Техпроцесс — понятие в изготовлении процессоров. Техпроцесс что это
Что такое техпроцесс процессора? | AndroidLime
Рассказываем об одной из главной характеристик мобильных чипсетов.
Процессор современного смартфона — сложный механизм, включающий в себя тысячи компонентов. Такие показатели, как частота и количество ядер, постепенно теряют смысл, а на смену им приходит понятие техпроцесса, характеризующее производительность и энергоэффективность процессора.
Что такое техпроцесс?
Процессор включает в себя тысячи транзисторов, которые пропускают или блокируют электрический ток, что позволяет логическим схемам работать в двоичной системе. Благодаря уменьшению размер транзисторов и расстояния между ними производители добиваются от чипсета большей продуктивности.
Уменьшенные транзисторы потребляют меньше энергии, при этом не утрачивая и производительность. Несмотря на то, что размер транзисторов напрямую не влияет на мощность, этот параметр стоит рассматривать как одну из характеристик, оказывающих влияние на скорость выполнения задач за счет конструктивных изменений в работе устройства. Размер транзистора по сути и характеризует техпроцесс процессоров.
За счет уменьшения расстояния между компонентами процессора уменьшается и объем энергии, которая необходима для их взаимодействия. Благодаря этому чипы с меньшим техпроцессом показывают большую автономность по сравнению с чипами с большим показателем технологического процесса. В отличие от большинства параметров смартфона, чем меньше число, характеризующее техпроцесс, тем лучше. В нашем случае это нанометры (нм).
Развитие техпроцесса в смартфонах
В первой Android-смартфоне HTC Dream (2008 год) процессор работал на 65-нм чипсете. В сегодняшних среднебюджетных моделях этот параметр варьируется в пределах 28-14 нм. Флагманские и игровые смартфоны часто оснащены 14 и даже 10-нм процессорами, поэтому они мощные, энергоэффективные и в меньшей степени подвержены нагреванию. Учитывая, что развитие технологий нацелено на машинное обучение и искусственный интеллект, для достижения новых высот в производительности техпроцесс с большой вероятностью будет уменьшен до 5, а потом и до 1 нм.
Выбирая смартфон, важно отталкиваться не только от количества ядер и тактовой частоты, но и обращать внимание на техпроцесс. Именно этот параметр косвенно укажет на актуальность чипсета, производительность, склонность к перегреву и автономность. На сегодняшний день устройства в среднем ценовом сегменте уже оснащены 14-нм процессорами, что на данный момент можно назвать актуальным и сбалансированным решением для любого современного смартфона.
Заходите на наш канал в Яндекс.Дзене — там собрано самое интересное. Загрузка...androidlime.ru
Что такое технологический процесс процессора и на что он влияет
Все современные вычислительные технологии базируются на основе полупроводниковой электронной техники. Для ее производства используются кристаллы кремния – одного из самых распространенных минералов в составе нашей планеты. С момента ухода в прошлое громоздких ламповых систем и с развитием транзисторных технологий этот материал занял важное место в производстве вычислительной техники.
Центральные и графические процессоры, чипы памяти, различные контроллеры – все это производится на основе кремниевых кристаллов. Уже полвека основной принцип не меняется, совершенствуются только технологии создания чипов. Они становятся более тонкими и миниатюрными, энергоэффективными и производительными. Главным параметром, который при этом усовершенствуется, является техпроцесс.
Что такое техпроцесс
Практически все современные чипы состоят из кристаллов кремния, которые обрабатываются методом литографии, с целью формирования отдельных транзисторов. Транзистор – ключевой элемент любой интегральной микросхемы. В зависимости от состояния электрического поля, он может передавать значение, эквивалентное логической единице (пропускает ток) или нулю (выступает изолятором). В чипах памяти с помощью комбинаций нулей и единиц (положений транзистора) записываются данные, а в процессорах – при переключении производятся вычисления.
В 14-нм технологии (по сравнению с 22-нм) сокращено количество барьеров, увеличена их высота, уменьшено расстояние между диэлектрическими ребрами
Технологический процесс – это процедура и порядок изготовления какой-либо продукции. В электронной промышленности, в общепринятом значении, это величина, которая указывает на разрешающую способность оборудования, применяемого при производстве чипов. От нее также напрямую зависит размер функциональных элементов, получаемых после обработки кремния (то есть, транзисторов). Чем чувствительнее и точнее оборудование используется для обработки кристаллов под заготовки процессоров – тем тоньше будет техпроцесс.
Что значит числовая величина техпроцесса
В современном полупроводниковом производстве наиболее распространена фотолитография – вытравливание элементов на кристалле, покрытом диэлектрической пленкой, с помощью воздействия света. Именно разрешающая способность оптического оборудования, излучающего свет для вытравливания, и является техпроцессом в общепринятом толковании этого слова. Это число указывает, насколько тонким может быть элемент на кристалле.
Фотолитография – вытравливание элементов на кристалле
На что влияет техпроцесс
Техпроцесс напрямую сказывается на количестве активных элементов полупроводниковой микросхемы. Чем тоньше техпроцесс – тем больше транзисторов поместится на определенной площади кристалла. В первую очередь это значит увеличение количества продукции из одной заготовки. Во вторую – снижение потребления энергии: чем тоньше транзистор – тем меньше он расходует энергии. Как итог, при равном количестве и структуре размещения транзисторов (а значит, и увеличения производительности) процессор будет меньше расходовать энергию.
Минусом перехода на тонкий техпроцесс является удорожание оборудования. Новые промышленные агрегаты позволяют делать процессоры лучше и дешевле, но сами набирают в цене. Как следствие, лишь крупные корпорации могут вкладывать миллиарды долларов в новое оборудование. Даже такие известные компании, как AMD, Nvidia, Mediatek, Qualcomm или Apple самостоятельно процессоров не делают, доверяя это задание гигантам вроде TSMC.
Что дает уменьшение техпроцесса
При уменьшении технологического процесса производитель получает возможность поднять быстродействие, сохранив прежние размеры чипа. К примеру, переход с 32 нм на 22 нм позволил вдвое увеличить плотность транзисторов. Как следствие, на том же кристалле, что раньше, стало возможным размещение не 4, а уже 8 ядер процессора.
Для пользователей главное преимущество заключается в снижении энергопотребления. Чипы на более тонком техпроцессе требуют меньше энергии, выделяют меньше тепла. Благодаря этому можно упростить систему питания, уменьшить кулер, меньше внимания уделить обдуву компонентов.
Схематический прогноз изменения техпроцесса в будущем
Техпроцесс процессоров на смартфонах
Смартфоны требовательны к аппаратным ресурсам и быстро расходуют заряд аккумулятора. Поэтому, для замедления расхода разряда, разработчики процессоров для мобильных устройств стараются внедрять в производство самые новые техпроцессы. К примеру, некогда популярные двухъядерники MediaTek MT6577 производились по техпроцессу 40 нм, а Qualcomm Snapdragon 200 ранних серий изготавливались по 45-нанометровой технологии.
В 2013-2015 годах основным техпроцессом для чипов, используемых в смартфонах, стал 28 нм. MediaTek (вплоть до Helio X10 включительно), Qualcomm Snapdragon серий S4, 400, а также модели 600, 602, 610, 615, 616 и 617 – это все 28 нм. Он же использовался и при изготовлении Snapdragon 650, 652, 800, 801, 805. «Горячий» Snapdragon 810, что интересно, был выполнен по более тонкому техпроцессу 20 нм, но это ему не сильно помогло.
Apple в своем A7 (iPhone 5S) тоже обходилась 20-нанометровой технологией. В Apple A8 для шестого Айфона применили 20 нм, а в модели A9 (для 6s и SE) уже используется новый 16 нм технологический процесс. В 2013-2014 годах Intel делали свои Atom Z3xxx по 22-нанометровой технологии. С 2015 года в производство запустили чипы с 14 нм.
Следующим шагом в развитии процессоров для смартфонов является повсеместное освоение техпроцессов 14 и 16 нм, а дальше стоит ожидать 10 нм. Первыми экземплярами на нем могут стать Qualcomm Snapdragon 825, 828 и 830.
mobcompany.info
Что такое техпроцесс в процессоре: важность размер кристалла
Доброго времени суток.
Давайте вместе приоткроем завесу такого сложного дела как производство CPU для компьютеров. В частности, из этой статьи вы узнаете, что такое техпроцесс в процессоре и почему с каждым годом разработчики стараются его уменьшить.
Как изготавливаются процессоры?
Для начала вам стоит знать ответ на данный вопрос, чтобы дальнейшие разъяснения были понятны. Любая электронная техника, в том числе и CPU, создается на основе одного из наиболее часто используемых минералов — кристаллов кремния. Причем применяется он в данных целях уже более 50 лет.
Кристаллы обрабатываются посредством литографии для возможности создания отдельных транзисторов. Последние являются основополагающими элементами чипа, так как он полностью состоит из них.
Функция транзисторов заключается в блокировке или пропуске тока, в зависимости от актуального состояния электрического поля. Таким образом, логические схемы работают по двоичной системе, то есть в двух положениях — включения и выключения. Это значит, что они либо пропускают энергию (логическая единица), либо выступают в роли изоляторов (ноль). При переключении транзисторов в CPU производятся вычисления.
Теперь о главном
Если говорить обобщенно, то под технологическим процессом понимается размер транзисторов.
Что это значит? Снова вернемся к производству процессоров.
Чаще всего применяется метод фотолитографии: кристалл покрыт диэлектрической пленкой, и из него вытравливаются транзисторы с помощью света. Для этого используется оптическое оборудование, разрешающая способность которого, по сути, и является техническим процессом. От ее значения — от точности и чувствительности аппарата — зависит тонкость транзисторов на кристалле.
Что это дает?
Как вы понимаете, чем они будут меньше, тем больше их можно расположить на чипе. Это влияет на:
- Тепловыделение и энергопотребление. Из-за уменьшения размера элемента он нуждается в меньшем количестве энергии, следовательно, и меньше выделяет тепла.Данное преимущество позволяет устанавливать мощные CPU в небольшие мобильные устройства. Кстати, благодаря низкому энергопотреблению современных чипов, планшеты и смартфоны дольше держат заряд. Что касается ПК, пониженное тепловыделение дает возможность упростить систему охлаждения.
- Численность заготовок. С одной стороны, производителям выгодно уменьшать техпроцесс, потому что из одной заготовки получается большее количество продукции. Правда, это лишь следствие утончения техпроцесса, а не преследование выгоды, потому что с другой стороны, чтобы снизить размер транзисторов, необходимо более дорогое оборудование.
- Производительность чипа. Чем больше он будет иметь элементов, тем быстрее будет работать, при том, что его физический размер останется прежним.
Техпроцесс в числах и примерах
Измеряется технологический процесс в нанометрах (нм). Это 10 в -9 степени метра, то есть один нанометр является миллиардной его частью. В среднем, современные процессоры производятся по техпроцессу 22 нм.
Можете себе представить, сколько транзисторов умещается на процессоре. Чтобы вам было понятнее, на площади среза человеческого волоса могут разместиться 2000 элементов. Хоть чип и миниатюрный, но явно больше волоска, поэтому может включать в себя миллиарды транзисторных затворов.
Хотите знать точнее? Приведу несколько примеров:
- В процессорах фирмы AMD, а именно Trinity, Llano, Bulldozer, техпроцесс составляет 32 нм. В частности, площадь кристалла последнего — 315 мм2, где располагаются 1,2 млрд. транзисторов.Phenom и Athlon того же производителя выполнены по техпроцессу 45 нм, то есть имеют 904 млн. при площади основания 346 мм2.
- У компании Intel есть чипы по стандарту 22 нм — это семейство Ivy Bridge (Intel Core ix — 3xxx). Для наглядности: Core i7 – 3770K обладает 1,4 млрд. элементов, при том, что размер его кристалла всего 160 мм.У этого же бренда есть и 32-нанометровая продукция. Речь идет об Intel Sandy Bridge (2xxx). На площади 216 мм2 она умещает 1,16 млрд. транзисторов.
К слову, все, что вы узнали о техпроцессах для центральных компьютерных аппаратов, применимо и к графическим устройствам. Например, данное значение в видеокартах AMD (ATI) и Nvidia составляет 28 нм.
Теперь вы знаете больше о таком важном компоненте вашего компьютера как процессор. Возвращайтесь за новой информацией.
До скорого.
profi-user.ru
ВИДЫ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ
Основы ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ
Технологические процессы по уровню обобщения делятся на два вида: единичный и типовой.
Единичный технологический процесс применим только для изготовления одного конкретного изделия, а типовой технологический процесс - для изготовления группы схожих изделий.
Единичный технологический процесс - это процесс изготовления или ремонта изделия одного наименования, типоразмера и исполнения, независимо от типа производства.
К преимуществам единичного технологического процесса относятся, с одной стороны, возможность учета всех особенностей данного изделия, а с другой стороны, наиболее эффективного изготовления изделия за счет учета конкретных производственных условий (имеющегося технологического оборудования, приспособлений, инструментальной оснастки, квалификации рабочих и т. п.).
Наряду с преимуществами единичный технологический процесс имеет и недостатки. Для его разработки требуются большие затраты времени и труда.
Затраты времени на разработку технологического процесса могут во много раз превышать затраты времени на его осуществление. Если изготавливается большое число изделий, то доля затрат времени на разработку технологического процесса, приходящаяся на одно изделие, будет незначительной, но при небольшом выпуске изделий эта доля резко возрастет. В этом случае разрабатывают укрупненный технологический процесс, например, создают лишь маршрутное описание технологического процесса, в которое включают последовательность операций и оборудование, но без указаний переходов и режимов процесса. Все остальное предоставляется решать непосредственно рабочему, который должен иметь соответствующую квалификацию. По мере роста объема выпускаемой продукции разработку технологического процесса проводят более подробно.
В единичном производстве высокая продолжительность разработки технологического процесса нередко входит в противоречие с продолжительностью самого процесса. Чем тщательней и подробней разрабатывается единичный технологический процесс, тем больше времени требуется для его разработки и тем выше должна быть квалификация технолога. Однако в определенных условиях затраты времени на разработку процесса становятся значительно больше затрат времени на его осуществление Иллюстрацией такого положения может служить технологический процесс изготовления деталей на станке с ЧПУ, где его разработка отличается большой тщательностью и подробностью. Так, к примеру, документация технологического процесса изготовления детали на станке с ЧПУ содержит карту наладки, операционно-техническую карту, схему движения инструментов, операционную расчетно-техническую карту, карту программирования, чертежи специального инструмента и оснастки. Все это приводит к росту трудоемкости разработки операции; например, только разработка управляющей программы и ее отладка для деталей высокой сложности требует нескольких рабочих дней технолога-программиста, в то время как обработка небольшой партии таких деталей может уложиться в одну рабочую смену.
Проектирование единичного технологического процесса отличается большим числом возможных решений по каждому изделию, подлежащему изготовлению. Поэтому в условиях единичного производства при сравнительно малом времени, отводимом на разработку процесса, возможность подкрепления принимаемых решений объективными технико- экономическими расчетами очень ограничена.
В массовом производстве высокая трудоемкость тщательной разработки единичного технологического процесса оказывается оправданной, так как ее величина несопоставимо мала по сравнению с трудоемкостью изготовления всего объема изделий данного наименования. Оправдывает себя в массовом производстве и применение специального оборудования, оснастки, отличающиеся высокопроизводи ч-льными рабочими процессами.
Недостатки еДИНИЧНОЙ ТеХНОЛОГИИ В массовом ПрОИЗВОДС і І. Н' проявляются в большой длительности технологической подго: производства, обусловленной необходимостью создания специальных технологических средств.
Широкое применение единичной технологии в масштабе всего машиностроительного производства страны приводит к большим потерям. Дело в том, что в среднем изготавливаемые изделия состоят примерно на 70 % из общемашиностроительных узлов и деталей, близких по своему конструктивному строению. Но на тысячах машиностроительных предприятий их изготавливают по единичным технологическим процессам, мало отличающимся по эффективности друг от друга, но зачастую использующим оригинальную оснастку, а в крупносерийном и массовом производстве - и оригинальное технологическое оборудование. При этом прогрессивные высокоэффективные решения, разработанные на каком - либо одном предприятии и потребовавшие больших затрат труда, теряются в огромном разнообразии разработок и практически не находят применения на других предприятиях.
Все перечисленные негативные стороны единичной технологии послужили причиной поиска нового вида технологии, свободной от этих недостатков. Первым шагом в этом направлении явилась разработка типовой технологии, когда в 30-е годы XX века проф. А. П. Соколовский 1111 высказал идею типизации технологических процессов.
Типовой технологический процесс характеризуется единством содержания и последовательности большинства технологических операций для группы изделий с общими конструктивными признаками.
В основе типовой технологии лежит классификация изделий на классы - подклассы - группы - подгруппы - типы. Тип представляет со - |><>й группу схожих изделий, среди которых выбирается типовой представитель, обладающий наибольшей совокупностью свойств изде - Iіий, вошедших в эту группу. На типовой представитель разрабатывается пшовой технологический процесс, по которому осуществляется изготов - неиие всех изделий этого типа. В случае отсутствия в конкретном изде - ііии гой или иной характеристики (например, какой-то поверхности) при (ииработке рабочего процесса соответствующая операция из типового процесса исключается.
Тем самым типовой процесс в определенной степени разрешает противоречие между большими затратами времени на разработку процесса и малыми сроками на изготовление изделия, так как затраты времени на разработку рабочего технологического процесса для изготовления конкретного изделия резко сокращаются. Разрабатывая на группу деталей, близких по своему конструктивному оформлению, один типовой процесс, можно разработать более совершенный процесс, так как на его проектирование можно затратить больше времени и средств. Пользуясь типовым процессом, рабочий технологический процесс на деталь из группы будет разработан достаточно быстро и качественно.
Типовые процессы позволяют избегать повторных и новых разработок при проектировании рабочих технологических процессов, вследствие чего облегчается труд технолога и сокращаются затраты времени на разработку.
Важное обстоятельство: типовой технологический процесс, приобретая универсальность, одновременно теряет черты индивидуальности. Действительно, типовой технологический процесс изготовления деталей разрабатывается под группу конструктивно схожих деталей, вошедших в один тип. По этому типовому процессу изготавливаются все детали группы, несмотря на то, что они чем-то отличаются друг от друга. В этом и заключается универсальность типового технологического процесса.
Потеря индивидуальности типового процесса заключается в том, что он не учитывает отмеченные выше различия, специфику изделий, вошедших в один тип. Как известно, в каждом типе из группы деталей выбирают типовую деталь, которая отличается наиболее часто встречающимися конструктивными формами, размерами, требованиями к точности и другими показателями качества. Типовая деталь, как правило, наиболее сложная из всех деталей, вошедших в данный тип. Поэтому если бы для каждой детали из этой группы разработать единичный технологический процесс, то он был бы более эффективным, чем типовой процесс, так как он учитывает все особенности детали (иными словами, потеря индивидуальности не позволяет типовому процессу стать оптимальным для каждой детали данной группы).
Чем больше изделия в группе отличаются по своему конструктивному оформлению и требованиям к качеству, тем сильнее отличается типовой процесс от оптимального. Это является одним из ограничений расширения группы изделий под один типовой технологический процесс. В результате изготавливаемые изделия приходится делить на большее число типов, что приводит к росту числа типовых процессов и снижает эффективность типизации.
В целом типовая технология способствует:
1) сокращению разнообразия технологических процессов и внесению однообразия в изготовление сходных изделий:
2) внедрению и распространению передового опыта и достижений науки и техники;
3) упрощению разработки рабочих технологических процессов и сокращению затрат времени на их разработку;
4) сокращению разнообразия средств технологического оснащения технологических процессов;
5) разработке новых высокоэффективных технологических процессов.
Эффективность единичной и типовой технологий будет разной в зависимости от типа производства. В массовом производстве эффективнее применять единичный технологический процесс, так как он позволяет создать оптимальный технологический процесс, дающий в итоге высокий суммарный экономический эффект.
По мере роста разнообразия выпускаемых изделий, снижения серийности их выпуска, величин партий увеличиваются потери времени, связанные с частыми переналадками технологического оборудования и оснастки. В итоге снижается эффективность производства, повышается себестоимость изготовления изделий. И чем шире выпускаемая номенклатура изделий и меньше их серийность, тем ниже эффективность производства.
В этих условиях возникла задача группирования изделий, отличающихся однородностью технологии изготовления, что позволяет снизить число переналадок оборудования и увеличить размеры партий, поступающих на обработку.
В результате решения этой задачи появился новый вид технологии - групповая технология, основоположником которой является проф. С. П. Митрофанов [9].
Если типовая технология направлена на сокращение трудоемкости технологической подготовки производства, повышение эффективности технологических процессов и распространение прогрессивных решений, го групповая технология предназначена для повышения эффективности производственного процесса.
Групповой технологический процесс - это процесс изготовления группы изделий с разными конструктивными, но общими технологическими признаками.
Групповой процесс нашел применение в мелкосерийном и серийном производстве. Принципиальная сущность групповой технологии заключается, прежде всего, в группировании изделий в технологические группы по технологическому подобию.
Групповой технологический процесс разрабатывают на комплексное изделие. В отличие от типового изделия комплексное изделие является "собирательным", часто не существующим в действительности, объединяющим в себе черты большинства изделий, вошедших в группу. Для комплексного изделия разрабатывается технологический процесс и все изделия этой группы, будучи, как правило, проще комплексного изделия, изготовляют по данному технологическому процессу, пропуская отдельные технологические переходы. Все изделия, закрепленные за этим технологическим процессом, изготовляют партиями.
В качестве комплексного изделия технологической группы служит какое-то изделие из группы или искусственно созданное изделие. Например, комплексная деталь формируется следующим образом: берется наиболее сложная деталь, которая включает все поверхности других деталей и, если она не содержит всех поверхностей, содержащихся в других деталях группы, то к ней искусственно добавляют недостающие поверхности.
Различают групповую операцию и групповой технологический процесс. Групповая технологическая операция разрабатывается для выполнения технологически однородных работ при изготовлении группы изделий на специализированном рабочем месте при условии возможности частичной подналадки технологической системы. Групповой технологический процесс представляет собой комплекс групповых технологических операций, выполняемых на специализированных рабочих местах в последовательности технологического маршрута группы изделий, элементов.
Применение групповой технологии особенно эффективно тогда, когда на ее основе в серийном и мелкосерийном производствах удается создать групповые поточные или даже автоматические линии изготовления изделий или деталей отдельных групп. Создание подобных линий обычно основано на сочетании принципов типизации технологических процессов и групповой обработки, т. е. когда применяется типовой маршрут (например, при обработке заготовок по отдельным групповым операциям, выполняемым на станках с групповыми настройками, и при широком использовании групповых переналаживаемых приспособлений).
Применение групповой технологии тем эффективней, чем больше технологическая группа.
При внедрении групповой технологии возникают трудности, связанные с организацией больших технологических групп не только в связи со сложностью в построении групповых наладок и приспособлений, но и из-за необходимости учета календарного планирования по выпуску изделий.
Изделия, изготавливаемые по групповой технологии, хотя и похожи, но имеют и различия, поэтому за редким исключением избавиться полностью от переналадки оборудования не удается.
По мере расширения номенклатуры деталей в группе при разработке групповой наладки возрастают ее сложность, количество позиций и время простоя инструментальных позиций. Это ограничивает номенклатуру деталей в группе приводит к росту числа групп и, следовательно, увеличению числа групповых технологических процессов (операций).
Групповая технология оправдывает себя при условии многократного повторения выпуска данной технологической группы изделий. Если повторяемость отсутствует или незначительна, то дополнительные затраты на технологическую подготовку, которые значительно выше по сравнению с единичной технологией, себя не окупают (примером эффективного применения групповой технологии может служит авиационная промышленность, где имеет место высокая повторяемость групп).
Практика внедрения типовых и групповых технологических процессов показывает, что, несмотря на очевидные преимущества, доля их внедрения невысока и до сих пор доминирует единичная технология. Одной из главных причин этого является недосток классификации изделий на типы, группы, которыми пользуются при разработке типовых и групповых процессов. Анализ этих классификаций показывает, что в обоих случаях в явном или неявном виде в качестве отличительных признаков выступают не конструктивные, а технологические характеристики. Это приводит к тому, что на предприятиях, различающихся составом технологических средств и квалификацией работников, одна и та же номенклатура изделий будет разбита на разные группы. С другой стороны, стоит изменить на предприятии применяемую технологию и оборудование, как придется изменять типы и группы. Чтобы свести к минимуму эти недос - іатки, надо классифицировать изделия на группы не по технологическим, а конструктивным признакам, что позволит сократить разнообразие типовых и групповых процессов и расширить область их применения. Подводя итог анализу различных видов технологического процесса, можно отметить следующее: применение единичного процесса позволяет разрабатывать оптимальные процессы, но это приводит к большим затратам времени на их разработку;
Применение типового технологического процесса снижает объем и сроки технологической подготовки производства, но не обеспечивает оптимального процесса для каждой детали одного типа;
Применение группового технологического процесса хотя и увеличивает размер партии, но требует повторяемости выпуска изделий, что существенно снижает область его эффективного применения.
Все три вида технологии не обладают гибкостью, так как не позволяют изменять в случае надобности маршрут.
Одной из главных причин недостатков всех видов технологических процессов является описание изделия на геометрическом уровне, когда деталь представляется совокупностью элементарных геометрических поверхностей, а сборочная единица - совокупностью деталей как геометрических тел.
Это приводит к тому, что технолог, разрабатывая технологический процесс, стремится изготавливать на операциях такие совокупности поверхностей, которые позволяют достичь наибольшей производительности. Однако при этом часто нарушаются связи между поверхностями, обусловленные совместным выполнением функций детали. В результате, во-первых, появляется многовариантность технологического процесса из - за большого числа комбинаций поверхностей, изготавливаемых на операциях, а во-вторых, из-за изготовления функционально связанных поверхностей на разных операциях возникают сложные технологические размерные связи, приводящие к необходимости введения дополнительных операций.
Все это приводит к необоснованному разнообразию технологических процессов, повышению трудоемкости их разработки, вызывают трудности в типизации технологических процессов и в группировании деталей при разработке групповых процессов.
Если же деталь описывать функциональными блоками в виде модулей поверхностей, объединенных совместным выполнением служебных функций, то геометрический признак становится вторичным, а элементарные поверхности входят в состав модулей поверхностей и не являются самостоятельными объектами при разработке технологических процессов.
Учитывая ограниченную номенклатуру МП и их высокую повторяемость, можно существенно снизить разнообразие технологических операций по составу изготавливаемых МП. В итоге упростится разработка технологических процессов, их типизация и группирование деталей при использовании групповых процессов.
Все изложенное справедливо и для сборочных технологических процессов, если сборочную единицу рассматривать как совокупность модулей соединения.
С целью реализации изложенных преимуществ описания изделия как совокупности МП и МС, следует рассматривать построение технологического процесса как компоновку из модулей изготовления МП (МС), входящих в состав детали (сборочной единицы).
В связи с этим процесс получил название м
msd.com.ua
Что такое "техпроцесс" в видеокартах и процессорах и какая нам от него польза ?
чем меньше техпроцесс, тем ниже тепловыделение, тем меньше энергопотребление сл-но ниже температура. ну и еще вроде количество транзисторов может быть выше (конечно зависит от модели, но теоретический максимум больше чем меньше техпроцесс)
В нанометрах определяется размер. Чем меньше техпроцесс - тем больше "начинки" влезет в процессор.
Смысл в том кристаллы меньше, а значит потребляют меньше тока и выдают меньше тепла, у 6600 это 130 ватт а у 9550 это 95 ватт
Чем выше нанотехнологии, тем меньше цифра (в нанометрах) , тем экономичней и больше быстродействие.. . Нам, рядовым пользователям, остается только ждать и, не спешить "впереди паровоза"!
touch.otvet.mail.ru
Технологический процесс. Техпроцесс
Технологический процесс, он же техпроцесс, а еще точнее технологический процесс полупроводникового производства.Раньше технологические нормы изготовления процессора волновала только производителей. Но как видно из хронологии событий производители уменьшают нормы производства процессоров практически каждый годов. А все от того, что производитель должен уменьшать нормы производства для снижения тепловыделения, а также для повышается производительности.Поэтому технологический процесс производства становится довольно важным параметром при выборе процессора. Ведь чем меньше техпроцесс, тем меньше энергопотребление процессора (и как следствие не нужен мощный и шумный кулер), повышается быстродействие процессора, увеличивается количество транзисторов на одинаковой площади.
- 90 нм – технологический процесс, соответствующий уровню технологии, достигнутому к 2002-2003 году
- 65 нм – технологический процесс, соответствующий уровню технологии, достигнутому к 2004 году
- 50 нм – технологический процесс, соответствующий уровню технологии, достигнутому к 2005 году
- 45 нм – технологический процесс, соответствующий уровню технологии, достигнутому к 2006-2007 году
- 32 нм – технологический процесс, соответствующий уровню технологии, достигнутому к 2009-2010 году
- 22 нм – производство должно начаться в конце 2012 году. Процессоры с архитектурой Intel скорее всего выпустит с интегрированным графическим ядром с архитектурой Larrabee.
- 8 нм – как планирует компания Intel, что бы перейти на изготовление процессоров с применением техпроцесса 8 нм, необходимо перейти на технологию “полупроводников III-V” (III-Vs), материал для выпуска транзисторов нового поколения. А название – это состав химических элементов с валентностями III и V.
- 5 нм – если будет нормальное развитие методик массового производства, то перейти на 5-нм проектные нормы возможно будет в 2019 году, основой будут полевые транзисторы с применением углеродных нанотрубок (Carbon nanotube FET).
Компания Intel придерживается стратегии развития технологий под названием «tick-tock», под ней подразумевается переход, при улучшении технологии, от старой архитектуры («tick») к новой «tock», один раз в два года.Если сравнивать нормы 65 нм и 45 нм, то на одинаковых площадях размещается вдвое большее транзисторов. При этом уменьшается на 30% рассеивание мощности при переключении, а также на 20% увеличение скорости переключения транзистора. Также, в 5 раз сокращается ток утечки от истока к стоку и в 10 — ток утечки сквозь затвор транзистора. В два раза увеличилось количество транзисторов, тем самым повысилась производительность. Увеличился объем кэш-памяти второго уровня (L2) на 50%.
Самый первый транзистор, изготовленный учеными Bell Labs в 1947 году, по размеру был как человеческая ладонь, а 45-нм транзистор от Intel в 400 раз меньше красной кровяной клетки человека.Но в производстве постоянно уменьшение техпроцесса приводит к некоторым затруднениям. Толщина компонента транзистора отвечающая за прохождение электронов, иначе говоря толщина диэлектрика затвора, у процессора изготовленного по техпроцессу в 65 нм, составляет всего 1.2 нм. Более 30 лет материалом диэлектрика затвора был диоксид кремния, молекула его состоит 1 атома кремния и 2 атомов кислорода. Толщина в 1.2 нм равна пяти атомарным слоям. И такой тонкий изолятор физически не в состоянии удержать токи утечки. Если диэлектрик затвора меньше 1 нм, ток утечки повышается экспоненциально.
Эту проблему решила компания Intel, как не сложно понять решением проблемы стала замена диоксида кремния, на более качественный материал используемый для изготовления диэлектрика затвора. Так называемый изолятор high-k, изготовленный на основе гафния и обладающий высокой степенью диэлектрической проницаемости. При использовании диэлектрика high-k получилось достичь увеличения полевого эффекта транзистора и уменьшить слой диэлектрика, вместе с уменьшением тока утечки через затвор.
hardwareguide.ru
ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС - это... Что такое ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС?
ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС - совокупность технологических операций.Экономический словарь. 2010.
Экономический словарь. 2000.
- ТЕХНОЛОГИЧЕСКАЯ КАРТА
- ТЕХНОЛОГИЧЕСКОЕ ПРОГНОЗИРОВАНИЕ
Смотреть что такое "ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС" в других словарях:
технологический процесс — (production): Операции, включающие в себя приемку исходных материалов, их обработку, упаковку и получение готовой АФС. Источник: ГОСТ Р 52249 2009: Правила производства и контроля качества лекарственных средств … Словарь-справочник терминов нормативно-технической документации
Технологический процесс — (ТП), сокр. техпроцесс это упорядоченная последовательность взаимосвязанных действий, выполняющихся с момента возникновения исходных данных до получения требуемого результата. Технологический процесс это часть производственного… … Википедия
технологический процесс — процесс Часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда. Примечания 1. Технологический процесс может быть отнесен к изделию, его составной части или к методам… … Справочник технического переводчика
Технологический процесс — последовательность технологических операций, необходимых для выполнения определенного вида работ. Технологический процесс состоят из рабочих операций, которые в свою очередь складываются из рабочих движений (приемов). См. также: Технологии… … Финансовый словарь
Технологический процесс — это часть производственного процесса, содержащая целенаправленные действия по изменению и (или) определению состояния предмета труда. К предметам труда относят заготовки и изделия. [ГОСТ 3.1109 82] Технологический процесс – часть… … Энциклопедия терминов, определений и пояснений строительных материалов
Технологический процесс — Часть производственного процесса, связанная с действиями, направленными на изменение свойств и (или) состояния обращающихся в процессе веществ и изделий. Источник: ГОСТ Р 12.3.047 98 EdwART. Словарь терминов и определений по средствам охранной и… … Словарь черезвычайных ситуаций
ТЕХНОЛОГИЧЕСКИЙ ПРОЦЕСС — совокупность физико химических или физико механических превращений веществ, изменение значений параметров тел и материальных сред, целенаправленно проводимых на технологическом оборудовании или в аппарате (системе взаимосвязанных аппаратов,… … Российская энциклопедия по охране труда
Технологический процесс — последовательность технологических операций, необходимых для выполнения определенного вида работ. Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов
Технологический процесс — (Process) Определение технологического процесса, типы технологического процесса Определение технологического процесса, типы технологического процесса, правила процесса Содержание Содержание Определение . Понятие технологического процесса Основные … Энциклопедия инвестора
Технологический процесс — 3.13. Технологический процесс: Процесс, реализующий некоторую технологию... Источник: Стандарт Банка России Обеспечение информационной безопасности организаций банковской системы Российской Федерации. Общие положения СТО БР ИББС 1.0 2010 (принят… … Официальная терминология
Книги
- Проектирование технических систем производства биогаза в животноводстве. Учебное пособие, Александров Игорь Юрьевич, Земсков Виктор Иванович. В пособии рассмотрены современное состояние методов переработки органических отходов, технологические факторы, оказывающие влияние на процесс производства биогаза. Большое внимание отведено… Подробнее Купить за 2267 руб
- Проектирование технических систем производства биогаза в животноводстве. Учебное пособие. Гриф Министерства сельского хозяйства РФ, Александров Игорь Юрьевич, Земсков Виктор Иванович. В пособии рассмотрены современное состояние методов переработки органических отходов, технологические факторы, оказывающие влияние на процесс производства биогаза. Большое внимание отведено… Подробнее Купить за 1447 грн (только Украина)
- Проектирование технических систем производства биогаза в животноводстве. Учебное пособие, Земсков В., Александров И.. В пособии рассмотрены современное состояние методов переработки органических отходов, технологические факторы, оказывающие влияние на процесс производства биогаза. Большое внимание отведено… Подробнее Купить за 1412 руб
dic.academic.ru