]ГОСТ 5632. Сталь высоколегированная и сплавы коррозионностойкие, жаростойкие и жаропрочные. Марки и технические требования. [c.58]
Хромоникельмолибденовые сплавы коррозионностойкие высоколегированные 44, 48, 49 Хромоникельмолибденовые стали окалиностойкие 149 [c.445]Никелевые сплавы коррозионностойкие, жаростойкие и жаропрочные, имеющие в своем составе железо, приведены в разделе И, стр. 28. Медно-никелевые — см. стр. 88. [c.102]
Антихлор (сплав коррозионностойкий) 225 [c.236]
Раковины усадочные 130 Высокохромистые сплавы коррозионностойкие 225—227 [c.237]
Ni обеспечивает сталям и сплавам высокую стойкость в слабо окисляющих и неокисляющих растворах. В сочетании с Сг он способствует образованию в стали гомогенной структуры аустенита, что повышает ее коррозионную стойкость. При этом также возрастают пластичность и вязкость стали. Если использовать Ni в качестве матрицы сплава вместо Fe, то можно путем легирования его некоторыми элементами (например, Мо, Сг и Мо) создать сплавы, коррозионностойкие в сильно агрессивных средах [c.4]
Деформируемые алюминиевые сплавы. Коррозионностойкие сплавы повышенной пластичности разделяют на две основные группы [c.182]
ГОСТ 5632-72 Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные [c.310]
В СССР номенклатура и химический состав коррозионностойких сталей и сплавов обусловлен ГОСТ 5632—72 Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные , который дает классификацию выпускаемых материалов по основным элементам и структурной принадлежности. Стандарт охватывает стали, т. е. сплавы на железной основе, а также сплавы на железоникелевой и никелевой основе. [c.9]
Во многих случаях пружинные сплавы в отличии от обычных конструкционных материалов должны быть в тоже время и сплавами коррозионностойкими, немагнитными или ферромагнитными, с низкой или высокой электропроводностью, с низким температурным коэффициентом модуля упругости, малой т-ЭДС в паре с медью, с большой или малой демпфирующей способностью и т. д. [c.347]
Сплавы коррозионностойкие (кислотостойкие) — Марки, со став 2.244 - Обработка термическая 2.244 Применение 2.186, 243 [c.652]
Комплекс позволяет подобрать при проектировании деталей материал или группу материалов, в наибольшей степени удовлетворяющих условиям работы. Подбор может осуществляться по заданным механическим характеристикам или по функциональному назначению изделия. Важнейшей составляющей комплекса является база данных, размещенная в 20 файлах, каждый из которых объединяет определенную группу материалов, например, алюминиевые сплавы, коррозионностойкие стали, термореактивные пластмассы и т.д. База данных открыта для модификаций и дополнений. Материалы, включенные в базу данных, содержат марочные обозначения, химический состав сплавов, некоторые механические свойства, характер и режимы термической обработки. [c.5]
Высоколегированные и сплавы коррозионностойкие, жаростойкие и Жаропрочные [c.42]
Заклепки, предназначенные для двухсторонней клепки деталей из ПМ общего назначения, изготавливают из мягких сортов дюралюминия, меди, латуни, мягкой стали, а для обеспечения коррозионной стойкости соединения, например, в судостроении, — из коррозионностойкой стали или алюминия. Применяют также биметаллические заклепки [35,42]. Заклепки для односторонней клепки изготавливают из стали, алюминия и его сплавов, коррозионностойкой стали, меди и ее сплавов. [c.157]
Покрытия разделяют по типу защищаемого сплава, например, на покрытия для титановых сплавов, жаропрочных сплавов, коррозионностойких сталей, инструментальных сталей и т. д. На практике покрытия часто делят на тугоплавкие и легкоплавкие. [c.23]
В книге рассмотрены вопросы коррозии металлов и сплавов, коррозионная стойкость широко применяемых в технике металлов и сплавов, коррозионностойкие металлические и неметаллические материалы. Особенно подробно освещены вопросы защиты металлов и сплавов от коррозии, при этом большое внимание уделено основам гальваностегии. [c.6]
В цехах металлопокрытий наиболее распространены два вида механической обработки поверхности изделий — декоративное шлифование и полирование. Назначение обоих процессов — получить заданную поверхность основного металла гладкую и блестящую или матовую. Блестящая поверхность требуется главным образом при нанесении покрытия на медь и ее сплавы, а также на цинковый сплав, коррозионностойкую сталь и другие металлы и их сплавы. При отделке углеродистой стали и чугуна поверхности основного металла чаще всего придают матовый тон. В некоторых случаях не только основной металл, но и гальванические покрытия подвергают специальной механической обработке для получения матового тона. [c.45]
Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные обладают особыми свойствами. Согласно ГОСТ 5632—72 к этой группе относятся стали и сплавы на железной, железоникелевой и никелевой основах, предназначенные для работы в коррозионноактивных средах и при высоких температурах. В зависимости от основных свойств эти стали и сплавы подразделяют на группы первая — коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против различных видов коррозии вторая — жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температуре выше 550° С, работающие в ненагруженном или слабонагруженном состоянии третья — жаропрочные стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью. [c.26]
Алюминиевомагниевые сплавы легко поддаются обработке, имеют хорошую свариваемость, но склонны к образованию трещин, Отжиг восстанавливает механические характеристики почти до первоначальных значений. Эти сплавы коррозионностойки до и после сварки. [c.35]
Сплав коррозионностойкий во всех климатических условиях и некоторых агрессивных средах, дисперсионно-твердею-щий, с временным сопротивлением 1470-1720 MHV (150- [c.23]
СТАЛИ ВЫСОКОЛЕГИРОВАННЫЕ И СПЛАВЫ КОРРОЗИОННОСТОЙКИЕ, ЖАРОСТОЙКИЕ [c.311]
Аргонодуговая сварка обычной и пульсирующей дугой трубопроводов, арматуры из меди, медноникелевых сплавов, коррозионностойкой стали в монтажных условиях [c.76]
Межкрнсталлитная коррозия, вызывающая разрушение металла но границам кристаллитов, приводит к резкому снижению механических свойств металла — прочности и пластичности. Межкристаллитной коррозии подвержены многие сплавы коррозионностойкие высокохромистые и хромоникелевые стали, мед- [c.162]
Кроме того, в последние годы успешно прошла испытания в пресс-формах литья под давлением алюминиевых сплавов коррозионностойкая сталь 2Х9В6, разработанная Московским станкоинструментальным институтом. Опробование этой стали на московском заводе "Изолит показало ее значительные преимущества по стойкости перед сталью ЗХ2В8Ф. Испытание этой стали на разгаро-стойкость путем термоциклирования образцов подтвердило перспективность ее применения. В настоящее время в США и Германии сталь марок Н-13 и 2344 получают улучшенного качества. Эта сталь имеет повышенную вязкость, а также более высокое сопротивление термическому удару за счет повышенной чистоты слитка, идеальной проковки, которая дает плотную однородную структуру. [c.58]
Вообще говоря, в морской воде в качестве окислителя могут выступать ионы или молекулы воды и растворенный кислород. Исследованию катодных процессов в хлоридсодержащих средах были посвящены работы Г. В. Акимова, Н. Д. Томашева, Г. Б. Кларк, И. Л. Розенфельда. Как показали исследования, коррозия магния и его сплавов протекает в основном за счет водородной деполяризации алюминий и его сплавы, коррозионностойкие и конструкционные стали, никель и никелевые сплавы, медь, медные сплавы подвергаются коррозии с кислородной деполяризацией. Растворимость кислорода в морской воде ограничена. При протекании коррозии с кислородной деполяризацией очень часто скорость катодного процесса определяется диффузией кислорода и поверхности металла. В таких условиях перемешивание среды или перемещение поверхности металла относительно среды является важным фактором, который может оказать существенное влияние на характер коррозии. При перемешивании скорость катодного процесса будет уве-личиваться и металл из пассивного состояния может переходить в пробойное состояние (см. рис. 18). [c.43]
КИМ Сплав коррозионностойкий в морскоП воде Магнию проводы, работающие в морской воде [c.243]
Груииаыи обозначено назначение стали I — коррозионностойкая II — жаростойкая III — жаропрочная. Знак -у> обозначает применение стали по данному назначению, знак — преимущественное ипилгеиение. Использование стали показано в соответствии с ГОСТ 5632—72 Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные . [c.49]
Впервые сжатая дуга была с успехом использована для резки алюминиевых сплавов, коррозионностойких сталей, тугоплавких металлов. Новый источник тешюты оказался также весьма эффективным для напыления и наплавки, а также арки. [c.468]
Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные (ГОСТ 5632-72) 20Х23Н18 (Х23Н18) Детали гомогенизаторов и других аппаратов, контактирующих с молоком., смесями для производс1ва мороженого, фруктовыми и ягодными соками при температуре до 100 °С [c.541]
Медь и ее сплавы коррозионностойки в неподвижцой или медленно текущей морской воде, но с ростом скорости потока воды их стойкость значительно уменьшается. При большой скорости воды медь и ее сплавы могут подвергаться эрозии. [c.105]
Никель и его сплавы Коррозионностойкая сталь 12X13 Коррозионно-стойкая сталь 12Х18Н9Т Жаропрочная сталь [c.346]
Таким 0браз0 М, результаты, полученные при коррозионных испытаниях сплавов ниобий — тантал в кислых средах, показывают, что с повышением концентрации кислоты и температуры раствора граиица устойчивости сдвигается в сторону большего содержания в сплаве тантала. При наличии в сплаве коррозионностойкого ко мпонента в количестве, обеспечивающем его устойчивость в 1Соответствующей среде, наблюдается резкое облагораживание потенциалов. О том, что легирование ниобия танталом повышает пассивируемость сплава, благодаря образованию на его поверхности более совершенных (чем на нелегированном ниобии) защитных пленок, свидетельствуют данные, полученные при изучении кинетики коррозионного поведения сплавов с различным содержанием тантала [61]. Было установлено, что скорость коррозии сплава с малым количеством (5 вес. %) тантала в 75%-ной серной кислоте при 150° С сильно увеличивается со временем, тогда как сплав ниобия с 50% тантала имеет высокую стойкость, не изменяющуюся во времени и близкую к стойкости чистого тантала. [c.87]
По технологичеоким особенностям, назначению, физическим я корро Зионным свойствам различают алюминиевые деформируемые сплавы коррозионностойкие, декоративные, заклепочные, ковочные, жаропрочные, со опециальными вoй твa ми, са-мoзaкaли вaющиe я. В зависимости от уровня прочности различают алюминиевые деформируемые сплавы низкой, средней и высокой прочности. [c.354]
mash-xxl.info
Коррозионностойкие сплавы определение - Энциклопедия по машиностроению XXL
Медь с никелем дает непрерывный ряд твердых растворов. Сплавы с содержанием никеля менее 50 % (ат.) обычно относят к медным сплавам, из них нашли широкое применение коррозионностойкие сплавы — мельхиор (20—30 % ат. Ni), нейзильбер (15-— 20 % Ni) и куниаль (1,5—15 % N1). Они находят применение в морском судостроении. Из них изготавливают медицинский инструмент, изделия домашнего обихода и т. п. В определенных условиях они подвергаются коррозии. [c.220] Титановые сплавы относятся к числу наиболее перспективных материалов для техники низких температур. Титановые сплавы определенных марок обладают удовлетворительной пластичностью и вязкостью вплоть до 4 К. Благодаря низкой плотности в сочетании с высокой прочностью и достаточной пластичностью применение титановых сплавов при низких температурах позволяет уменьшить массу конструкций в сравнении с коррозионностойкими Сг— Ni сталями на 20-25 % и алюминиевыми сплавами — на 40-45 %. Поэтому титановые сплавы все чаще применяют для изготовления деталей и узлов, работающих при низких температурах в летательных аппаратах. [c.621]При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний II — алюминий, цинк, кадмий III — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 н 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]
В связи с этим к подшипниковым сталям предъявляется ряд специфических требований, основное из которых — наличие высокой твердости. Твердость колец и тел качения подшипников как правило должна находиться в пределах 59-60 НКСэ и выше. В ряде случаев для специфических условий применения, когда нагрузки на подшипники малы, допускается использование сталей и сплавов, имеющих твердость в пределах 45—50 НКСэ. Однако в подавляющем большинстве случаев требуется высокая твердость. Кроме того, подшипниковые материалы должны обладать высокими прочностными характеристиками, сопротивлением износу, удовлетворительными усталостными свойствами, вязкостью (сопротивлением хрупкому разрушению) и, что особенно важно, способностью выдерживать высокие контактные нагрузки. Для определенной группы подшипников необходимо, чтобы материалы могли противостоять воздействию повышенных температур и агрессивных сред (тепло- и коррозионностойкие подшипниковые материалы). [c.771]
С целью определения коррозионностойких конструкционных материалов для указанного производства проведены исследования химической стойкости ряда металлов и сплавов, используемых в химическом машиностроении. [c.27]
Комплекс позволяет подобрать при проектировании деталей материал или группу материалов, в наибольшей степени удовлетворяющих условиям работы. Подбор может осуществляться по заданным механическим характеристикам или по функциональному назначению изделия. Важнейшей составляющей комплекса является база данных, размещенная в 20 файлах, каждый из которых объединяет определенную группу материалов, например, алюминиевые сплавы, коррозионностойкие стали, термореактивные пластмассы и т.д. База данных открыта для модификаций и дополнений. Материалы, включенные в базу данных, содержат марочные обозначения, химический состав сплавов, некоторые механические свойства, характер и режимы термической обработки. [c.5]
Коррозионностойкие промышленные стали и сплавы подвергают коррозионным испытаниям на МКК. В настоящее время во всех странах испытания на МКК проводят стандартными химическими методами, основанными на длительном (от 8 до 240 ч) кипячении в определенных агрессивных средах. [c.107]
Избирательность материала по отношению к среде, когда определенная группа (химическая композиция, структура и т.д.) чувствительна к повреждению в определенных средах - характерная черта коррозионного растрескивания под напряжением. В связи с этим для выделения определенных коррозионно-активных сред используют специальные термины сульфидное коррозионное растрескивание, щелочная хрупкость и т.д. Для аустенитных коррозионностойких сталей специфично влияние хлоридов, для медных сплавов - аммиака, для углеродистых сталей - растворов нитратов. Для углеродистых и низколегированных сталей растрескивание тесно связано с значением рК -электродного потенциала и присутствием в жидкой среде кислорода. [c.284]
Исследование коррозионно-электрохимических свойств фаз находится на начальной стадии и проводится пока в основном в двух направлениях снятие поляризационных кривых и определение коррозионной (химической) стойкости в некоторых средах. Лишь в отдельных работах в последнее время получены данные по зависимости скорости растворения (окисления) от потенциала для некоторых фаз и сделаны попытки расшифровать природу процессов, осуществляющихся на наиболее характерных участках поляризационных кривых. В то же время исследование свойств фаз в широкой области потенциалов совершенно необходимо, так как в зависимости от области потенциалов и, следовательно, типа агрессивной среды влияние фазы на коррозионную стойкость сплава может быть принципиально различным. Кроме того, получающиеся при этом результаты необходимы для выявления условий, в которых материалы на основе фаз могут быть использованы как коррозионностойкие. Они содержат также весьма ценную информацию для решения ряда задач фазового анализа и металловедения, на которых в данном обзоре не было возможности остановиться. [c.76]
Справочник Коррозионностойкие стали и сплавы в определенной степени восполняет указанные пробелы предшествующих работ и дает более полную информацию о каждом материале в дополнение к сведениям о его коррозионной стойкости. В справочнике содержатся сведения о сталях и сплавах, разработанных в основном лабораторией коррозионностойких сталей и сплавов ЦНИИчермета им. И. П. Бардина, руководителем которой в течение ряда лет являлся автор. [c.3]
Приводимые в книге материалы по металловедению, свойствам и технологии коррозионностойких сталей и сплавов, необходимые для рационального определения технологических режимов при их производстве и применении, а также для правильного выбора марок в зависимости от агрессивной среды, в которой они будут использоваться, могут быть полезны работникам металлургической, химической промышленностей, а также различных отраслей машиностроения. [c.6]
Методика определения диаметров отверстий под нарезание резьбы метрической по ГОСТ 9150-59 для металлов повышенной вязкости (стали и сплавы высоколегированные, коррозионностойкие, жаропрочные, жаростойкие, сплавы магния, сплавы алюминиевые, латуни) дана в приложении к МН 5384-64. [c.20]
Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные обладают особыми свойствами. Согласно ГОСТ 5632—72 к этой группе относятся стали и сплавы на железной, железоникелевой и никелевой основах, предназначенные для работы в коррозионноактивных средах и при высоких температурах. В зависимости от основных свойств эти стали и сплавы подразделяют на группы первая — коррозионностойкие (нержавеющие) стали и сплавы, обладающие стойкостью против различных видов коррозии вторая — жаростойкие (окалиностойкие) стали и сплавы, обладающие стойкостью против химического разрушения поверхности в газовых средах при температуре выше 550° С, работающие в ненагруженном или слабонагруженном состоянии третья — жаропрочные стали и сплавы, способные работать в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной жаростойкостью. [c.26]
Коррозионностойкие (нержавеющие) стали обладают стойкостью против электрохимической коррозии (кислотной, щелочной, солевой, атмосферной, почвенной, морской и др.). Жаростойкие (окалиностойкие) стали и сплавы, работающие в ненагруженном или слабонагруженном состоянии, обладают стойкостью против химического разрушения поверхности в газовых средах при температурах свыше 550° С. Жаропрочные стали и сплавы обладают достаточной окалиностойкостью и определенное время могут работать в нагруженном состоянии при высоких температурах. Основной характеристикой качества этих сталей и сплавов является химический состав. [c.270]
В настоящей главе рассмотрены основные вопросы точения коррозионностойких и жаропрочных сталей и сплавов, а также титановых сплавов показано влияние на обрабатываемость резанием этих материалов их химического состава и физикомеханических свойств, а также термической обработки. Освещены разработанные в последние годы некоторые ускоренные методы определения обрабатываемости при точении, которые по- [c.43]
Для определения экономичности резания сталей и сплавов в нагретом состоянии была испытана стойкость инструмента при точении, фрезеровании и сверлении сталей твердостью ЯБ 600, коррозионностойкой стали ЯВ 400 и стали, используемой при изготовлении штампов для горячей штамповки. [c.130]
Помещенные в книге цифровые материалы по коррозионной стойкости металлов и сплавов соответствуют определенным условиям проведения опытов и могут служить ориентировочными данными при выборе коррозионностойких материалов. [c.18]
К качественным методам исследования процесса коррозии специальных легированных сталей и некоторых сплавов следует отнести также определение склонности коррозионностойких сталей к межкристаллитной коррозии по потере звука. Для этого образцы после выдержки в растворе серной кислоты и медного купороса бросают с высоты 300—500 мм на каменную илн мраморную плиту. Если при падении металл издает не звонкий, а глухой звук, то, следовательно, он подвержен межкристаллитной коррозии. [c.38]
По-разному ультразвук влияет и иа структуру и свойства жаропрочных и коррозионностойких сталей и сплавов [2]. В определенных условиях обработка этих сталей и сплавов ультразвуком даже оказывает отрицательное влияние. [c.63]
По назначешпо медноникелевые сплавы делятся на две группы конструкционные и электротехнические. К первой группе относятся высокопрочные и коррозионностойкие сплавы типа мельхиор, нейзильбер и куниаль, ко второй — константан, манганин и копедь, обладающие высоким электрическим согфотивлением и определенными термоэлектрическими свойствами (табл. 19.31). [c.758]
Одного определенного способа конструирования коррозионностойких сплавов нет. В зависимости от условий предполагаемой эксплуатации пути созданий стойких сплавов могут весьма различаться. Например, легирование титана молибденом повышает стойкость сплавов в соляной и серной кислотах, но сильно снижает его устойчивость в HNO3. [c.130]
Никель и никелевые сплавы являются возможными конструкционными материалами для реактора. Возрастающие требования в связи с более высокими рабочими параметрами и новыми конструкциями реакторов приводят к созданию материалов, достаточно жаропрочных при высоких температурах и коррозионностойких в различных средах. В эту группу сплавов включены инконель X, инконель, инконель-702, хастел-лой, хастеллой X, хастеллой С. В разделе приводятся данные по изменению их свойств под действием облучения интегральными потоками от 1-10 до 7,5-10 нейтрон 1см , в некоторых случаях до 2-10 нейтрон/см . Хотя эти материалы следует использовать в условиях повышенных температур, было проведено большое количество опытов для определения изменения свойств вследствие облучения при низких температурах (испытания при комнатной температуре). Однако имеются некоторые данные для повышенных температур, но не обязательно для тех, при которых, как ожидается, эти материалы будут работать. [c.260]
Возможности удешевления самого коррозионностойкого из тугоплавких металлов Та за счет легирования или его полной замены ниобием, достаточно дорогим и дефицитным металлом, бьши рассмотрены в предыдущей главе. Возможно дополнительное легирование ниобия или сплава Nb—Та титаном, однако, к сожалению, для сохранения высокой коррозионной стойкости лишь в небольших количеств Данные, свидетельствующие о высокой коррозионной стойкости молиёйена, бьши приведены также в предьщущей главе. Однако низкая при комнатной температуре пластичность и плохая свариваемость (хрупкость сварного шва) создают определенные препятствия для его массового использования в химическом ма- [c.91]
Коррозионностойкие стали — это прежде всего сплавы железа с хромом, содержание которого в стали не менее 12 %. Хром, являющийся элементом, хорошо пассивирующимся в нейтральных и окислительных средах, обусловливает резкое повышение способности к пассивации сплавов железо—хром при содержании его 12 %. Из других легирующих элементов наиболее важным является никель, стабилизирующий аустенитную структуру нержавеющих сталей, обеспечивающий высокие пластичные и технологические свойства и повышение в ряде случаев коррозионных свойств. Заменителем никеля до определенного предела является марганец, стабилизирующий, подобно никелю, аустенитную структуру. [c.69]
Деформируемые высоколегированные стали и сплавы на железоникелевой и никелевой основе по ГОСТ 5632—72 подразделяются на три группы I — коррозионностойкие (нержавеющие) стали, стойкие против электрохимической коррозии (атмосферной, щелочной, кислотной, солевой и др.) II — жаростойкие (окалиностойкие) стали и сплавы, стойкие против химического разрушения поверхности в газовых средах при температурах выше 550° С, работающие в ненагруженном или слабонагружен-ном состоянии III — жаропрочные стали и сплавы, работающие в нагруженном состоянии при высоких температурах в течение определенного времени и обладающие при этом достаточной окалиностойкостью. [c.47]
Швы сварных соединений. Дуговая сварка алюминия и алюминиевых сплавов. Типы и конструктивные элементы Швы сварных соединений. Электродуговая сварка в защитных газах. Типы и конструктивные элементы Швы сварных соединений электрозаклепоч-ные. Типы и конструктивные элементы Швы сварных соединений стальных трубопроводов. Типы и конструктивные элементы Швы сварных соединений из двухслойной коррозионностойкой стали. Типы и конструктивные элементы Шероховатость поверхности. Термины и определения [c.303]
В процессе изготовления аппаратуры и оборудования из коррозионностойких сталей, вследс -вие неправильной термической обработки или при сварке могут возникнуть условия, вызывающие межкристаллитную коррозию. По современным представлениям преимущественное разрушение границ зерен обусловлено электрохимической неоднородностью поверхности, возникающей в определенном для данного сплава интервале температур в результате структурных превращений. Например, при нагреве хромоникелевых сталей при 600—800 °С происходит выделение из твердого раствора сложных карбидов, содержащих хром, железо и никель. Эти карбиды выпадают преимущественно по границам зерец, что приводит к обеднению отдельных участков сплава хромом. Наиболее сильное обеднение наблюдается в зоне, непосредственно прилегающей к границе рерна. Имеются и другие факторы, способствующие межкристаллитной коррозии. Например, для коррозионностойких сталей, содержащих молибден, большое значение приобретает выделение о-фазы, также способствующей обеднению хромом прилегающих к границам участков. Перераспределение хрома в коррозионностойких сталях возможно и в результате выпадения высокохромистого феррита — продукта распада аустенита, что вызывает межкристаллитную коррозию, например, сварных швов. Существует мнение, что на склонность к межкристаллитной коррозии влияют также и внутренние напряжения. [c.55]
Из приведенных выше электрохимических методов для коррозионностойких сталей аустенитного класса наиболее надежным является определение разницы в скорости анодного процесса на недеформированном и деформированном образцах при заданном потенциале [26]. Чем меньше разница токов, определяющих скорость анодного процесса металла в напряженном и ненапряженном состояниях, тем меньше сплав склонен к коррозионному растрескиванию. Недостаток этого метода состоит в том, что необходимо знать области потенциалов, при которых возможйа коррозия под напряжением исследуемого материала в данной среде. [c.72]
Удобным для определения склонности стали к питтинговой коррозии является метод определения н тенциаяа) питтингообразования по кривым заряжения [34]. В этом случае на электрод накладывается определенная плотность тока (для коррозионностойких сталей 2—5 мкА/ /см ), а потенциал записывается автоматически. По виду кривой судят о том, склонен или нет сплав к питтинговой коррозии. На рис. 33 приведены полученные этим методом кривые заряжения для. двух случаев. Если на кривой заряжения обнаруживаются колебания потенциала, то на такой стали будут образовываться питтинги (см. рис. 33, кривйя /), причем наибольшей устойчивостью-будет обладать сталь с наименьшим числом колебаний в единицу времени и наименьшим пределом изменения этих колебаний. Если же вид кривой заряжения аналоги- [c.76]
Эти стали, часто называемые нержавеющими, стойки далеко не во всех средах, не при всех возможных концентрациях и температурных условиях. Для определенных условий разработаны специальные составы сталей. Этим именно объясняется, что в настоящее время разработано и существует под различными марками множество аналогичных железных сплавов. Эти стали рассматриваются как коррозионностойкие, если потери от коррозии составляют до 0,1 м -ч), т. е. 2,4 г м сутки). Всегда следует иметь данные по коррозионной стойкости, так как термин нержавеющий носит общий характер и не исключает растворения металла, хотя и незначительного. Перед применением коррозионностойких сталей рекомендуется исключать испытания, в ходе которых может появиться местная коррозия, язвы или межкри-сталлйтная коррозия. [c.152]
Однофазные сплавы (твердые растворы) представляют особенно большой интерес. Их коррозионная стойкость зависит от свойств компонентов и состава сплава. Для многих сплавов плавной зависимости между составом и коррозионной стойкостью нет, а она изменяется скачкообразно. Это явление было обнаружено Тамманном, который назвал его порогом устойчивости и показал, что он наступает при определенном содержании в сплаве более коррозионностойкого компонента и зависит от раствора, в котором происходит коррозия. [c.52]
Электрофизические и электрохимические методы размерной обработки, основанные на различных процессах непосредственного энергетического воздействия на обрабатываемую заготовку, находят в промышленности все более широкое распространение. Если при традиционных методах обработки материалов резанием всегда стоит вопрос о возможности обработки определенных типов материалов (твердых сплавов, жаропрочных и коррозионностойких сталей, высокотвердых минералов и т. п.), а некоторые внды работ (отверстия с криволинейной осью нвкруглого сеченкя размерами порядка 0,05 мм и т. д.) просто невозможно выполнить,-то с помощью новых методов оказывается возможным решать не только перечисленные, но и многие другие, более сложные задачи. Характерными особенностями этих методов является возможность обработки заготовок вне зависимости от твердости материала. При этом обрабатывающий инструмент может иметь твердость значительно меньшую. [c.503]
В настоящее время предложены новые методы потенциостатичес-кого травления для определения склонности коррозионностойких сталей и сплавов к МКК- [c.143]
Сплав, содержащи11 79,5 /о N1, 13% Сг и 6,5 /о Ре (инконель), применяется как коррозионностойкий во многих средах. Другие сплавы этого типа являются жаропрочными (стр. 731). Характерным представителем сплавов N1—Сг служит сплав, содержащий 80% №, 13 /о Сг и 7 /о Ре, коррозионными свойствами которого можно руководствоваться для определения пригодности материала к применению в той или иной среде. [c.275]
Правило п/8 Таммана позволяет рационально корректировать содержание легирующего элемента твердого раствора, вводимого в целях повышения коррозионной стойкости сплава. При этом (по указанию А. И. Шултина) следует учитывать возможность обеднения твердого раствора легирующим элементом за счет связывания его другими компонентами сплава (например, связывания хрома углеродом в карбиды) и в связи с этим необходимость введения в сплав дополнительного количества легирующего элемента для обеспечения определенного содержания его в твердом растворе. Так, например, содержание хрома в коррозионностойких хромистых сталях составляет 12—14% при содержании углерода 0,1—0,2%. [c.197]
Никель — один пз основных легирующих элементов, служащих для получения коррозионностойких сталей. Он повышает механическую прочность и пластичность стали, а также улучшает свариваемость и обрабатываемость. Для получения стали с высокн.мн кислотоупорными свойствами необходимо добавлять ннкель и хром в определенных соотношениях. Классической хромоникелевой сталью является сплав с 18 /о Сг и 8% N1, который широко применяют для изготовления химической аппаратуры, работающей в среде азотной кислоты. [c.96]
mash-xxl.info