История производства стали. Сталь когда появилась


История изобретения стали | Великие открытия человечества

Сталь — важнейший продукт металлургии железа, представляющий собой сплав железа с углеродом. Уже в VII веке до нашей эры кельты научились получать железо из железной руды. Руду нагревали в открытой печи, используя пламя древесного угля. В результате получался твердый чугун. Однако из-за высокого содержания углерода чугун был хрупкий и непригодный для ковки. Если уменьшить процентное содержание углерода до 2,14%, то получится твердый и крепкий сплав, которому можно придавать различные формы путем ковки и штамповки. Это и была сталь, из которой стали производить инструменты, все виды оружия и различные детали машин. Для снижения содержания углерода и прочих ненужных примесей чугун вновь нагревается до жидкого состояния и подвергается фришеванию. Качества стали улучшаются с добавлением легирующих элементов. Сплав железа (не менее 45%), углерода и легирующих элементов называют легированной сталью.

Но прежде, чем получить стальные изделия, следовало совершить множество трудоемких операций. Вначале из железной руды выплавляли чугун, который превращали в мягкое железо. Полученную железную крицу подвергали длительной проковке, в результате получали нужную стальную деталь, либо только заготовку, которую окончательно обрабатывали на металлорежущих станках. Изначально избыточное количество углерода удаляли из чугуна путем кричного передела. Процесс происходил в открытой печи (кричном горне). На горящий древесный уголь помещали чушки чугуна. Путем вдувания горячего воздуха очищали расплавленный чугун от излишнего углерода. Расплавленный металл собирался на поду горна. Происходило дополнительное удаление углерода путем окисления железистого шлака. Образовавшуюся кашицу (крицу) подвергали ковке для удаления шлака.

Кричный передел существовал с XIV века, в 1784 году английским металлургом Г. Кортом была предложена новая технология получения стали — пудлингование. Согласно этой технологии, чугун плавился в специальной пудлинговой печи без контакта с топливом. Пудлинговая печь позволила заменить дорогостоящий древесный уголь на менее дорогой — каменный. Расплавленный чугун доводили до тестообразного состояния. С целью увеличения доступа кислорода расплавленную массу перемешивали металлическими штангами. Дальше тестообразную крицу проковывали. Правда, процесс получения стали таким методом был трудоемким, медленным и дорогим.

Бессемер усовершенствовал этот процесс и в 1856 году продемонстрировал конвертер, предназначенный для получения жидкой стали. Выходящий из доменной печи чугун поступал в конвертер — резервуар, на дне которого имелись отверстия для подачи воздуха. Благодаря подвижным опорам конвертер можно было свободно перемещать из горизонтального положения в вертикальное, когда он будет наполнен. Кислород воздуха, вдуваемый через нижние отверстия, соединяется с углеродом, выделяемым при нагревании из чугуна. Когда процесс закончен, конвертер занимает горизонтальное положение и в нем образуется железо, в которое добавляют примеси. Получается сталь, содержащая низкий процент кислорода. Весь процесс занимал мало времени, за 20 минут получалось столько же стали, сколько бы пудлинговая печь выдала за целый день.

В 1864 году был изобретен мартеновский способ выплавки стали, основанный на сходном принципе.

Оба способа получили широкое распространение и позволили получать сталь в неограниченных количествах. Однако они не позволяли получить руду высокого качества из руды, которая содержала фосфор и серу. В 1878 году С. Томас решил эту проблему, добавив в конвертер 10-15% извести. Образовывающиеся шлаки удерживали фосфор и он выгорал с другими ненужными примесями. Полученная сталь была очень высокого качества. Уже в первые несколько лет после применения бессемеровского и мартеновского способов получения высококачественной стали ее выпуск вырос во всем мире на 60%.

mirnovogo.ru

История производства стали

 

 

До н.э. в Европе уже повсюду производили кованое железо. Многие великолепные Греческие и Римские здания были построены из камня с применением железных инструментов в форме бабочки, покрытых свинцом. В 500 году до н. э. этруски, жившие на западном побережье Италии производили более 4,5 тысячи килограмм железа в год. Ковку железа осуществляли в кузнице, а для поддержания огня использовали древесный уголь. Огонь раздували при помощи специальных мехов, сшитых из шкур животных. Позже маленькие каменные печи разобрали, и начали массовую выплавку железа. Руду к печам доставляли на парусных судах. В связи с тем, что метод обработки руды, который использовали этруски, был малоэффективен, ее запасы быстро истощились. К тому же производство древесного угля резко сократило количество лесов на западе Италии.

Первая сталь была создана кельтами около 200 года н. э. Они резали кованое железо на тонкие полоски и складывали их в контейнер с обожженными костями и углем, после чего все это нагревали в печи в течение 10-12 часов на очень сильном огне. В результате поверхность металла обогащалась углеродом. Затем они эти полоски сваривали между собой посредством ковки и таким образом создавали ножи. Эти ножи стали предшественниками клинков, которые мы ошибочно называем дамасскими. Кельтский процесс производства стали в 1050 году был скопирован викингами и немцами. С тех пор в этих странах производили стальные клинки, метод изготовления которых, был строго засекречен. Дамасскую сталь производили в Пакистане и в виде булатных заготовок отправляли в Сирию, где изготавливали знаменитые дамасские клинки. Процесс производства дамасской стали очень сложный, поскольку ее необходимо было нагревать до очень высокой температуры, и если температуру превысить, то материал мог разрушиться.

Со временем температура плавления железа в печах становилась все выше, поэтому полученное железо, содержало 3-4% углерода. Оно было хрупким и подходило только для литья. Из него нельзя было делать ножи и детали для транспорта. К тому же к этому времени огромная часть лесов в Европе была вырублена для строительных целей и производства древесного угля. Тогда король Англии издал указ о том, что леса вырубать больше нельзя, и производителям стали пришлось придумать способ переработки угля в кокс. В Англии разработали метод лужения стали, при этом они смешивали расплавленное железо, с силикатом железа и оксидом железа. Силикат железа является одним из компонентов кованого железа.

Печи, работающие на угле, назвались кричным горном. Один работник должен был помешивать полученную смесь, в результате чего образовывался диоксид углерода, поэтому температура плавления железа становилась выше, и начинался процесс лужения. Внутрь помещались крупные куски весом от 90 кг до 130 кг. Другой работник с помощью пары больших щипцов брал эти куски и помещал под пресс, чтоб из них выдавить силикат железа. После пресса куски помещали в прокатный стан, где из них формировались полоски кричного железа. Эти полоски нарезали на короткие кусочки и соединяли между собой, после чего помещали их в углубление, заполненное углеродом, и нагревали до температуры сварки. После этого полоски кричного железа снова отправляли в прокатный стан и получали сортовое железо. Этот способ использовали не только в Европе, но на востоке Соединенных Штатов.

Чтоб получить сталь, тонкий сортовой прокат помещали в углубление, заполненное углеродом, полученным в результате сожжения костей, и нагревали при высокой температуре в течение нескольких дней. Углерод поглощался железом, и в результате получалась пузырчатая сталь. Пузырчатой называли цементную сталь или томленку. Это понятие появилось благодаря внешнему виду полосок, извлеченных из углеродной ямы, которые были покрыты пузырями. После этого полоски складывали вместе и ковали, затем снова складывали и ковали, таким способом получали сталь высокого качества.

Англия нуждалась в высококачественной стали, чтоб создать флот, который смог бы пресечь океан. Один предприимчивый англичанин заметил, что стеклодувы в своих печах могут получать очень высокую температуру. Он взял полоски пузырчатой стали и поместил их в керамический тигель, после чего поставил емкость в печь стеклодувов. В результате сталь расплавилась, силикат железа испарился, а углерод остался, и получилась сталь очень высокого качества. На тот момент за процессом наблюдало много людей, и он не смог сохранить его в секрете. Таким способом получали литую сталь, из которой в США было сделано большое количество старых инструментов, с маркировкой «литая сталь». Многие ошибочно считают их литыми, что следует из названия.

Новый импульс производство стали получило, когда был изобретен Бессемеровский процесс производства стали. Такую сталь применяли для строительства крупных объектов, таких как плотина Гранд-Кули, потому как она не подвержена действию коррозии. В начале 20 века приступили к производству различных сплавов. Тогда в газовых мартеновых печах к железу стали добавлять марганец, хром, никель и другие элементы. Во время Второй мировой войны, когда потребность в металле возросла, производство сплавов получило новый мощный толчок. С тех пор был сделан огромный шаг в производстве и совершенствовании различных сталей.

Сталь имеет более высокие физико-механические свойства по сравнению с чугуном: ее можно ковать, прокатывать, она имеет высокую прочность и значительную пластичность, хорошо обрабатывается резанием. В расплавленном состоянии сталь обладает достаточной жидкотекучестью для получения отливок.

Мягкая сталь с содержанием углерода менее 0,25% обладает  высокой пластичностью,  способностью хорошо свариваться,  легко  куется и прокатывается в горячем и холодном состояниях. Поэтому  такая сталь является основным материалом для современного машиностроения, транспорта и других отраслей народного хозяйства страны.

В древности мягкую сталь (техническое железо) получали непосредственно из руд в тестообразном состоянии. Позднее научились  получать сталь из чугуна в кирпичном горне, также в тестообразном  состоянии. В 1740 г. в Англии стал применяться способ получения  жидкой стали в тиглях, задолго до того известный на Востоке. С 1784 г.  начали применять пудлингование — получение стали в тестообразном состоянии из чугуна окислением его примесей на поду пламенной  печи. Все эти способы были мало производительны, требовали больших затрат топлива и труда.

Бурный рост промышленности и железнодорожного транспорта во второй половине XIX в. потребовал громадного количества стали, а старые способы ее получения не могли удовлетворить эту потребность. Были созданы новые, более производительные способы плавки стали. В 1856 г. появился бессемеровский способ (названный по имени его изобретателя Г. Бессемера), а в 1878 г. — томасовский способ (предложенный С. Томасом) получения литой стали из жидкого чугуна в конвертерах. В 1857 г. крупный русский металлург П. М. Обухов получил привилегию на изобретенный им способ производства орудийной стали путем сплавления чугуна и мягкой стали. Орудийная сталь П. М. Обухова по качеству превосходила лучшие заграничные стали. С 1864 г. применяется мартеновский способ получения стали в пламенных печах (названный по имени его изобретателя П. Мартена), а с 1899 г. — способ производства стали в электропечах, основанный на применении явления электрической дуги, открытой в 1802 г. акад. В. В. Петровым.

Задача передела чугуна в сталь состоит в том, чтобы из чугуна удалить избыток углерода, кремния, марганца и других примесей. Особенно важно при этом удалить вредные примеси серы и фосфора. Углерод чугуна, соединяясь с кислородом, превращается в газ (окись углерода СО), который улетучивается. Другие примеси переводятся в окислы и другие соединения, нерастворимые или мало растворимые в металле; эти соединения вместе с флюсами образуют на поверхности металла шлак. При сгорании марганец и кремний  образуют нерастворимые в металле окислы MnO и SiO2. При сгорании фосфора образуется его окись Р2О5, которая хорошо растворяется в металле. Чтобы удалить фосфор из металла, наводят шлак с избытком извести (состоящей преимущественно из СаО), которая и связывает Р2О5 в прочное  соединение (СаО)4 • Р2О5, нерастворимое в металле.

Сера растворена в чугуне в составе соединения FeS; ее удаляют из  металла с помощью марганца или извести, которые образуют с ней  или плохо растворимое в металле соединение MnS или нерастворимое  соединение CaS.

В настоящее время  в  металлургии  страны  применяются  следующие  способы  получения  стали:  конвертерный,  мартеновский  и  электроплавка.

Электроплавка применяется, главным образом, для получения высококачественной стали и за последние годы усиленно развивается.

Технический  прогресс  в  сталеплавильном  производстве  характеризуется  интенсивным  наращиванием  мощностей  плавильных  агрегатов,  широким  применением  кислородно-конверторного  процесса  и  непрерывной  разливки  стали,  повышением  качества  металла.

 

 

biofile.ru

История производства стали

История производства стали берет начало с тех времен, когда на земле появилось человечество. За все это время сделано огромное множество замечательных открытий и изобретений. Но способы добычи стали по праву можно назвать главным среди всех изобретений, среди всех открытий.

Автор фото: Сергей Богомяко

Это благодаря стали человек стал могущественным, способным сдвигать горы и поворачивать реки, смог покорить океаны и небесные выси. Тысячелетия отделяют нас от того времени, когда впервые был получен этот поистине чудесный материал. Изготовление некоторых видов стали долгое время было в секрете. Так на протяжении столетий существовала тайна булата, которую смогли разгадать только в XIX столетии, (подробнее: Изготовление булата).

В наши дни мощь и богатство любой страны определяются в первую очередь тем, сколько стали выплавляют ее заводы.

Добыча руды

Для производства стали прежде добывают руду и топливо. Но, даже имея в достаточном количестве железную руду и каменный уголь, (подробнее: Природные энергоносители) нельзя еще приступать к изготовлению стали. И руду и уголь необходимо по-особому приготовить. Руду обогатить, из каменного угля сделать кокс.

Обогащение руды

Долгий и сложный путь проделывает руда, прежде чем превратится в сталь. И первый этап на этом пути – обогащение руды на обогатительная фабрика.

Сначала руду дробят с помощью машин, которые так и называются дробилками. Первая, самая мощная, раскалывает крупные глыбы на куски. Затем вторая превращает эти куски в щебень и так далее. До тех пор, пока из руды не получится крупа. Но и этого еще не полное обогащение. Далее отправляют руду на мельницу и превращают ее в порошок. И только теперь начинается то, что металлурги называют обогащением, – отделение руды от сопутствующей породы, с которой она вместе лежала в земле.

Происходит это так. Порошок смешивают с водой и пропускают между магнитами. Магниты и выбирают из мутного потока частицы магнитного железняка. А то, что не нужно, – это уже не трудно догадаться, – уносится водой. Но даже такая отобранная руда еще не пригодна для дальнейшей переработки. Содержание железа в ней значительно повысилось. Однако и это еще не все. Руду снова надо превратить из порошка в куски. Для этого порошок смешивают с коксом, известью и сильно нагревают.

Кокс

Для выплавки стали главным топливом служит каменный уголь. Но не в том виде, который добывают шахтеры. Добытый уголь содержит много примесей, которые могут вредно повлиять на будущий металл. И поэтому их необходимо удалить.

Уголь, как и руду, для этого сначала размалывают в тончайший порошок. Потом этот порошок в специальной камере нагревают без доступа воздуха. Из угля выделяются газ и смола. Вместе с ними уходят и другие ненужные примеси. А сам угольный порошок спекается в плотную пористую массу.

Пышущую жаром массу выталкивают из камеры на металлическую платформу и охлаждают водой. От резкого охлаждения масса разваливается на куски. Эти куски и есть кокс.

Вот теперь и руда и топливо подготовлены. Можно приступать к плавке. Но пока еще не к плавке стали. Прежде чем железная руда превратится в сталь, ей еще предстоит стать чугуном. Этот процесс происходит в домне.

Домна – это печь-гигант. Даже десятиэтажный дом не кажется очень большим рядом с такой печью. Горит эта печь непрерывно в течение десятков лет. Металлурги время от времени загружают в нее руду, кокс и известь – она тоже во время плавки необходима, – и выпускают готовый чугун. Какие процессы происходят в домне, как руда превращаться в чугун?

Чтобы разобраться в этом, надо снова вернуться к железной руде.

Чугун

Железная руда – это окисленный металл, т.е. соединение железа с кислородом. Для получения чистого металла необходимо вести борьбу с кислородом. Эта борьба начинается, когда металлурги загружают в домну руду и кокс. При высокой температуре кислород соединяется с углеродом кокса и расстается с железом. Получается углекислый газ. А оставшийся углерод тут же занимает место кислорода и соединяется с железом. Железо плюс углерод – это и есть чугун.

Чтобы ускорить плавку, в металлурги стали использовать кислород против кислорода. Для того чтобы жарче горело пламя, в домну накачивают не просто воздух, а чистый кислород.

Современные домны работают на природном газе. А это не только ускоряет плавку, но и значительно сокращает расход кокса. Что дает возможность получать более дешевый чугун.

Путь удешевления металла

Металлургия прошла еще один путь удешевления металла. Путь этот – замена дорогого человеческого труда трудом машин. Если раньше все работы по обслуживанию домны в основном выполнялись вручную, теперь в помощь металлургам пришли транспортеры, погрузочные механизмы, подъемные краны. Многие операции вообще выполняются без участия человека. Их выполняют автоматы.

В настоящее время домна работает почти совсем без помощи людей. Все процессы автоматизированы.

Автоматика принимает от приборов сообщения о качестве руды и кокса и отдает команду механизмам-исполнителям, сколько надо отвесить и загрузить в печь того и другого. Потом она проверяет температуру в печи. Если надо, добавит или убавит кислорода, газа.

К желобу, по которому из печи выпускают металл, подъедет железнодорожная платформа с ковшами. Специальная бурильная машина рассверливает отверстие для слива металла, оно называется леткой. А закрывают леточное отверстие с помощью специальной пушки. Посредством поршневого механизма подается огнеупорная масса, которой и закрывается канал после слива чугуна.

Сразу же после слива металла начинается загрузка шихтового материала через колошник – верхнюю часть печи, ведь плавка в домне идет непрерывно.

Сталь

Речь идет о том, как руда превращается в сталь. Ведь чугун, первая ступень на пути этого превращения. Но чем отличается чугун от стали, ведь это тоже металл?

Чугун нельзя ковать, трудно обрабатывать на металлорежущих станках. И это потому, что в нем очень много углерода. А углерод – вещество хотя и очень твердое, но хрупкое. Вот и железо, соединившись с ним в доменной печи, стало очень хрупким.

Другое дело – сталь. Она и ковке поддается – ее можно штамповать, придавать стальным листам разную форму. Ее и на станках обрабатывают, вытачивают всевозможные детали.

Чугун так же необходим в производстве. Из него отливают те изделия, которые потом не требуют тщательной обработки. Например, станины, на которых станки стоят, маховики для моторов, трубы. Но основная часть чугуна, идет в дальнейшую переработку – на изготовление стали.

Мартеновские печи

Один за другим наполнились ковши – чугуновозы, и состав отправляется в цех, где выстроились в ряд мартеновские печи. Что такое мартеновские печи? Здесь уже знакомый нам чугун снова попадает в пламень. Правда, не сразу. Такое количество чугуна, которое прислала сюда домна, мартены переработать сразу не могут. Их в цехе много, но они значительно меньше домны. Поэтому чугун сначала попадает в термосы. Здесь, в мартеновском цехе, их называют миксерами. Их задача: не дать чугуну охладиться, сохранить его жидким. Отсюда по мере необходимости и берут его сталевары для заливки в мартены.

Не просто сварить сталь. Тем, кто это делает, не только многое уметь надо, но и очень многое знать. Ведь это от них зависит, какая сталь выйдет из мартена – прочная ли и упругая, из которой потом изготовят рельсы для поездов и самые ответственные детали машин, или мягкая, которая пойдет, к примеру, на изготовление листов для крыши.

Каждую марку стали варят в мартенах по особой технологии. Тут и металлолом, и цветная руда, и марганец, и никель, и хром и многое-многое другое требуется. А главное, конечно, чугун.

Началась загрузка печи. Подъемные краны одну за другой подхватывают многотонные коробки – мульды, заносят в печь и высыпают содержимое. Называется эта операция завалкой печи. Но вот опрокинут последний короб. Все сильней бушует в печи пламя. Бригадир смотрит на приборы. Металлолом, известь и руда достаточно прогрелись. Настал момент заливать чугун. Его уже привезли из миксеров, он стоит тут и нестерпимо пышет жаром. Стальная рука крана подхватывает ковш и выливает расплавленный чугун в огнедышащую пасть мартена. Варка стали началась. Теперь все зависит от сталевара, от его умения, опыта.

Автор фото: Сергей Богомяко

Конечно, современному сталевару верно служит техника. Она вооружила его разными приборами. Они подробно сообщают ему о том, что делается в печи, но нет-нет да и опустит бригадир на глаза защитные очки, заглянет через специальное отверстие в клокочущее нутро мартена. Время от времени посылают сталевары пробы металла в специальную лабораторию. Очень быстро работает лаборатория. Ее даже за скорость на металлургических заводах называют «экспресс-лабораторией». Так скоро сообщает она тем, кто стоит у мартенов, сколько в данный момент углерода, серы, фосфора и других элементов в металле. Но вот проходит положенный срок, взята последняя проба, по всему цеху разнесся по радио результат последнего анализа – металл готов. Словно солнце вспыхивает в цехе. Поток металла устремляется в изложницы.

Но что же произошло в мартене? Почему чугун превратился в сталь? Чтобы это понять, вспомним, что произошло с рудой в домне. Там, железо рассталось с кислородом. Его место занял углерод.

В мартене из чугуна удаляют часть углерода. Он сгорает в кислороде воздуха, который непрерывно подают в печь автоматы. И чем больше выгорает углерода, тем более вязкой, более мягкой выходит из печи сталь. А если от нее требуются какие-то основные качества, их придадут ей специальные добавки – марганец, хром, кремний. Словом, то, что положено по технологии для данной марки стали. Технике нужна разная сталь. И сталевары выполняют все ее запросы.

Сталь сварена. Выпущенная из мартена, она попала в изложницы. Здесь она постепенно охладилась и застыла. Но изложницы – это огромные ванны. И когда сталь вынимают из них, получаются слитки металла в несколько тонн весом. Поэтому сталь сначала превращают в бруски, удобные для работы. Делают это на специальных обжимных станах. Их называют блюмингами.

Современный блюминг – очень большая и сложная машина. Она похожа на длинную роликовую дорогу. Заранее разогретые огромные слитки металла с большой скоростью проносятся по ней. По пути они попадают в стальные валки. Эти валки со всех сторон обжимают слитки и превращают их в бруски нужных размеров.

Автор фото: Сергей Богомяко

И только после этого бруски отправляют на прокатные станы, где из них делают рельсы, балки, трубы, стальные листы или толстые и тонкие прутки. Все, что необходимо.

Кислородно-конвертерный способ

Кроме мартеновского способа производства стали на современном этапе существует кислородно-конвертерный способ с комбинированной продувкой. Процесс получения стали из чугуна этим способом происходит без затрат топлива. В конвертере происходит продувка чугуна чистым кислородом. Чугун окисляется, происходит выделение тепла, сгорают ненужные примеси и, как результат, происходит раскисление металла.

История производства стали непростая. Чтобы выйти на современный уровень, было пройдено много этапов. От слитка металла полученного на костре и поковки в кузне, до современных сталеплавильных заводов с прокатными и механическими цехами.

libtime.ru

Открытие стали - Великие физики

Удивительно, но сталь не считается изобретением Нового времени, о материале упоминается еще в древних трактатах.

Сталь во все времена считалась востребованным продуктом. Историю ее открытия можно условно разделить на три периода:

  • древние времена, когда появились сыродутные горны;
  • средние века, когда открыли переделочный процесс;
  • вторая половина XIX века. Этот период связан с началом производства литой стали.

Древние времена

Первые упоминания о получении стали были известны уже за 1000 лет до нашей эры. Китайские металлурги во II ст. до н.э. получали ее из чугуна. Этот метод получил название "сто очисток". Он заключался в многоразовом интенсивном обдувании воздухом расплавленного чугуна при его передвижении. Это приводило к уменьшению части углерода в металле и приближению свойств стали. Открытие упоминается у трактате „Хайнаньцзи” (122 р. до Р.Х.). Надо отметить, что буквально до XIX века сталь почти не использовалась, потому что ее производство было очень трудоемким и дорогим.

Когда резко возрос спрос на дешевую сталь и у ученых появилась мысль найти ответ на вопрос "каким образом получить металл со свойствами железа в жидком виде, чтобы его можно было использовать для отливки?" - этим делом занялись серьезно. На решение данной проблемы с участием многих ученых-физиков ушли многие десятилетия.

До конца XVIII века процесс производства чугуна в мягкое ковкое железо осуществлялся исключительно в кричных горнах. Но этот способ переделки чугуна был очень трудоемок и сложен, требовал много затрат (на восстановление 1 кг железа уходило до 4 кг угля). Стал вопрос о необходимости поиска нового метода обработки чугуна.

Средние века

С 1742 года Бенджамин Хантсман начал выплавлять сталь не в открытой печи с древесным углем, а в нагреваемом тигле. Процесс получения стали получил название пудлингования. Основное отличие пудлинговой печи от кричного горна было в том, что допускалось использовать любое горючее топливо, а не только уголь. Например, можно было использовать неочищенный каменный уголь. Также пудлинговая печь не требовала принудительного вдувания, а доступа воздуха и необходимой тяги добивались с помощью высокой трубы. Открытие нового метода позволило получать более дешевую сталь, а печи Хатсмана стали использовать по всему миру.

Но не все шло так гладко. Пудлинговые печи имели существенный недостаток: для равномерного восстановления железа приходилось периодически открывать печь и перемешивать чугун, а это была задача не из легких. К тому же печь имела небольшие размеры, следовательно, за один раз обрабатывалось не много материала.

Вторая половина XIX века и современность

К середине XIX века пудлинговые печи перестали удовлетворять потребности промышленности. Многие ученые начали работать над вопросом замены технологии получения стали. Первым решить задачу удалось учёному из английского города Шеффилд Гарри Бреарли. Его называют первооткрывателем "нержавеющей стали" и человеком, который заменил пудлинговую печь на доменную (сквозь массу бедного фосфором чугуна продувался сжатый воздух, который способствовал процессам окисления). В 1913 году он запатентовал самый первый вариант мартенситной стали. Именно она стала предшественником современной стали под маркой AISI 420. В 1878 г. Сидни Гилкристу Томасу удалось изобрести "томасовский процесс" для удаления фосфорных примесей из железной руды в процессе плавки. Несмотря на это, первым ученым, кто задокументировал все положительные химические свойства нержавеющей стали, принято считать французского учёного и изобретателя Леона Джиллета.

В 1912 году Эдуард Маурэр и Бенно Штраус из немецкой компании "Krupp Iron Works" запатентовали первую аустенитную сталь, которая содержит 7% никеля и 21% хрома. Через 10 лет, в 1924 году,  Хартфилд (преемник Бреарли) запатентовал нержавеющую сталь под маркой 18-8 (18% хрома и 8% никеля). В это время появились кислородные конвертеры и электрические печи для выплавки стали.

В 1952 г.году в Австрии заработал первый в мире сталелитейный завод на основе ЛД-процесса, который заключался в удалении из чугуна примесей в конвертере продувкой техническим кислородом.

Менее чем за столетие нержавеющая сталь стала самым востребованным материалом промышленного производства. Сегодня существует около 100 типов нержавеющей стали с процентным содержанием хрома больше десяти. Из этого материала изготовляют корпуса самолетов и поездов, мелкую бытовую технику и приборы, медицинскую технику и т.д.

www.phisiki.com

История появления стали

Первое упоминание о стали уходит в далекие 8-12 века до нашей эры. Уже тогда войска индийского царя Пора имели оружие прочное и острое. Индийским мастерам удалось получить высокоуглеродистую сталь, названую булатом. Изготовление ее было сложным и секрет производства остался нераскрытым.

Сталь – это сплав железа с углеродом. Благодаря углероду сталь становится твердой и прочной, вязкость и пластичность железа снижается. Процент содержания углерода до 2,14.

В далекие времена люди находили металлы в природе. Сначала они были лишь украшением. Затем появились медные наконечники для копий и стрел. Железо же было на вес золота до тех пор, пока человек не научился выплавлять его из руды в печах, положив начало железному веку. Уже многими годами позже сумели выпускать нержавеющую сталь и металлопрокат, узнать о стоимости которого вы сможете перейдя по ссылке http://www.allmetal.ru/.

Еще древние металлурги заметили, что свойства металла зависят от состава и его обработки. Тогда было замечено, если нагреть докрасна железо, а затем охладить в воде, то твердость металла повышалась. Такая закалка и сейчас применяется в обработке стали. Тогда каждый мастер имел свой секрет закалки стали, но объяснения, почему металл становился прочнее, не было.

Древние алхимики пытались описать процесс металлургии в теории. В 13 веке н.э. алхимик Магнус внес свой вклад, сделав записи о превращении железа в сталь путем дистилляции водянистой части и закалке. Он утверждал, что сталь становится белее за счет отделения примесей, а также отметил, что слишком крепкий металл в итоге рассыпается под молотом.

Ученые следующих веков продолжали искать разгадку происходящих в металле явлений. В частности, в Германии была издана книга, где описывались свойства стали, делающие ее незаменимой для режущих инструментов и орудий. Замечено, что при разгорячении и медленном охлаждении сталь становилась мягкой. А при быстром охлаждении в жидкости металл становился крайне твердым и утрачивал хрупкость. Англичане долго хранили тайну закалки стали в расплавленном свинце или олове.

История получения стали – это история опытов над металлами, понимание трансформации железа. Ученые долго разгадывали тайну превращения железа в прочный сплав. Многочисленные опыты давали то прочный, но хрупкий металл, то мягкий, гнущийся и быстро тупящийся. 10 лет понадобилось русскому ученому Аносову П.П. для обоснования производства прочной качественной стали. Путем проб и ошибок Аносов пытался раскрыть тайну булатной стали.

Продолжателем его идей стал Чернов Д.К., который описал превращение руды в сталь с научной точки зрения. Он сумел отлить брусок высококачественной стали и изготовить из него булатные кинжалы, описал процесс в научном труде. Важным его открытием стало открытие критических точек стали.

Сейчас железную руду выплавляют в огромных доменных печах на металлургических заводах. Руда превращается сначала в чугун. Затем он плавится в мартенах, превращаясь в сталь. За этим процессом наблюдают квалифицированные специалисты.

www.stroyservice.ru

Первая Сталь - Кто придумал?

Сталь - отнюдь не изобретение Нового времени. Способ ее получения был известен уже за 1000 лет до 11.14.1. i.i нашей эры. Однако до XIX в. сталь практически не испотьзовалась. поскольку ее производство было слишком сложным и дорогим. Быстрым и доступным оно стало лишь посте того, как Генри Бессемер изобрел в 1856 г. названный его именем конвертер.

Что делает сталь прочной?

В быту мы часто называем сталь железом. Однако железо - лишь исходный материал. Получают его из железной руды. В Европе выплавлять жстезо из руды первыми начали кельты около VII в. до н.э. Для этого руду нагревали в пламени древесного угля при усиленной подаче воздуха. Таким образом получается твердый, но хрупкий чугун с высоким содержанием углерода. Однако чугун не годится для ковки. Сталью называется сплав, в котором содержание углерода непревышает 2%. Ему можно ковкой и штамповкой придавать различные формы. Физические свойства стали зависят от метода охлаждения. Если охлаждать сплав медленно, он будет упругим и пластичным, при быстром охлаждении - твердым и хрупким.

Новые методы производства стали

Содержание углерода и других нежелательных примесей снижается так называемым фришеванием. Для этого чугун необходимо снова нагреть до жидкого состояния. С 1784 г. это делается в пудлинговой печи, нагреваемой каменным утлем. Чугун плавят на поду до тестообразного состояния, постоянно помешивая металлическими штангами для увеличения доступа кисторода. Бессемер усовершенствовал этот процесс, построив доменную печь: сквозь массу бедного фосфором чугуна продувался сжатый воздух, способствуя процессам окисления. Конвертер Бессемера выдавал за 20 минут столько же стали, сколько пудлинговая печь за целый день. На сходном принципе основан и изобретенный в 1864 г. мартеновский процесс. Позже появились кистородные конвертеры и электрические печи для выплавки стали.

1742 г.: Бенджамин Хантсман начал выплавлять сталь не в открытой печи с древесным углем, а в нагреваемом тигле. 1878 г.: Сидни Гилкрист Томас изобрел «томасовский процесс» для Удаления фосфорных примесей из железной руды в процессе плавки. 1952 г.: в Австрии начал работу первый в мире сталелитейный завод на основе ЛД-процесса. Имеющиеся в чугуне примеси удаляются в таком конвертере продувкой техническим кислородом.

 

23.09.2018

mjjm.ru

Булат (сталь) - откуда он появился и кто его использовал

Булат (сталь) - откуда он появился и кто его использовал

Первые сведения о булате поступили 2300 лет тому назад от участников знаменитого похода Александра Македонского в Индию. Воины рассказывали, что клинки индийцев рубят камни и рассекают в воздухе легкие ткани.

Возможно, именно эти сведения использовал в своем романе "Талисман" Вальтер Скотт. Он описывает состязание в ловкости между султаном Саладином и английским королем Ричардом Львиное Сердце. Ричард своим стальным мечом разрубил на две части копье одного из рыцарей. В ответ Саладин подбросил в воздух покрывало из тончайшей ткани и рассек его своим булатным клинком.

Булат действительно впервые появился в Индии. Индусы продавали в страны Востока вутцы - "хлебцы" из стали. Они представляли собою плоские лепешки диаметром 12,5 см и толщиной 0,25 см. Весили вутцы около 900 грамм. Такой "хлебец" разрубался пополам, на равные части, чтобы покупатель мог рассмотреть строение металла.

Искусством обработки стали индийские мастера владели в совершенстве. "Никогда не будет народа, который лучше бы разбирался в отдельных видах мечей и в их названиях, чем жители Индии", - писал Бируни, увидевший воочию производство стали и мечей. Особенно поразили его цветные мечи. Отполированное железо индийцы натирали раскаленным порошком медного купороса, после чего получали мечи различных цветов - зеленые, синие, белые и с узорами. Среди множества индийских мечей наиболее глубокое впечатление произвел на Бируни меч под названием "маджли", на котором были изображены животные и деревья. Стоимость его равнялась цене лучшего слона. Но если на мече изображались человеческие фигуры, такое оружие стоило еще дороже.

Узоры, рисунки на металле были главной отличительной особенностью булатных мечей. Нa одних булатах узоры были видны невооруженным глазом сразу после полировки. На других они появлялись только после травления соком растений. Узор мог быть крупным и мелким.

Другим местом, где производили отличные булаты, стал город Дамаск. В средние века из Дамаска мечи поступали в разные страны. Их можно было увидеть даже в африканских племенах. Булатная сталь позже стала называться дамасской.

Как удавалось людям средневековья создавать из нержавеющей стали, необычайно прочной, булатные клинки, было загадкой. Разные ученые во многих странах пытались разгадать тайну булата. Знаменитый английский физик Михаил Фарадей пытался получить булат путем добавки к стали алюминия и платины.

В конце концов, тайна булатной стали была раскрыта уральским металлургом Павлом Аносовым. После долгих лет поисков, проб и ошибок, в 1837 году ему удалось изготовить в городе Златоусте булатный клинок. Аносову было известно, что в Москве в XVI-XVII веках еще существовало производство булатов. Он был знаком с документами той поры, где встречались записи: "Сабельная полоса, булат синий, московский выков", "сабля полоса русская с долами на булатное дело". К концу XVII века искусство изготовления булата, пришло в упадок и постепенно забылось. И вот спустя двести с лишним лет в Златоусте появился булат. "Полоска булата сгибалась без малейшего повреждения, издавала чистый и высокий звон. Отполированный конец крошил лучшие английские зубила, тогда как отпущенный - легко принимал впечатления и отсекался чисто и ровно", - писал Аносов в "Горном журнале".

Уготовленный в Златоусте булатный клинок был золотистого отлива и с крупным сетчатым или коленчатым узором. Знатоки считали, что такой узор - признак высшего сорта булата. Сделанный на Златоустовской фабрике клинок разрубал гвозди и кости, не повреждая лезвие. С помощью этих клинков можно было проделать тот же фокус с тонким газовым покрывалом, которым поразил Саладин короля Ричарда.

Люди так долго бились над загадкой булата, что были крайне удивлены, когда Аносов сообщил, что булатная сталь представляет собою "железо и углерод и ничего более; все дело в чистоте исходных материалов, в методе охлаждения, в кристаллизации".

Булат и в самом деле оказался высокоуглеродистой сталью без каких-либо особых примесей, являясь продуктом естественной кристаллизации стали, полученной при соединении железа и углерода. Сущность образования булата заключалась в насыщении сплава большим количеством углерода (около 1,3-1,5%). При медленном охлаждении образовывалось и находилось в некотором излишке соединение железа с углеродом - так называемый цементит, который не растворялся, как бывает в обычной стали, а оставался в железе как бы во взвешенном состоянии. Прослойки цементита обволакивались медленно стынущим мягким железом. Поэтому при высоком содержании углерода, придающим металлу твердость, булат сохраняет высокую гибкость, упругость, не свойственную обыкновенной стали. Из-за наличия прослоек хрупкого цементита ковка булата должна производиться крайне осторожно, ударами легкого молота, с многократным нагреванием до критической температуры, то есть, до температуры красного каления. Если ее поднять выше, булат потеряет свои основные свойства и свой характерный рисунок. Процесс изготовления булата отличается трудоемкостью, длительностью и требует высокого искусства.

Во время разработки процесса производства булата, Аносов попутно изобрел новый способ получения стали путем сплавления негодных к употреблению железных и стальных обсечков в глиняных горшках, то есть тиглях, при помощи высокой температуры воздушных печей. Наладив на Урале производство тигельной стали, Аносов сообщил, что она ни в чем не уступает английской литой стали.

В наше время булатная сталь не производится. Дело в том, что она была продуктом ремесленного кустарного производства, и имела в общем-то единственное применение - для изготовления холодного оружия. Зато современная техника нашла много способов получения стали самых разнообразных марок с различными свойствами, которыми не обладала булатная сталь. Современной технике нужны металлы и сплавы для работы при давлении в сотни и тысячи атмосфер и при глубоком вакууме, когда давление близко к нулю. Хладостойкие стали должны сохранять прочность при температурах, близких к абсолютному нулю (-273°С). Для атомных реакторов нужен металл с наибольшей магнитопроводимостью, для двигателей реактивных самолетов и ракет - сталь, способная сохранять прочность при очень высоких температурах и большой нагрузке.

bashunter.ru