Сварочные флюсы для качественной сварки. Флюс для сварки стали


Сварка под флюсом - специфика и область применения

В некоторых случаях при неразъемных соединениях деталей методом сварки находящиеся вокруг сварочной зоны газы, в частности, воздух и окись углерода, ухудшают проведение процесса, а само соединение оказывается непрочным. Снижается и производительность сварочных работ. Преодолеть эти негативные последствия помогает сварка под флюсом.

Виды и предназначение сварочных флюсов

Под сварочными флюсами понимают неметаллические минеральные вещества, которые при сварке решают следующие задачи:

  1. Стабилизируют горение сварочной дуги (особенно при сложных конфигурациях шва).
  2. Улучшают формирование сварного шва.
  3. Изменяют химический состав металла в зоне шва.
  4. Снижают энергетические потери и износ электродов.
  5. Позволяют повысить производительность процесса, поскольку возможно использовать автоматизированное оборудование для сварки под флюсом — так называемые сварочные тракторы.

Классификация данных материалов может быть выполнена по следующим параметрам:

  • По назначению. Различают флюсы для сварки сталей как нелегированных, так и легированных, для сварки цветных металлов, флюсы для пайки и т.д.
  • По химическому составу;
  • По технологии сварки;
  • По технологии приготовления.

Рассматриваемые составы могут быть универсальными, а также специально разработанными под особые условия сварки. В частности, для автоматической сварки под слоем флюса требуется использовать составы, полностью отвечающие требованиям ГОСТ 9087. Этим стандартом оговаривается определенная зависимость между размерами частиц флюса и диаметром сварочной проволоки.

Для выполнения сварки под флюсом используются вещества, получаемые либо плавлением, либо механическим соединением необходимых компонентов с последующим их склеиванием. В первом случае флюсы называют плавлеными, во втором — неплавлеными.

Основная минеральная составляющая любого флюса — двуокись кремния. Ее количество колеблется в пределах 35…80% (иногда часть кремнезема заменяется плавиковым шпатом). Остальное содержание низкокремнистых флюсов — марганец, а также металлы, при помощи которых происходит дополнительное легирование зоны шва. Марганец обладает большим сродством к кислороду, а потому, активно взаимодействуя с ним, снижает окислообразование в зоне сварки. Одновременно снижается вероятность проникновения в состав шва хрупких соединений серы: марганцем они связываются в сульфид, который затем удаляется с поверхности готового шва. Кремний не только упрощает приготовление флюса, но и снижает образование пор, поскольку угнетает процесс окисления углерода при температурах горения сварочной дуги.

Плавленые сварочные флюсы производят по следующей технологии. Компоненты размалывают до требуемых размеров частиц (чем меньше диаметр сварочной проволоки, тем меньшими они должны быть), затем тщательно перемешивают и расплавляют в печах с безокислительной атмосферой. Завершающим этапом приготовления является гранулирование флюса. Оно заключается в пропускании нагретых частиц через непрерывный водный поток, в результате чего частицы затвердевают и получают округлую форму, причем от интенсивности потока будущего гранулята зависят его размеры. После сушки и просеивания на виброситах с различными размерами ячеек, флюс разделяется на фракции и считается готовым к применению.

Неплавленые флюсы получают перемешиванием необходимых компонентов и последующим их связыванием при помощи жидкого стекла. Их технологические характеристики несколько ниже плавленых.

Таким образом, выбор марки сварочного флюса полностью определяется условиями его использования. Технологи не советуют увлекаться универсальными веществами, рекомендуя их к применению лишь для соединения деталей, которые в процессе своей эксплуатации не подвергаются значительным изгибающим, а также вибрационным нагрузкам.

Механизм работы флюсов при сварке

Перед началом работ стыкуемые поверхности металла покрываются сплошным слоем флюса толщиной не менее 40-50 мм. Сварочный электрод вводится вовнутрь, после чего возбуждается сварочная дуга. Поскольку температура в зоне горения дуги превышает 5500-6000 0С, то флюс внутри газового пузыря расплавляется, и накрывает сверху металлический расплав. Это происходит потому, что плотность флюса намного меньше плотности металла. Таким образом, зона сварного шва надежно ограждается от водяных и газовых паров и прочих химических веществ, которые при высокой температуре способны насыщать поверхностные слои металла вредными веществами.

Применение сварного флюса позволяет также снизить потери металла на разбрызгивание. Это становится возможным вследствие большого поверхностного натяжения расплава флюса, которое достигает значений в 8-10 г/см2. Поэтому применение сварочных флюсов позволяет увеличивать ток дуги без ущерба для качества готового шва. Например, обычным режимом для сварки под флюсом считается применение силы тока 1000-2000 А, в то время, как в обычном процессе увеличение тока до 200-300 А приводит к серьезным потерям материала электрода. Поэтому в химическом составе сварочной проволоки с флюсом часто присутствуют дефицитные легирующие компоненты — вольфрам, хром, кобальт и пр.

Механизм формирования сварного шва при сварке под слоем флюса следующий. Поскольку концентрация тепловой мощности в зоне дуги из-за воздействия флюса увеличивается, расплавление металла происходит быстрее. В результате, независимо от состояния кромок, полностью заполняются все стыки. Меняется и материальный баланс шва: 60-65% составляет металл соединяемых деталей, и лишь остальное — материал сварочных электродов. При автоматической сварке это сопровождается заметным повышением производительности процесса.

Эффективная сварка некоторых металлов (алюминия, высокоуглеродистых и легированных сталей) без применения флюса вообще невозможна. В частности, флюс для сварки алюминия включает в себя, помимо традиционных компонентов, также и вещества, раскисляющие металл. Дело в том, что индивидуальная особенность алюминия — образование высокостойкой окисной пленки — снижает производительность сварки и вынуждает применять более высокие сварочные токи.

Особую роль при сварке играют магнитные флюсы. Они относятся к категории неплавленых, но дополнительно включают в себя железный порошок. Производительность сварки при этом возрастает. При повышенных температурах процесса наличием проволоки для полуавтомата, содержащей магнитный флюс, создается сильное магнитное поле. Оно сокращает расстояние между флюсом и металлом который подвергается сварке. Поэтому потери флюсовой проволоки уменьшаются.

Таким образом, сварочные флюсы способствуют повышению экономичности, производительности и качества сварки.

Оснастка для производства сварки под флюсом

Наибольший эффект от сварочных работ под слоем флюса обеспечивает применение сварочных полуавтоматов и автоматов. Во флюсоподающее устройство входят:

  1. Бункер.
  2. Подающая трубка.
  3. Пневмоотсос.
  4. Привод для вакуумного насоса (в некоторых исполнениях сварочных тракторов используется привод от промышленной пневматической сети).
  5. Фильтрующий циклон.

Флюсаппарат работает так. В эжекторе, который является основой узла для подачи флюса, создается необходимое разрежение воздуха. В результате смесь флюса с воздухом попадает в шланг сварочного аппарата. Мощность всасывающего насоса подбирается таким образом, чтобы в подающей трубке создавалась скорость потока частиц материала не ниже 20-25 м/с: в этом случае флюс, независимо от размера частиц, будет находиться во взвешенном состоянии. Благодаря профилю эжектора, скорость частиц на выходе из трубки увеличивается и состав равномерно покрывает зону последующего соединения деталей.

В процессе сварки часть флюса остается в неизменном виде и поэтому вновь может быть подана в загрузочный бункер оборудования. С этой целью входное отверстие пневматического отсоса выполняется по профилю диффузора. В результате скорость перемещения использованного флюса по мере его приближения к загрузочному бункеру падает. В результате происходит эффективное отделение частиц флюса от воздуха. Воздух удаляется через ситообразные отверстия наружу, а флюс поступает в циклон, находящийся в верхней части флюсаппарата. Там происходит завихрение потока, при котором происходит окончательное сепарирование частиц флюса. Верхняя часть циклона закрывается пылезащитным колпаком, снабженным матерчатыми фильтрами, что улучшает качество отбора флюса в загрузочный бункер.

Для обеспечения стабильности движения флюса в бункере, и особенно — в подающей трубке, при работе сварочного оборудования непрерывно поддерживается незначительное избыточное давление воздуха.

В зависимости от производственных характеристик сварочного оборудования флюсаппараты обладают следующими эксплуатационными параметрами:

  • Номинальной производительностью, л/ч — до 450-500;
  • Максимальной высотой всасывания, м — до 3,5-4;
  • Рабочими давлениями сжатого воздуха, МПа — до 0,5-0,6.

Флюсаппараты выпускаются стационарными или передвижными. Они могут также комплектоваться вместе с основным оборудованием для сварки или поставляться отдельно от него.

Положительной особенностью сварочных автоматов является их работа при постоянной скорости подачи проволоки, поскольку использование флюса обеспечивает повышенную плотность тепловой мощности в зоне горения дуги.

wikimetall.ru

Классификация сварочных флюсов

Чтобы качественно выполнить соединение электродуговой сваркой, необходима сила тока достаточной величины, присадочный материал для заполнения шва, и газовая среда для защиты расплавленного металла от воздействия кислорода из окружающего воздуха. Для реализации последнего условия используют сварочный флюс. Что это такое? Каков функционал этого вещества, и как он классифицируется? Где применяются флюсы для сварки?

Определение и предназначение

Сварочный флюс — это гранулированное средство, подаваемое в зону сварки, непосредственно перед проходом через данный участок плавящегося электрода и зажженной электрической дуги. Вещество похоже на крупнозернистый порошок, бывающий прозрачного, белого, желтого, зеленого или коричневого цвета.

Это средство используется для защиты сварочной ванны от взаимодействия с атмосферой, и препятствия вытеснению углерода из состава основного металла. Некоторые марки флюсов дополнительно обогащают шов укрепляющими связками в виде легирующих элементов.

Используется гранулированное вещество в:

  • электродуговой сварке плавящимся электродом, где последним выступает проволока, подающейся с катушки в горелку;
  • электрическом методе сваривания покрытыми электродами как дополнительное средство;
  • полуавтоматической сварке в среде инертного газа, где порошок находится во внутренней части трубчатой проволоки;
  • газовой сварке пропан-кислородным пламенем на легированных сталях и цветных металлах;
  • электрической сварке угольными электродами.

Функционал гранулированного средства

Сварочные флюсы играют большую роль в обеспечении процесса соединения металлов. Их функции, в зависимости от состава вещества и свариваемого материала, могут заключаться в поддержании четырех действий.

Изоляция

Главной целью флюсов является создание непроницаемого газового облака, позволяющего основному и присадочному металлам беспрепятственно сплавляться в сварочной ванне. Чтобы порошок выполнял эту функцию необходима правильная дозировка вещества на линии соединения. Хорошими изоляционными газовыми свойствами обладают мелкие гранулы плотной структуры. Но возрастающая плотность укладки фракций на поверхности соединения отрицательно сказывается на формировании поверхности шва.

На изолирующую способность оказывает влияние не только размер посыпаемых частиц, но и их насыпная масса. Применяя специальные таблицы с данными можно устанавливать точную подачу стекловидного средства в сварочную зону.

Стабилизация

Кроме защитных свойств порошка, позволяющих вести сварочные работы без внешних газовых включений, флюсы создают благоприятную среду для горения электрической дуги, которая проявляется в разряде электрического тока между концом электрода и изделием. Расстояние между сторонами полюсов составляет около 5 мм. Для стабилизации горения дуги в состав гранул добавляют специальные вещества, позволяющие более устойчиво проходить электрическому разряду. Это дает возможность работать не только на постоянном, но и на переменном токе, и применять разнообразные режимы сварки.

Легирование

Благодаря воздействию высоких температур и взаимодействию основного и присадочного металлов, создается сварочный шов. Его химический состав зависит от используемых материалов. Из-за электрической дуги некоторые полезные элементы могут выгорать или передаваться с металла шва в шлаковые массы. Чтобы этого не произошло, в некоторые флюсы добавляют легирующие вещества, обогащающие шовный металл, и препятствующие насыщению шлака кремнием и марганцем. Для большего легирования используют соответствующую присадочную проволоку.

Формирование поверхности

Когда кристаллическая решетка в расплавленном металле только начинает образовываться, все, что соприкасается с ней, оказывает влияние на вид будущего шва. Флюсы, благодаря различной степени вязкости и межфазного натяжения, имеют сильные формирующие способности, благоприятно сказывающиеся на сварочном соединении.

Например, при работе на большой силе тока и толстых материалах, более практичны флюсы с долгим вязким состоянием. Такие порошки называют «длинными». Это позволяет глубоко прогретому сплаву постепенно кристаллизоваться и остыть, образуя гладкочешуйчатую структуру. Для сварки на малых токах, сильная жидкотекучесть будет мешать видеть сварочную ванну и качественно выполнять процесс, поэтому здесь применяются «короткие» флюсы, у которых вязкость быстро переходит в твердое состояние при снижении температуры.

Классификация

Классификация сварочных флюсов имеет четыре критерия, которые разделяют присадочное средство. Заключаются они в следующих пунктах:

  • назначение флюса;
  • способ его изготовления;
  • структура и физические параметры;
  • химический состав.

Назначение

В зависимости от состава и свойств гранулированного средства, оно может быть применено для обеспечения сварочных процессов в работе с углеродистыми, легированными и цветными металлами. Его используют для электродуговой, газовой и электрошлаковой сварки, а также работах с неплавящимися электродами. Некоторые классы флюсов взаимозаменяемы. Так, флюс для сварки алюминия, может быть использован и для создания соединений на легированных сталях. В его состав входят натрий, калий и литий, которые будут положительно сказываться и на других металлах. «Алюминиевый» флюс хорошо подойдет для сварки угольными электродами. Другие гранулированные смеси узко специализированны и не пригодны для широкого применения.

Способ изготовления

В промышленности имеются три способа производства флюса:

  • Плавленные. Для этого применяют электрические или угольные печи. Компоненты шихты разогревают до жидкого состояния и, сплавляясь, образуют полезную смесь. Брикеты и комки материала разбиваются до мелких частей. В готовом виде такие порошки имеют мелкодисперсную структуру серого цвета.
  • Механические смеси. Это соединение нескольких видов флюса в один состав путем физического перемешивания гранул между собой. Технология применяется для конкретных видом металлов. Постоянного состава не существует, а изготовление производится на заказ. Имеет существенный недостаток в виде разности веса и размера частиц, что приводит к их разделению при транспортировке и подаче из бункера.
  • Керамические. Соединение образовывается за счет скрепления порошкообразных веществ клеем, в роли которого выступает жидкое стекло. Альтернативным методом является спекание без сплавления. Компоненты шихты разогреваются до слипания в комки. После остывания они проходят процедуру измельчения. Благодаря недопущению сплавления сохраняются легирующие вещества.

Структура и параметры

Внешний вид и физическое строение порошкообразных средств для сварки может отличаться. Наиболее распространенными являются стекловидные зерна. Они имеют прозрачный цвет и круглую структуру. Отличаются более высокой насыпной массой, поэтому плотно укрывают соединение, защищая его от внешней среды.

Вторая категория флюсов создается в виде пемзообразного вещества. Это пенистые гранулы овальной или круглой формы. Цвет может варьировать от белого до коричневого. Порошок, из-за легкого веса, требует более высокого слоя присыпания соединения.

Химический состав

Из компонентов, входящих в состав порошкообразного вещества для присыпки сварного соединения, выделяются низкокремнистые смеси, где оксида последнего содержится меньше 35%. При этом участие марганца граничит на уровне 1%. Вторая группа — это флюсы с высоким содержанием оксида кремния, которое начинается от 35%. Третья категория называется бескислородной.

Отличаются флюсы и по степени взаимодействия с основным и присадочным металлами. Пассивные смеси только создают газовое облако, но никак не воздействуют на химический состав стали. Слаболегирующие порошки — это категория флюсов, производимая путем плавления, которые снабжают свариваемые материалы небольшим количеством кремния, марганца, и других полезных включений. Это придает шву большую прочность и ударную вязкость. Легирующие гранулированные составы обогащают металл в значительной степени, улучшая его физические и химические свойства. Швы после такой сварки лучше сопротивляются коррозии.

Обозначения

Флюс, используемый в ручной дуговой сварке, должен не мешать формированию шва, обеспечивать стабильное горение электрической дуги, и предотвращать образование дефектов в виде трещин и пор в застывающей структуре соединения. Во время плавления нижнего слоя порошка требуется минимальное выделение вредных веществ, угрожающих дыхательной системе сварщика. После окончания горения дуги, корка над швом должна легко отделяться, а гранулированное средство иметь низкую стоимость ввиду больших объемов выполняемых сварочных работ.

Все это нашло отображение в таблице обозначений типов флюса, чтобы пользователи могли легко ориентироваться и приобретать необходимое вещество для конкретного вида работ.

Символ обозначения Тип средства

MS

Марганец-силикатный

FB

Флюоритно-основной

CS

Кальций-силикатный

AR

Алюминатно-рутиловый

AB

Алюминатно-освновной

W

Другие типы

Нормативы по применению

В зависимости от выполняемых сварочных работ определяется количество и иные факторы задействования флюса. Это происходит по следующей таблице:

Сила тока, А Высота слоя присыпки, мм Грануляция частиц, мм
200-400 25-35 0,25-1,2
600-800 35-40 0,4-1,6
1000-1200 45-60 0,8-2,5

В зону сварки флюс подается предварительной ручной присыпкой, либо автоматически из специального бункера. Недостатком метода считается возможность вести сварочные работы только в нижнем положении. Но для сварки труб решение нашлось в прокручивании изделия, а не головки горелки. При использовании трубчатой порошковой проволоки сварку можно проводить в любом пространственном положении.

Применение этого относительно недорогого гранулированного вещества значительно улучшает качество сварки, защищая процесс горения дуги, и содействуя образованию прочного соединения.

Поделись с друзьями

1

0

1

0

svarkalegko.com

Сварочные флюсы для качественной сварки

Флюсы для сварки: что это такое и как их использовать? Этот вопрос волнует многих начинающих умельцев. В этой статье мы подробно расскажем, что такое сварочные флюсы, каков принцип действия, где и как их можно использовать.

Во время выполнения сварочных работ непосредственно на месте сварки начинает увеличиваться химическая активность. Это касается как дуговой, так и газовой сварки. По этой причине металл быстро окисляется, сварочная проволока теряет часть материала и в целом снижается эффективность плавления. Сварщику приходится дольше сваривать детали, из-за чего в сварочной ванне скапливаются ненужные шлаки.

Чтобы избежать подобных проблем профессионалы используют сварочный флюс — специальный материал, обеспечивающий стабильное горение дуги и выводящий ненужные примеси. Как выглядит флюс? В большинстве случаев он представляет собой сыпучие гранулы небольшого диаметра, продающиеся в мешках различного объема (в среднем 20-25 килограмм), но существуют материалы и в другом исполнении. Мы подробно рассказываем об этом в разделе «Классификация». Но первоначально разберемся с принципом действия флюсов.

Содержание статьи

Принцип действия

Для начала, чтобы разобраться в принципе действия флюса, нужно понять, из чего состоит типичная зона сварки:

  • Область дугового столба с внутренней температурой от 4-5 тысяч градусов по Цельсию.
  • Область газового пузыря, которая образуется вследствие интенсивного атомарного испарения компонентов в кислородной среде.
  • Область со шлаковым расплавом, располагающимся в верхней части газовой полости.
  • Слой расплавленного металла в нижней части полости.
  • Шлаковая корка, образующая твердую границу сварочной зоны.

Помимо упомянутых выше областей не менее важна сварочная проволока, она так же оказывает влияние на химическую активность.

Теперь, понимания из чего состоит сварочная зона, мы переходим к флюсу. Во время сварки поверхность детали активно окисляется и образуется шлаковая корка. Этих процессов можно избежать, если в зону сварки поступит легко плавящийся инертный материал. Таким материал как раз и является сварочный флюс. Он обезопасит деталь от окисления и поспособствует формированию качественного шва.

Чтобы эффективно использовать флюсы в своей работе нужно соблюсти следующие условия:

  • Материал должен стабилизировать скорость работы, а не замедлять ее.
  • Он не должен вступать в химическую реакцию с поверхностью свариваемых деталей или сварочной проволокой.
  • Газовый пузырь должен быть изолирован от окружающей среды на протяжении всей работы.
  • Если соблюдены все рекомендации, то остатки флюса должны легко удаляться после проведения сварочных работ. При этом большую часть удаленного материала можно будет использовать повторно (после очистки).

На практике оказывается, что соблюсти эти требования не так уж и просто. Флюс может отличаться по своему составу, равно как и технология его подачи в сварочную зону, поэтому нужно учитывать, какие именно металлы вы свариваете и какой вид сварки используете.

Классификация

Чтобы наиболее подробно классифицировать сварочный флюсы мы разделили их на условные категории. Итак, материалы могут отличаться по следующих категориям:

  • Внешний вид. В начале статьи мы упомянули, что материал может быть гранулированным, но производители предлагают также кристаллический, пастообразный и даже газовый флюс. Выбор зависит от предстоящей работы. Для электросварки зачастую используется материал в виде гранул или порошка, а для газовой сварки используется пастообразный или газовый флюс.
  • Химический состав. Состав флюса может сильно разниться и состоять из множества компонентов, но основой зачастую является кремнезём и марганец. Более подробный состав флюса легко можно найти в интернете или прочесть на упаковке. Скажем лишь одно: используемый флюс должен сохранять в работе свою химическую инертность даже при очень высоких температурах. Это одно из главных требований к качественному материалу.
  • Назначение. Как мы говорили в разделе «Принцип действия», нужно учитывать, какие именно металлы вы свариваете и какой вид сварки используете. К примеру, использование флюса с легированной проволокой даст положительный результат, улучшив прочность металла. Конечно, существуют также универсальные флюсы, но мы рекомендуем применять их для сварки цветного металла или сплавов, а для сварки стали выбирать флюс более тщательно.

Более глобально флюсы разделяют на плавящиеся и неплавящиеся. Плавящиеся весьма эффективны, если необходимо выполнить наплавку, а неплавящиеся улучшают механические характеристики готового сварного шва. По этой причине их часто используют с высокоуглеродистыми сталями или цветными металлами, которые без флюса свариваются недостаточно качественно.

Применение флюса в сварочных работах

Для сварки стали ручным методом флюс наносят на поверхность слоем около полсантиметра.  Не экономьте на количестве используемого материала, поскольку недостаточная толщина слоя может привести к плохой проварке металла, что впоследствии приведет к образованию трещин. Флюс постепенно подсыпается на протяжении всей работы в тех местах, где перемещается электрод.

При полуавтоматической или полностью автоматической сварке флюс используется следующим образом: материал подается по специальной трубке, позже происходит подача сварочной проволоки, расположенной рядом с флюсом. Во время сварки неиспользованная часть материала удаляется пневматическим методом. Впоследствии шлаковая корка удаляется с поверхности шва.

Какое положительное влияние оказывает флюс:

  • Не нужно разделывать кромки будущего сварного шва, потому что металл плавится значительно интенсивнее, вне зависимости от метода сварки.
  • В зоне шва и его поверхности отсутствует угар металла, что способствует улучшению качества проделанной работы.
  • Горение дуги значительно стабильнее.
  • У источника питания увеличивается КПД, потому что снижается потеря энергии, затраченной на нагрев детали.
  • Сварщик получает комфортные условия труда, потому что свой флюса экранирует большую часть пламени дуги.

Но есть и свои ограничения. Если у вас нет возможности предварительно осмотреть место для сварки стали (или любого другого металла), то мы не рекомендуем использовать флюсы. Их использование требует подготовки (как сварщика, так и свариваемых деталей). К тому же, материал дорогой и используется в том же количестве, что и проволока. Так что в неподготовленной ситуации использование флюса может быть нецелесообразно.

Тем не менее, работа с флюсом достаточно эффективна. При сварке металл не разбрызгивается, сварочная проволока служит дольше, и в целом повышается производительность сварщика. Ведь используя флюс можно без опасности устанавливать высокие параметры тока, при этом шов останется таким же качественным.

Вместо заключения

Сварочные флюсы являются отличным способом оптимизировать свой труд и улучшить качество работы. Да, его использование требует подготовки, а стоимость материала может показаться завышенной. Но мы считаем, что положительный результат с лихвой перекрывает немногочисленные недостатки. Испробуйте флюсы в своей работе и поделитесь опытом в комментариях, возможно, он будет полезен другим сварщикам.

[Всего голосов: 0    Средний: 0/5]

svarkaed.ru

Принципы выбора состава флюсов для сварки сталей и сплавов. Флюсы для сварки низкоуглеродистых сталей

ТЕОРИЯ сварочных процессов

При сварке низкоуглеродистых сталей (СтЗсп, сталь 20) необ­ходимо сохранить углерод - единственный упрочнитель. Для этого Применяют кислые флюсы и электродные проволоки двух систем.

В отечественной практике применяют высокомарганцовистый

флюс - силикат (MnO + Si02) в сочетании с низкоуглеродистой проволокой Св-08А или Св-08АА (по ГОСТ 2246-70). В зарубеж­ной практике применяют безмарганцевый высококремнистый флюс в сочетании с высокомарганцовистой проволокой. Общим в обеих практиках являются легирование капли и сварочной ванны кремнием за счет кремневосстановительного процесса и легирова­ние металла сворочной ванны марганцем через флюс или проволо­ку. Реакция в капле имеет вид

2 [Fe] + (Si02)^ [Si] + 2[FeO]. (10.7)

Для кипящих сталей, практически не содержащих Si, она имеет особо важное значение, так как только при содержании кремния в жидкой сварочной ванне не ниже 0,2 % можно предотвратить в сварочной ванне реакцию окисления углерода (см. пример 8.9)

[С] + [0] = С0. (10.8)

Ввод кремния позволяет сохранить прочность шва и одновре­менно исключить образование пор при выделении из сварочной ванны оксида углерода СО. К повышению содержания Si приводит и реакция его восстановления марганцем. Кроме того, наличие в каплях и сварочной ванне при высоких температурах значительно­го количества FeO по реакциям (10.7) и

Fe + МпО <=> Мп + FeO (10.9)

способствует обогащению ванны кислородом, который связывает водород и препятствует образованию других (водородных) пор в результате реакции

[FeO] + Н2 <=± (Н20) + Fe>K. (10.10)

При отсутствии кремния углерод выгорает, причем весьма ин­тенсивно при высоких температурах, а также в конце кристаллиза­ции, когда все примеси и углерод ликвируют в последние порции жидкой фазы и его концентрация повышается. Эта реакция экзо­термическая и согласно принципу подвижного равновесия должна развиваться и при понижении температуры.

Наряду с защитой углерода и железа кислые флюсы обеспечи­вают легирование металла шва элементами Si и Мп. Кислые флю­сы способствуют рафинированию сварочной ванны с помощью Мп и МпО, связывающих серу в тугоплавкие соединения (МпО выво­дит серу в шлак).

Наибольшее распространение получили плавленные флюсы АН-348А, ОСЦ-45, ФЦ-6, ФЦ-3, ФЦ-9, АН-60, TA. St.10, а также керамические АНК-25, FB-106, SPSMn-35/ЮО. Их химический со­став приведен в табл. 10.1.

Флюсы ОСЦ-45, АН-348 применяются более 50 лет. Они

имеют высокие сварочно-технологические свойства, но сваренные

с их применением швы содержат много дисперсных силикатных

включений и имеют ограниченную ударную вязкость {KCU < 2

< 100 Дж/см для образцов с U-образным надрезом при нормаль­ной температуре).

Флюсы для сварки низколегированных сталей. Низколеги­рованные стали содержат в сумме не более 5 % легирующих эле­ментов, причем содержание каждого из них не превышает 2 % (10ХСНД, 09Г2С, 16Г2АФ и др.).

Такие стали являются металлургически законченными продук­тами, т. е. в них прошли все реакции раскисления, легирования, мо­дифицирования и рафинирования. Основная задача при их сварке сводится к сохранению их механических свойств путем защиты сва­рочной ванны от влияния атмосферы и взаимодействия с флюсом. При выборе флюсов следует руководствоваться установленными предельно низкими значениями коэффициента химической активно­сти флюса в зависимости от эквивалента углерода при сохранении

высокого уровня ударной вязкости металла шва в исходном, т. е. без

2

термической обработки, состоянии (KCV > 100 Дж/см ).

02, % (мае.)

Сэкв* % (мае.)

Рис. 10.8. Диаграмма до­пустимого содержания кислорода (заштрихован­ная область) в металле шва при уровне легирова­ния электродной прово­локи С-зкв, сохраняющем KCV более 1 МДж/м2 (для металла шва в исходном состоянии при скорости охлаждения шва, не пре­вышающей 2,3 °С/с)

Из диаграммы на рис. 10.8 следует, что чем больше легирующих элементов содержит свариваемая сталь, тем ниже должны быть со­держание О2 и коэффициент химиче­ской активности флюса. Однако при этом ухудшаются сварочно-технологи­ческие свойства. Более высокие техно­логические свойства обеспечивают ак­тивные флюсы (Лф= 0,6...0,3), которые применяются для сварки сталей средней прочности (ов< 600 МПа).

Сюда относятся плавленые флюсы на базе шлаковой системы СаО-МпО - - СаБг-АІгОз-БіОг следующих марок:

ФЦ-11, ФЦ-15, ФЦ-16, ФЦ-22, АН-15,

АН-42, АН-43, АН-47, FB-10, FB-20,

ФВТ-1, F-202 и F-302. Их температура плавления составляет 1573... 1623 К.

Применяют и керамические флюсы АНК-47, АНК-44, АНК-30, АНК-57,

FC-60, FC-40. Они обеспечивают уро-

2

вень ударной вязкости до 200 Дж/см при 293 К и рекомендуются для сварки конструкций, работающих в условиях Крайнего Севера.

Флюсы для сварки среднелегированных сталей. Среднеле­гированные стали содержат от 5 до 10 % легирующих элементов.

К ним относятся стали марок ЗОХГСНА, Х5М, 18ХН4МДА, 15ХНМФА, 30Х4НМФА и другие, имеющие наиболее высокие механические свойства (ав до 1800 МПа). Поэтому их называют также высокопрочными. Такие стали применяют в специальном судостроении, для изготовления корпусов атомных реакторов и т. п. Как правило, они содержат до 0,30 % углерода наряду с дру­гими легирующими элементами. Основные проблемы при сварке высокопрочных сталей заключаются в том, чтобы исключить об­разование горячих и холодных трещин, предотвратить загрязнение серой, фосфором и другими элементами и сохранить химический состав сталей, а следовательно, и их свойства. Для решения этих проблем применяют флюсы, содержащие в качестве основы СаО и

CaF2, что позволяет понизить уровень водорода в зоне сваривания, уменьшить его химическую активность, усилить рафинирующее действие (очистить швы от серы и фосфора).

Для сварки сталей рассматриваемой группы рекомендуются

малоактивные (Аф = 0,3...0,1) и пассивные (Аф < 0,1) флюсы. К ним относятся флюсы АН-15, АН-15М, АВ-5 и ABSM2 входящие в шлаковую систему Ca0-CaF2-Al203-Si02.

Более сложные шлаковые системы имеют флюсы АН-45, АН - 17М и ФИМС-20П. Эти флюсы, в частности АН-17М и НФ-18М, обеспечивают снижение содержания в шве диффузионного водоро­да до 3 см /100 г, что позволяет использовать их для сварки высо­копрочных сталей, склонных к закалочно-водородным (холодным трещинам). Флюс НФ-18М применяют для сварки среднелегиро­ванных сталей типа 15ХНМФА в атомном машиностроении.

Флюсы для сварки высоколегированных коррозионно - стойких сталей. При сварке таких сталей решают две главные за­дачи: 1) сохранение коррозионной стойкости в зонах шва и терми­ческого влияния; 2) предотвращение образования горячих трещин. Решение первой задачи требует однородности швов и снижения до минимума содержание углерода, серы, фосфора, оксидов в струк­туре швов, а второй - требует сохранения ферритной фазы Fes - Противоречивость этих требований разрешают на компромиссной основе, а также дифференциацией сталей по температуре эксплуа­тации и требуемому уровню коррозионной стойкости. Применяют

пассивные флюсы на основе Са0-АІ20з-Сар2, с добавкой SiC>2 < < 10 % для улучшения отделяемое™ шлаковой корки. Однако доля

Si02 определяется тем, что весь Si02 должен быть связан в ком­плексы основными окислами.

Подавлению кремневосстановительного процесса также спо­собствует ввод во флюс оксидов железа (SPS/375, ОФ-6). Кроме СаО и CaF2 флюсы этого назначения содержат MgO, Zr02, ТЮ2, т. е. оксиды с повышенной термостойкостью, не выделяющие ки­слород по механизму диссоциации. Для сохранения в шве хрома Сг - главного элемента, обеспечивающего коррозионную стой­кость, в состав флюсов (например, ФЦ-19, ФЦ-17, F-624) вводят его оксид Сг2Оз, что по закону распределения препятствует окис­лению хрома в ванне.

Для подавления вредного влияния серы и фосфора во флюсах (например F-624) должно содержаться много МпО (8... 11%), очи­щенного от фосфора и серы. К таким флюсам относятся плавленые флюсы ОФ-6М, ОФ-6, F-624, F-402, АН-26С, АН-18, ФЦ-17, ФЦ-19. Возможно также применение керамических флюсов, изготовленных из порошков: СаО, CaF2, MgO, ферросплавов (раскислителей и ле­гирующих элементов, скрепленных жидким стеклом). К ним отно­сятся керамические флюсы SPS/375, АНК-45, ФЦК и ФЦК-С.

Флюсы для сварки никеля и его сплавов. Основные пробле­мы сварки этих сплавов связаны с их большой чувствительностью к вредным примесям серы и фосфора, растворенным газам, которые вызывают образование пор и горячих трещин. Поэтому активные плавленые флюсы непригодны для сварки никеля НП-1, НП-2 и его сплавов типа ХН77ТЮ. Положительные результаты получены при дуговой сварке под фторидным и высокоосновным флюсом АНФ-5 на базе CaF2-NaF, имеющим температуру плавления 1223... 1423 К и оказывающим модифицирующее действие натрием. Эффективен также флюс ИМЕТФ на базе CaF2-BaCl2 с добавками фторидов NaF

и SrF2. Флюс АНФ-22 позволяет легировать шов бором до 0,6 %, что предотвращает образование горячих трещин.

Возможно применение керамических флюсов ФЦК, а также ЖН-1, который легирует металл шва элементами Мп, Ті и А1 и обеспечивает его раскисление, рафинирование и модифицирование.

Флюсы для сварки меди и медных сплавов. Главное досто­инство меди - сочетание хорошей электропроводности, теплопро­водности и высокой коррозионной стойкости. Сохранение чистоты меди в швах необходимо для обеспечения указанного комплекса ее свойств.

При окислении меди образуется С112О, не растворимый в твер­дой меди, но растворимый в жидкой меди с образованием эвтекти­ки при 0,39 % О2. При кристаллизации С112О происходят следую­щие реакции:

CU2O + Н2= 2Cu + Н2О; CU2O + СО = 2Cu + СО2.

Отсюда следует, что образование паров воды и углекислого газа, которые не могут выделиться из металла диффузионным путем, может привести к образованию пор и трещин («водородная бо­лезнь» меди).

Вследствие малой химической активности меди и ряда ее спла­вов при сварке применяют следующие стандартные плавленые флюсы: ОСЦ-45, АН-348, АН-60, ФЦ-10, АН-26, АН-22, АН-20, разработанные для сварки сталей. При сварке меди под рассмот­ренными выше активными плавлеными флюсами возможно проте­кание реакций типа (FeO) + 2Cu = [С112О] + Fe. В результате этих

реакций возникают другие оксиды: MnO, Si02, AI2O3. Поэтому для сохранения в шве чистоты меди применяют низкокремнистые флю­сы АН-20 с содержанием Si02 <21 %, а также специальные флюсы для меди АНМ-1, АНМ-2 и электродную проволоку из бескисло­родной меди Ml или МБ. Для сварки листов меди большой тол­щины применяется флюс АН-26.

Если допустимо снижение электропроводности и теплопро­водности меди, то применяют бронзовую проволоку БрХ07 и др., которые обеспечивают равнопрочность металла шва с основным металлом.

Для сварки латуней (Си + Zn) применяют флюсы АН-20, АНФ-5 и МАТИ-53, ФУ-10. Для сварки меди применяют также специаль­ные керамические флюсы ЖМ-1 и К-13МВТУ. Шлаковая система флюса ЖМ-1 включает: Ca0-Si02~Al203-CaF2 с добавкой рас­кислителей: углерода и буры (Ыа2В40з • MgO). Роль углерода со­стоит в превращении окислителя СО2 в газовой среде в восстано­вительный газ СО по реакции С + СО2 = 2СО.

Флюсы для сварки титана и сплавов на его основе. Титан обладает весьма высокой химической активностью и при нагрева­нии активно взаимодействует с О2, N2, Н2, С. Основная проблема свариваемости Ті и его сплавов связана с получением пластичных сварных соединений. Потеря пластичности - результат отрицатель-ного влияния растворенных газов, примесей и структурных превра­щений, поскольку титан обладает полиморфизмом. Окисление ти­тана начинается при нагреве выше 700 К. До этой температуры он защищен оксидно-нитридной пленкой, которая имеет аналогичную структуру и прочно удерживается на поверхности. Совместное дей­ствие кислорода, углерода и азота на свойства металла шва опреде­ляют эквивалентом кислорода

[0]экв = [О] + 2[N] + 2/3[С], (10.13)

который входит в формулу для определения твердости

НВ = 40 + 310[0]экв. (10.14)

Главное требование, предъявляемое к флюсам - надежная защи­та от воздуха и загрязнений компонентами шлака. Этому требова­нию удовлетворяют бескислородные флюсы на основе фторидов и хлоридов щелочных и щелочно-земельных металлов: АНТ-1, АНТ-3 (см. табл. 10.1), а также АНТ-5 и АНТ-7 (последний применяется для сварки деталей толщиной до 40 мм при большой силе тока). Однако ударная вязкость швов при сварке под флюсом не достигает значений, получаемых при сварке в аргоне неплавящимся электро­дом. Более эффективна комбинированная флюсогазовая защита.

Флюсы для сварки алюминия и его сплавов. Плавленые флюсы для сварки алюминия состоят из хлоридов и фторидов ще­лочных и щелочно-земельных металлов. Вследствие высокой электропроводности расплавленный флюс АН-А1 и другие шунти­руют дугу, что препятствует ее устойчивому горению. Сварка ве­дется по слою флюса полуоткрытой дугой.

% Для сварки самых распространенных алюминиевых сплавов, легированных магнием, флюсы АН-А1 и УФОК-А1 непригодны, так как натрий из флюса частично восстанавливается магнием и поступает в шов, вызывая образование пор, горячих трещин и снижая пластичность металла. Для сварки этих сплавов применя­ют флюсы МАТИ-10 и 48-АФ-1 на основе ВаСІ2-КС1. Керамиче­ские флюсы для сварки алюминия (например, ЖА-64) позволяют выполнять сварку закрытой дугой. Они содержат повышенное ко­личество криолита, снижающего электропроводность расплава.

Чтобы решить дифференциальное уравнение теплопроводно­сти, необходимо задать распределение температур в начальный момент времени (начальное условие) и условия взаимодействия тела с окружающей средой на его границах (граничные условия). Начальное условие определяется …

На современном уровне развития математики аналитическое решение уравнения теплопроводности в общем виде (5.21) еще не найдено, однако при введении некоторых допущений и упрощений можно получить пригодные для практического использования ча­стные …

Сложный процесс изменения температуры точек тела с коор­динатами jc, у, z во времени t описывается дифференциальным уравнением теплопроводности. Для вывода этого уравнения необ­ходимо рассмотреть баланс теплоты в некотором элементарном объеме …

msd.com.ua

Кузнечная сварка сталей

Кузнечная сварка сталей

ПОЛУЧЕНИЕ СОЕДИНЕНИЯ

Операцию получения неразъемного соединения ручной или машинной ковкой называют кузнечной сваркой.В начале VI в. русские кузнецы путем кузнечной сварки варили многослойную сталь “харалуг”, которая по своему качеству превосходила булатные и дамасские иранские и турецкие клинки. Этот метод относится к сварке давлением в твердом состоянии и заключается в сближении соединяемых поверхностей путем пластического деформирования, при котором возникают межатомные силы притяжения.

 

Получить качественное неразъемное соединение можно только при условии удаления с соединяемых поверхностей оксидных и других загрязняющих пленок. При сварке давлением это достигается приложением к свариваемым поверхностям давлений, достаточных для разрушения и удаяения загрязняющих пленок и ликвидации всех неровностей на поверхностях заготовок.

Таким образом, для осуществления кузнечной сварки металл заготовки должен обладать высокой пластичностью и низким сопротивлением деформированию, а соединяемые поверхности должны быть тщательно очищенными в момент пластического деформирования.

Кузнечная сварка обеспечивает высокую надежность сварного соединения, но требует высокой квалификации рабочего.

Процесс получения неразъемного соединения кузнечной сваркой состоит из следующих основных элементов: подготовки заготовок к сварке; нагревания свариваемых частей заготовок; сварки заготовок пластическим деформированием; отделки заготовки в месте сварки и правки. Для качественного соединения требуется выполнение на всех этапах сварки определенных приемов и технологических режимов.

СТАЛИ ДЛЯ КУЗНЕЧНОЙ СВАРКИ

Чаще всего кузнечной сварке подвергают низкоуглеродистые конструкционные стали. Свариваемость сталей зависит от количества и вида примесей.

С увеличением содержания углерода, серы, фосфора и других элементов свариваемость ухудшается.Марганец в пределах 0,5— 03% улучшает свариваемомть стали.

Для кузнечной сварки рекомендуют стали с содержанием: углерода— до 0,3%; кремния — не более 0,2%; марганца — 0,6— 0,8%; серы — не более 0,05%.

При необходимости сварки сталей с повышенным содержанием углерода (больше 0,3%) рекомендуют добавлять к сварочному флюсу опилки из мягкой стали, в которой очень мало углерода. При обработке нагретой под сварку части заготовки такими опилками металл обезуглероживается, что повышает свариваемость поверхностного слоя заготовки.

Поскольку хром, вольфрам, медь и другие элементы снижают свариваемость сталей, ие рекомендуется проводить кузнечную сварку легированных сталей и других сплавов. Сварка этих сплавов требует выполнения строгих технологических режимов, что практически невыполнимо при ручной ковке. К тому же дефекты сварки трудно обнаружить визуально, а их присутствие совершенно недопустимо в деталях большинства машин и механизмов.

ПОДГОТОВКА ЗАГОТОВОК К СВАРКЕ

Подготовка заготовок состоит в придании соединяемым концам определенной формы; которая зависит от способа сварки. Подготовленные концы, как правило; подвергают высадке. Увеличение сечения свариваемых концов необходимо для выполнения их пластической деформации при сварке и придания сварочной части поковки требуемой формы.

НАГРЕВ ЗАГОТОВОК ПОД СВАРКУ

Температура нагрева сталей под сварку зависит от содержания в них углерода: чем больше углерода в стали, тем ниже должна быть температура нагрева.

Мягкую низкоуглеродистую сталь нагревают до 1350— 1370°С (при этой температуре свариваемые концы приобретают ослепительно белый цвет). При сварке стали с повышенным содержанием углерода (например, при сварке лезвия топора из стали У7) заготовку нагревают до 1150°С (при такой температуре заготовка имеет цвет белого каления с желтоватым оттенком). Более точно температуру заготовки определяют не на глаз, а с помощью оптического пирометра.

Хорошее качество сварки возможно, если при выполнении пластической деформации температура металла не понижается, поэтому сварку следует вести быстро. Свариваемые концы должны быть тщательно очищены от окалины и шлака.

Следует заметить, что температура нагрева заготовок под сварку выше температуры начала ковки (ТН). Как известно, при температуре, превышающей ТН, происходит не только интенсивное образование окалины, но и возможен пережог металла. Для уменьшения образования окалины и ее удаления с поверхности перед сваркой, а также с целью предохранения металла от пережога заготовки присыпают флюсом. В качестве флюса используют кварцевый песок, смешанный с бурой (Na2B4О7) или поваренной солью. Так как марганец повышает свариваемость стали, то иногда его в небольшом количестве добавляют к флюсу.

ФЛЮСЫ ДЛЯ КУЗНЕЧНОЙ СВАРКИ

Для кузнечной сварки использовали такие флюсы:

Флюс № 1. Составляют смесь из 6 ч. буры, 2 ч. нашатыря, 1 ч. железисто-синеродистого калия и 0,5 ч. смолы. Смесь кипятят, помешивая, до густоты сметаны. Охлажденную массу перемешивают и толкут с 1 ч. железных опилок (не ржавых). При сварке посыпают этим порошком нагретые докрасна предметы, дают порошку расплавиться и затем куют.

Флюс № 2. Приготовляют порошок из смеси 1 ч. нашатыря, 2 ч. буры, 2 ч. железисто-синеродистого калия и 4 ч. железных опилок (не ржавых). Накаливают докрасна предметы, подлежащие сварке, посыпают их 2—3 раза указанной смесью, пока она не начнет плавиться, и тогда куют.

Флюс № 3. Порошок из смеси 35 ч. борной кислоты, 30 ч. поваренной соли, 26,7 ч. железисто-синеродистого калия, 8,3 ч. канифоли.

Флюс N° 4. Порошок из смеси 41,5 ч. борной кислоты, 3 ч. поваренной соли, 15,5 ч. железисто-синеродистого калия, 8 ч. жженой соды.

Назначение флюса. Флюс посыпают на заготовку в период нагрева, когда ее температура достигает 950—1050°С. Под действием высокой температуры флюс соединяется с окалиной, образуя жидкотекучий шлак, который обволакивает заготовку и защищает ее поверхность от окисления при дальнейшем нагреве. Перед4 сваркой шлак удаляется, а при деформации он выжимается из места сварки.

НАГРЕВ СВАРИВАЕМЫХ ИЗДЕЛИЙ

Для нагрева свариваемых концов используют горны и сварочные печи. Камерные печи, предназначенные для нагрева заготовок под ковку, в данном случае неприменимы, так как не обеспечивают нагрева до высоких сварочных температур.

При нагреве под сварку требуется, чтобы пламя в горне или печи не было окислительным, т. е. чтобы сгорание топлива происходило при максимальном усвоении кислорода и в очаге небыло его излишка.

Наилучшим топливом для горна при нагреве заготовок под кузнечную сварку является древесный уголь. Количество серы в кузнечном угле допускается до 1 %, при большем ее содержании получить качественное соединение не удается. Кроме того, кузнечный уголь не должен содержать более 7% золы, так как в ней также содержится сера.В случае использования в качестве топлива кокса следует выбирать те его сорта, в которых содержится минимальное количество серы.

ОСОБЕННОСТИ КУЗНЕЧНОЙ СВАРКИ

Нагретые заготовки извлекают из горна, ударами о наковальню или молотком сбивают образовавшийся шлак и окалину либо счищают их металлической щеткой. Затем, быстро сложив вместе свариваемые концы заготовок, наносят слабые, но частые удары по месту сварки. При слабых ударах остатки шлака выдавливаются наружу и поверхности стыка плотно прижимаются друг к другу, что защищает их от окисления.

Сварку заканчивают сильными ударами, подвергая место сварки достаточно большим деформациям и придавая заготовке требуемую окончательную форму поковки. В этот момент структура металла измельчается и ликвидируется его крупно-зернистость, образование которой было возможным при нагреве заготовки до высокой сварочной температуры.

При проковке места соединения отдельные слои металла соединяемых концов внедряются друг в друга, переплетаются, что дополнительно увеличивает прочность соединения.В зависимости от окончательной формы места сварки поковку правят, используя гладилки, обжимки, подбойки и другой кузнечный инструмент.

ОСНОВНЫЕ СПОСОБЫ СВАРКИ

В зависимости от формы и размеров используют следующие основные способы сварки: внахлестку; вразруб (в замок, в обхват]; встык; врасщеп; с помощью шашек.

СВАРКА ВНАХЛЕСТКУ

Эта сварка является одним из самых распространенных способов кузнечной сварки, обеспечивающим наибольшую прочность сварного стыка. Повышенное качество сварного соединения объясняется увеличенной поверхностью соприкосновения свариваемых частей и возможностью подвергать большим деформациям участок, на котором они соединяются.

Перед сваркой концы заготовок высаживают и придают им форму загнутых утолщений (рис. 1), повернутых относительно продольной оси на угол 30°. Подготовленные концы, предварительно подогрев до 960—1000° С и покрыв флюсом, нагревают до сварочной температуры.

сварка внахлестку увеличенная поверхность соприкосновения свариваемых частей

Нагретые и очищенные от шлака и окалины концы накладывают друг на друга и легкими, но частыми ударами прижимают друг к другу (рис. 2), затем сильными ударами тщательно проковывают место соединения. Одновременно выполняют операцию протяжки для восстановления первоначальных размеров участка сварки. По окончания операций поковке придают требуемую форму.

Сварка внахлестку прижимаются ударами молотка

Достоинством сварки внахлестку является также то, что форма исходных свариваемыхповерхностей обеспечивает хорошее удаление остатков шлака с соединяемых участков.Заготовки толщиной или диаметром до 30 мм сваривают за один прием и с одного нагрева.

При толщине свариваемых концов более 30 мм операцию осуществляют в два приема:

1] с первого нагрева сваривают тонкие участки утолщений;2) со второго нагрева выполняют окончательную сварку.

При диаметре заготовок 50—60 мм и выше осуществить сварку ручной ковкой не удается — ее выполняют на молоте.

СВАРКА ВРАЗРУБ

Такая сварка требует более сложной подготовки свариваемых концов. Конец одной заготовки высаживают и разрубают вдоль ее продольной оси, а образовавшиеся "лепестки” раздвигают. Конец второй заготовки также высаживают и заостряют так, чтобы он входил в разруб первой заготовки. Нагретые до сварочной температуры и очищенные от шлака концы вставляют друг в друга и энергичными ударами, формируя металл, осуществляют сварку, а затем окончательную отделку заготовки. Рассмотренный способ применяют при сварке заготовок из сталей различных марок.

СВАРКУ ВСТЫК

Этот способ сварки применяют в тех случаях, когда конструкция будущей поковки или малые размеры заготовки не дают возможности подготовить соединяемые концы подобно их подготовке при сварке внахлестку. В одних случаях концы заготовок просто закругляют, нагревают до сварочной температуры, стыкуют друг с другом и ударами вдоль оси с двух сторон сваривают. Под действием ударов нагретое место стыка осаживается, увеличиваясь в диаметре, поэтому после сварки его протягивают до нужного диаметра.

Сварка встык без предварительной высадки соединяемых концов по прочности соединения уступает сварке встык с предварительным утолщением концов заготовок. При этом способе нагретые концы высаживают, а торцы скругляют. Затем подготовленные концы стыкуют и, нанося вдоль оси заготовок по их холодным концам удары, выполняют сварку, а после этого — окончательную отделку поковки.

СВАРКА ВРАСЩЕП

Сварку полосовых заготовок осуществляют способом врасщеп. Концы заготовок надрезают вдоль продольной оси и разводят. После нагрева до сварочной температуры их стыкуют и проковывают до получения прочного соединения и исходных размеров.

СВАРКА С ПОМОЩЬЮ ШАШЕК

При сварке концов поковок типа колец или их ремонте применяют способ, выполняемый с помощью шашек.Свариваемые концы перед нагревом под сварку подвергают высадке и ковке до получения формы. Из металла заготовки подготавливают вспомогательные шашки. При температуре сварки шашки укладывают между концами и закрепленных заготовок и сильными ударами подвергают совместной пластической деформации. Сварной участок затем правят. Рассмотренный способ сварки чаще всего выполняют на молоте.

ДЕФЕКТЫ КУЗНЕЧНОЙ СВАРКИ

Дефекты, возникающие при кузнечной сварке, можно разделить на два основных вида:1] низкое качество сварного соединения;2) несоответствие формы поковки требуемой.

Если дефекты второго вида обнаруживаются визуально или с помощью простейшего измерительного инструмента, то прочность сварного соединения визуально установить практически невозможно. Сварку считают выполненной качественно, если прочность сварного соединения не ниже 80-85% прочности металла свариваемых заготовок.Прочность шва может быть проверена изгибом прутка в месте сварки. Бели качество сварки высокое, шов не расходится и не появляются трещины на поверхности металла.

Следует, однако, отметить, что не всегда поковку после сварки можно изогнуть, а приборами для контролирования качества сварных соединений участки ручной ковки не оснащаются. Следовательно, даже при всех благоприятных условиях не рекомендуется применять кузнечную сварку для изготовления поковок ответственных деталей, а в случаях ее применения необходимо строго выдерживать технологические режимы. Нарушение режимов и приемов ковки при сварке может привести к дефектам, описанным ниже.

Непровар появляется при некачественной очистке соединяемых поверхностей перед сваркой: стыкуемые поверхности плохо очистили от окалинык после зачистки поверхностей нагретых заготовок кузнецы задержались с началом ковки и на соединяемых поверхностях образовалась вторичная окалина; свариваемые поверхности недоброкачественно обработали флюсом; при сварке встык концы заготовок плохо закруглили, в середине стыка остался шлак, препятствующий качественной сварке концов.

Пережог — неисправимый дефект (брак], который возникает в случае нагрева концов заготовок до температуры, превышающей сварочную. Этот дефект очень вероятен при выполнении кузнечной сварки, так как сварочная температура весьма близка к температуре пережога и при недостаточно внимательном нагреве легко ошибиться и пережечь металл.

Низкая прочность сварного шва объясняется следующим: нагрев заготовки до сварочной температуры сопровождается ростом зерен; в случае малого набора металла при высадке свариваемых концов степень деформации металла при сварке будет недостаточной, зерна не раздробятся, вследствие чего металл шва будет иметь крупнозернистую структуру и пониженную прочность.

Понижение прочности околошовной зоны наблюдается при нагреве концов заготовки перед сваркой на большую длину. Крупнозернистая структура металла в месте стыка прорабатывается (измельчается] в процессе ковки утолщений, а зоны, прилегающие к концам и не имеющие утолщений, такой деформации не под-вергаются и сохраняют крупнозернистую структуру. Поэтому при сварке следует нагревать только утолщенные концы соединяемых заготовок.Неточность размеров сечения поковки после сварки возникает при недостаточном наборе металла на свариваемых концах. При проковке таких концов сечение поковки уменьшится и окончательные размеры окажутся меньше исходных, требуемых чертежом.

УСТРАНЕНИЕ ДЕФЕКТОВ

Дефекты кузнечной сварки, как правило, невозможно или трудно устранить по окончании ковки. Анализируя причины рассмотренных дефектов, можно сделать вывод, что качество сварки зависит от квалификации кузнеца. Сварка должна выполняться быстро, с соблюдением всех требований к режиму нагрева и выполнению приемов ковки.

БЕЗОПАСНОСТЬ ТРУДА

Особенности требований безопасности при выполнении кузнечной сварки связаны с высокой температурой нагрева металла и применением флюсов. В случае перегрева металл начинает искриться, а на поверхности заготовки образуется жидкий шлак. При работе с такими заготовками в момент зачистки и ковки брызги шлака к искры могут нанести травмы работающим в виде ожогов и вызвать возгорание легковоспламеняющихся материалов и одежды, поэтому при кузнечной сварке поковки после нагрева следует аккуратно и тщательно очищать от окалины и шлака. Кроме того, рабочее место должно отвечать всем требованиям пожарной безопасности.

pg-souz27.ru

Сварка флюс

Классификация сварочных флюсов

Чтобы качественно выполнить соединение электродуговой сваркой, необходима сила тока достаточной величины, присадочный материал для заполнения шва, и газовая среда для защиты расплавленного металла от воздействия кислорода из окружающего воздуха. Для реализации последнего условия используют сварочный флюс. Что это такое? Каков функционал этого вещества, и как он классифицируется? Где применяются флюсы для сварки?

Определение и предназначение

Сварочный флюс — это гранулированное средство, подаваемое в зону сварки, непосредственно перед проходом через данный участок плавящегося электрода и зажженной электрической дуги. Вещество похоже на крупнозернистый порошок, бывающий прозрачного, белого, желтого, зеленого или коричневого цвета.

Это средство используется для защиты сварочной ванны от взаимодействия с атмосферой, и препятствия вытеснению углерода из состава основного металла. Некоторые марки флюсов дополнительно обогащают шов укрепляющими связками в виде легирующих элементов.

Используется гранулированное вещество в:

  • электродуговой сварке плавящимся электродом, где последним выступает проволока, подающейся с катушки в горелку;
  • электрическом методе сваривания покрытыми электродами как дополнительное средство;
  • полуавтоматической сварке в среде инертного газа, где порошок находится во внутренней части трубчатой проволоки;
  • газовой сварке пропан-кислородным пламенем на легированных сталях и цветных металлах;
  • электрической сварке угольными электродами.

Функционал гранулированного средства

Сварочные флюсы играют большую роль в обеспечении процесса соединения металлов. Их функции, в зависимости от состава вещества и свариваемого материала, могут заключаться в поддержании четырех действий.

Изоляция

Главной целью флюсов является создание непроницаемого газового облака, позволяющего основному и присадочному металлам беспрепятственно сплавляться в сварочной ванне. Чтобы порошок выполнял эту функцию необходима правильная дозировка вещества на линии соединения. Хорошими изоляционными газовыми свойствами обладают мелкие гранулы плотной структуры. Но возрастающая плотность укладки фракций на поверхности соединения отрицательно сказывается на формировании поверхности шва.

На изолирующую способность оказывает влияние не только размер посыпаемых частиц, но и их насыпная масса. Применяя специальные таблицы с данными можно устанавливать точную подачу стекловидного средства в сварочную зону.

Стабилизация

Кроме защитных свойств порошка, позволяющих вести сварочные работы без внешних газовых включений, флюсы создают благоприятную среду для горения электрической дуги, которая проявляется в разряде электрического тока между концом электрода и изделием. Расстояние между сторонами полюсов составляет около 5 мм. Для стабилизации горения дуги в состав гранул добавляют специальные вещества, позволяющие более устойчиво проходить электрическому разряду. Это дает возможность работать не только на постоянном, но и на переменном токе, и применять разнообразные режимы сварки.

Легирование

Благодаря воздействию высоких температур и взаимодействию основного и присадочного металлов, создается сварочный шов. Его химический состав зависит от используемых материалов. Из-за электрической дуги некоторые полезные элементы могут выгорать или передаваться с металла шва в шлаковые массы. Чтобы этого не произошло, в некоторые флюсы добавляют легирующие вещества, обогащающие шовный металл, и препятствующие насыщению шлака кремнием и марганцем. Для большего легирования используют соответствующую присадочную проволоку.

Формирование поверхности

Когда кристаллическая решетка в расплавленном металле только начинает образовываться, все, что соприкасается с ней, оказывает влияние на вид будущего шва. Флюсы, благодаря различной степени вязкости и межфазного натяжения, имеют сильные формирующие способности, благоприятно сказывающиеся на сварочном соединении.

Например, при работе на большой силе тока и толстых материалах, более практичны флюсы с долгим вязким состоянием. Такие порошки называют «длинными». Это позволяет глубоко прогретому сплаву постепенно кристаллизоваться и остыть, образуя гладкочешуйчатую структуру. Для сварки на малых токах, сильная жидкотекучесть будет мешать видеть сварочную ванну и качественно выполнять процесс, поэтому здесь применяются «короткие» флюсы, у которых вязкость быстро переходит в твердое состояние при снижении температуры.

Классификация

Классификация сварочных флюсов имеет четыре критерия, которые разделяют присадочное средство. Заключаются они в следующих пунктах:

  • назначение флюса;
  • способ его изготовления;
  • структура и физические параметры;
  • химический состав.
Назначение

В зависимости от состава и свойств гранулированного средства, оно может быть применено для обеспечения сварочных процессов в работе с углеродистыми, легированными и цветными металлами. Его используют для электродуговой, газовой и электрошлаковой сварки, а также работах с неплавящимися электродами. Некоторые классы флюсов взаимозаменяемы. Так, флюс для сварки алюминия, может быть использован и для создания соединений на легированных сталях. В его состав входят натрий, калий и литий, которые будут положительно сказываться и на других металлах. «Алюминиевый» флюс хорошо подойдет для сварки угольными электродами. Другие гранулированные смеси узко специализированны и не пригодны для широкого применения.

Способ изготовления

В промышленности имеются три способа производства флюса:

  • Плавленные. Для этого применяют электрические или угольные печи. Компоненты шихты разогревают до жидкого состояния и, сплавляясь, образуют полезную смесь. Брикеты и комки материала разбиваются до мелких частей. В готовом виде такие порошки имеют мелкодисперсную структуру серого цвета.
  • Механические смеси. Это соединение нескольких видов флюса в один состав путем физического перемешивания гранул между собой. Технология применяется для конкретных видом металлов. Постоянного состава не существует, а изготовление производится на заказ. Имеет существенный недостаток в виде разности веса и размера частиц, что приводит к их разделению при транспортировке и подаче из бункера.
  • Керамические. Соединение образовывается за счет скрепления порошкообразных веществ клеем, в роли которого выступает жидкое стекло. Альтернативным методом является спекание без сплавления. Компоненты шихты разогреваются до слипания в комки. После остывания они проходят процедуру измельчения. Благодаря недопущению сплавления сохраняются легирующие вещества.
Структура и параметры

Внешний вид и физическое строение порошкообразных средств для сварки может отличаться. Наиболее распространенными являются стекловидные зерна. Они имеют прозрачный цвет и круглую структуру. Отличаются более высокой насыпной массой, поэтому плотно укрывают соединение, защищая его от внешней среды.

Вторая категория флюсов создается в виде пемзообразного вещества. Это пенистые гранулы овальной или круглой формы. Цвет может варьировать от белого до коричневого. Порошок, из-за легкого веса, требует более высокого слоя присыпания соединения.

Химический состав

Из компонентов, входящих в состав порошкообразного вещества для присыпки сварного соединения, выделяются низкокремнистые смеси, где оксида последнего содержится меньше 35%. При этом участие марганца граничит на уровне 1%. Вторая группа — это флюсы с высоким содержанием оксида кремния, которое начинается от 35%. Третья категория называется бескислородной.

Отличаются флюсы и по степени взаимодействия с основным и присадочным металлами. Пассивные смеси только создают газовое облако, но никак не воздействуют на химический состав стали. Слаболегирующие порошки — это категория флюсов, производимая путем плавления, которые снабжают свариваемые материалы небольшим количеством кремния, марганца, и других полезных включений. Это придает шву большую прочность и ударную вязкость. Легирующие гранулированные составы обогащают металл в значительной степени, улучшая его физические и химические свойства. Швы после такой сварки лучше сопротивляются коррозии.

Обозначения

Флюс, используемый в ручной дуговой сварке, должен не мешать формированию шва, обеспечивать стабильное горение электрической дуги, и предотвращать образование дефектов в виде трещин и пор в застывающей структуре соединения. Во время плавления нижнего слоя порошка требуется минимальное выделение вредных веществ, угрожающих дыхательной системе сварщика. После окончания горения дуги, корка над швом должна легко отделяться, а гранулированное средство иметь низкую стоимость ввиду больших объемов выполняемых сварочных работ.

Все это нашло отображение в таблице обозначений типов флюса, чтобы пользователи могли легко ориентироваться и приобретать необходимое вещество для конкретного вида работ.

Символ обозначения Тип средства

MS

Марганец-силикатный

FB

Флюоритно-основной

CS

Кальций-силикатный

AR

Алюминатно-рутиловый

AB

Алюминатно-освновной

W

Другие типы

Нормативы по применению

В зависимости от выполняемых сварочных работ определяется количество и иные факторы задействования флюса. Это происходит по следующей таблице:

Сила тока, А Высота слоя присыпки, мм Грануляция частиц, мм
200-400 25-35 0,25-1,2
600-800 35-40 0,4-1,6
1000-1200 45-60 0,8-2,5

В зону сварки флюс подается предварительной ручной присыпкой, либо автоматически из специального бункера. Недостатком метода считается возможность вести сварочные работы только в нижнем положении. Но для сварки труб решение нашлось в прокручивании изделия, а не головки горелки. При использовании трубчатой порошковой проволоки сварку можно проводить в любом пространственном положении.

Применение этого относительно недорогого гранулированного вещества значительно улучшает качество сварки, защищая процесс горения дуги, и содействуя образованию прочного соединения.

Поделись с друзьями

1

0

1

0

svarkalegko.com

Сварочные флюсы – Осварке.Нет

Сварочные флюсы — гранулированный порошок подаваемый в зону сварки, где при плавлении выполняет функции защиты сварной ванны и дуги от воздействия воздуха, стабилизации горения сварной дуги, качественного формирования шва, легирования металла шва необходимыми компонентами и т. д. Флюсы используют для автоматической и полуавтоматической сварки под флюсом, а также для электрошлаковой сварки.

Сварочные флюсы используемые для газовой сварки и сварки угольным электродом имеют немного другое предназначение. Флюсы этой классификации предназначены для удаления со шва твердых неметаллических включений и защиты от окисления кромок сварных деталей и присадки.

Классификация сварочных флюсов

Основными признаками по которым разделяют флюсы — метод производства, химический состав и целевое предназначение. В зависимости от способа производства бывают плавленные и неплавленные флюсы.

Плавленные флюсы производят путем сплавления всех его компонентов и последующего дробления на мелкие зерна необходимой грануляции. Плавленные флюсы могут быть стекловидные и пемзовидные. Первые имеют вид прозрачных зерен разных оттенков, которые получают путем заливания горячего (1200°C) жидкого флюса в бак с водой. Пемзовидные флюсы — зерна пенистого материала получаемые при вливании жидкого флюса, нагретого до температуры 1600°C, в бак с водой. Когда пары воды подымаются, создают пемзовидный флюс. Размер зерен пензовидного флюса — от 0,2 до 4 мм. При использовании таких флюсом наблюдается лучшее формирование сварного шва. Более надежной защитой зоны сварки отличаются стекловидные флюсы.

Плавленные флюсы более дешевые в производстве и обеспечивают надежное формирование шва, защиту дуги, легкое отделение шлака. Хранить флюсы необходимо в сухих местах в бумажных мешках.

Неплавленный флюс производят путем смешивания мелких гранул компонентов входящих в флюс механическим путем без сплавления. Наиболее часто используют керамические флюсы.

Керамический флюс получают при смешивании компонентов с жидким стеклом и последующим протиранием сквозь сыто или с использованием специальных грануляторов. После дробление флюсу дают просохнуть при температуре 150-200°C и прожариваю при температуре 350°C. Керамические флюсы склонны поглощать влагу, поэтому их хранят в герметичных упаковках и жесткой таре через низкую прочность гранул. Их преимуществами считаются хорошая способность к легированию металла шва, низкая чувствительность к ржавчине и окалине.

По химическому составу различают оксидные, солевые и солеоксидные флюсы. Оксидные флюсы состоят с оксидов металлов из добавлением фторидных соединений. Из используют для сварки углеродистых и низколегированных сталей. Солевые флюсы состоят из фторидных и хлоридных солей металлов. Используют эти флюсы для сварки активных металлов. Солеоксидные флюсы, как можно понять, состоят из оксидов металлов и фторидов. Предназначены для сварки легированных сталей разного класса.

В зависимости от предназначения сварные флюсы делятся на несколько групп:

  • для дуговой сварки углеродистых и низколегированных сталей;
  • для дуговой сварки легированных сталей;
  • для электрошлаковой сварки;
  • для сварки цветных металлов и сплавов;
  • флюсы для наплавки.

Флюсы для сварки сталей

Для сварки углеродистых и низколегированных сталей предназначены следующие марки флюсов отечественного производства: АН-348А, АН-348В, ОСЦ-45, АН-60, ФЦ-6, АНК-35, АН-20С, АН-37П и другие. Индексы стоящие после марки электрода означают: М — мелкие, С — стекловидные, П — пемзовидные.

Для дуговой сварки средне- и высоколегированных сталей используют следующие марки флюсов отечественного производства: АН-20П, АН-20С, АН-26, АВ-4, АВ-5, АН-30, ОФ-6, ОФ-10, ФЦ-17, ФЦК-С и другие.

Электрошлаковую сварку выполняют с использованием флюсов марок: АН-8, АН-22, АНФ-1, АНФ-6, АНФ-7, АНФ-14У, АН-25, С-1.

  • Механизированная сварка меди и ее сплавов выполняется под флюсом марок: АН-348-А, ОСЦ-45, АН-20С, АН-26С, АН-М1, АН-М13, АН-М15, АН-М10.
  • Флюсы для механизированной  сварки алюминия и его сплавов: ЖА-64, ЖА-64А.
  • Флюсы для электрошлаковой сварки алюминия и его сплавов: АН-301, АН-302, АН-304.
  • Флюсы для дуговой сварки титана и его сплавов: АНТ-1, АНТ-3, АНТ-7, АНТ-23А.
  • Для электрошлаковой сварки титана и сплавов: АНТ-2, АНТ-4, АНТ-6.

Для наплавки используют флюсы марко: АН-70, АН-28, АН-20П и дургие.

Флюсы для газовой сварки

Отдельно можно выделить флюсы для газовой сварки и угольным электродом, которые должны растворять оксиды и неметаллические включения в металле сварной ванны. При использовании этих флюсов легкоплавкие смеси поднимают вверх сварной ванны у шлак. Используют флюсы в виде порошков или паст. Сварка низкоуглеродистых сталей такими флюсами не выполняется из-за склонности к образованию легкоплавких оксидов железа на поверхности шва.

При помощи флюсов можно сваривать чугун, цветные металлы, высоколегированные стали. Флюсы для газовой сварки, а также для сварки угольным электродом должны выполнять следующие требования:

  • флюс должен иметь температуру плавления ниже основного металла;
  • флюс должен обладать достаточной жидкотекучестью;
  • флюс не должен способствовать коррозии швов;
  • флюс должен раскислять оксиды и превращать их в легкоплавкие соединения или удалять их со шва;
  • образованный шлак должен защищать сварную ванну от воздуха;
  • шлак должен хорошо отделяться от поверхности сварного соединения после сварки;
  • густота флюса должна быть ниже густоты металла, чтобы шлак хорошо всплывал на поверхность и не оставался в металле.

Выбирают флюс в зависимости от вида и свойств свариваемого металла. В сварной ванне могут образовываться основные и кислотные оксиды. Если образуются основные оксиды, то используются кислые флюсы и наоборот, если кислотные — то основные флюсы. В любом случае реакция проходит по схеме:

основной оксид + кислый оксид = соль

Сварка чугуна сопровождается образованием кислых оксидов SiO2 для растворения которых вводят основные оксиды K2O Na2O. В качестве основных флюсов используют углекислый натрий Na2CO3, углекислый калий K2CO3 и буру Na2B4O7.

При сварке меди и латуни образуются основные оксиды (Cu2O, ZnO, FeO и другие), поэтому для их растворения используют кислые флюсы (соединения бора).

osvarke.net

Обзор технологии сварки под флюсом

В некоторых случаях при неразъемных соединениях деталей методом сварки находящиеся вокруг сварочной зоны газы, в частности, воздух и окись углерода, ухудшают проведение процесса, а само соединение оказывается непрочным. Снижается и производительность сварочных работ. Преодолеть эти негативные последствия помогает сварка под флюсом.

Виды и предназначение сварочных флюсов

Под сварочными флюсами понимают неметаллические минеральные вещества, которые при сварке решают следующие задачи:

  1. Стабилизируют горение сварочной дуги (особенно при сложных конфигурациях шва).
  2. Улучшают формирование сварного шва.
  3. Изменяют химический состав металла в зоне шва.
  4. Снижают энергетические потери и износ электродов.
  5. Позволяют повысить производительность процесса, поскольку возможно использовать автоматизированное оборудование для сварки под флюсом — так называемые сварочные тракторы.

Классификация данных материалов может быть выполнена по следующим параметрам:

  • По назначению. Различают флюсы для сварки сталей как нелегированных, так и легированных, для сварки цветных металлов, флюсы для пайки и т.д.
  • По химическому составу;
  • По технологии сварки;
  • По технологии приготовления.

Рассматриваемые составы могут быть универсальными, а также специально разработанными под особые условия сварки. В частности, для автоматической сварки под слоем флюса требуется использовать составы, полностью отвечающие требованиям ГОСТ 9087. Этим стандартом оговаривается определенная зависимость между размерами частиц флюса и диаметром сварочной проволоки.

Для выполнения сварки под флюсом используются вещества, получаемые либо плавлением, либо механическим соединением необходимых компонентов с последующим их склеиванием. В первом случае флюсы называют плавлеными, во втором — неплавлеными.

Основная минеральная составляющая любого флюса — двуокись кремния. Ее количество колеблется в пределах 35…80% (иногда часть кремнезема заменяется плавиковым шпатом). Остальное содержание низкокремнистых флюсов — марганец, а также металлы, при помощи которых происходит дополнительное легирование зоны шва. Марганец обладает большим сродством к кислороду, а потому, активно взаимодействуя с ним, снижает окислообразование в зоне сварки. Одновременно снижается вероятность проникновения в состав шва хрупких соединений серы: марганцем они связываются в сульфид, который затем удаляется с поверхности готового шва. Кремний не только упрощает приготовление флюса, но и снижает образование пор, поскольку угнетает процесс окисления углерода при температурах горения сварочной дуги.

Плавленые сварочные флюсы производят по следующей технологии. Компоненты размалывают до требуемых размеров частиц (чем меньше диаметр сварочной проволоки, тем меньшими они должны быть), затем тщательно перемешивают и расплавляют в печах с безокислительной атмосферой. Завершающим этапом приготовления является гранулирование флюса. Оно заключается в пропускании нагретых частиц через непрерывный водный поток, в результате чего частицы затвердевают и получают округлую форму, причем от интенсивности потока будущего гранулята зависят его размеры. После сушки и просеивания на виброситах с различными размерами ячеек, флюс разделяется на фракции и считается готовым к применению.

Неплавленые флюсы получают перемешиванием необходимых компонентов и последующим их связыванием при помощи жидкого стекла. Их технологические характеристики несколько ниже плавленых.

Таким образом, выбор марки сварочного флюса полностью определяется условиями его использования. Технологи не советуют увлекаться универсальными веществами, рекомендуя их к применению лишь для соединения деталей, которые в процессе своей эксплуатации не подвергаются значительным изгибающим, а также вибрационным нагрузкам.

Механизм работы флюсов при сварке

Перед началом работ стыкуемые поверхности металла покрываются сплошным слоем флюса толщиной не менее 40-50 мм. Сварочный электрод вводится вовнутрь, после чего возбуждается сварочная дуга. Поскольку температура в зоне горения дуги превышает 5500-6000 0С, то флюс внутри газового пузыря расплавляется, и накрывает сверху металлический расплав. Это происходит потому, что плотность флюса намного меньше плотности металла. Таким образом, зона сварного шва надежно ограждается от водяных и газовых паров и прочих химических веществ, которые при высокой температуре способны насыщать поверхностные слои металла вредными веществами.

Применение сварного флюса позволяет также снизить потери металла на разбрызгивание. Это становится возможным вследствие большого поверхностного натяжения расплава флюса, которое достигает значений в 8-10 г/см2. Поэтому применение сварочных флюсов позволяет увеличивать ток дуги без ущерба для качества готового шва. Например, обычным режимом для сварки под флюсом считается применение силы тока 1000-2000 А, в то время, как в обычном процессе увеличение тока до 200-300 А приводит к серьезным потерям материала электрода. Поэтому в химическом составе сварочной проволоки с флюсом часто присутствуют дефицитные легирующие компоненты — вольфрам, хром, кобальт и пр.

Механизм формирования сварного шва при сварке под слоем флюса следующий. Поскольку концентрация тепловой мощности в зоне дуги из-за воздействия флюса увеличивается, расплавление металла происходит быстрее. В результате, независимо от состояния кромок, полностью заполняются все стыки. Меняется и материальный баланс шва: 60-65% составляет металл соединяемых деталей, и лишь остальное — материал сварочных электродов. При автоматической сварке это сопровождается заметным повышением производительности процесса.

Эффективная сварка некоторых металлов (алюминия, высокоуглеродистых и легированных сталей) без применения флюса вообще невозможна. В частности, флюс для сварки алюминия включает в себя, помимо традиционных компонентов, также и вещества, раскисляющие металл. Дело в том, что индивидуальная особенность алюминия — образование высокостойкой окисной пленки — снижает производительность сварки и вынуждает применять более высокие сварочные токи.

Особую роль при сварке играют магнитные флюсы. Они относятся к категории неплавленых, но дополнительно включают в себя железный порошок. Производительность сварки при этом возрастает. При повышенных температурах процесса наличием проволоки для полуавтомата, содержащей магнитный флюс, создается сильное магнитное поле. Оно сокращает расстояние между флюсом и металлом который подвергается сварке. Поэтому потери флюсовой проволоки уменьшаются.

Таким образом, сварочные флюсы способствуют повышению экономичности, производительности и качества сварки.

Оснастка для производства сварки под флюсом

Наибольший эффект от сварочных работ под слоем флюса обеспечивает применение сварочных полуавтоматов и автоматов. Во флюсоподающее устройство входят:

  1. Бункер.
  2. Подающая трубка.
  3. Пневмоотсос.
  4. Привод для вакуумного насоса (в некоторых исполнениях сварочных тракторов используется привод от промышленной пневматической сети).
  5. Фильтрующий циклон.

Флюсаппарат работает так. В эжекторе, который является основой узла для подачи флюса, создается необходимое разрежение воздуха. В результате смесь флюса с воздухом попадает в шланг сварочного аппарата. Мощность всасывающего насоса подбирается таким образом, чтобы в подающей трубке создавалась скорость потока частиц материала не ниже 20-25 м/с: в этом случае флюс, независимо от размера частиц, будет находиться во взвешенном состоянии. Благодаря профилю эжектора, скорость частиц на выходе из трубки увеличивается и состав равномерно покрывает зону последующего соединения деталей.

В процессе сварки часть флюса остается в неизменном виде и поэтому вновь может быть подана в загрузочный бункер оборудования. С этой целью входное отверстие пневматического отсоса выполняется по профилю диффузора. В результате скорость перемещения использованного флюса по мере его приближения к загрузочному бункеру падает. В результате происходит эффективное отделение частиц флюса от воздуха. Воздух удаляется через ситообразные отверстия наружу, а флюс поступает в циклон, находящийся в верхней части флюсаппарата. Там происходит завихрение потока, при котором происходит окончательное сепарирование частиц флюса. Верхняя часть циклона закрывается пылезащитным колпаком, снабженным матерчатыми фильтрами, что улучшает качество отбора флюса в загрузочный бункер.

Для обеспечения стабильности движения флюса в бункере, и особенно — в подающей трубке, при работе сварочного оборудования непрерывно поддерживается незначительное избыточное давление воздуха.

В зависимости от производственных характеристик сварочного оборудования флюсаппараты обладают следующими эксплуатационными параметрами:

  • Номинальной производительностью, л/ч — до 450-500;
  • Максимальной высотой всасывания, м — до 3,5-4;
  • Рабочими давлениями сжатого воздуха, МПа — до 0,5-0,6.

Флюсаппараты выпускаются стационарными или передвижными. Они могут также комплектоваться вместе с основным оборудованием для сварки или поставляться отдельно от него.

Положительной особенностью сварочных автоматов является их работа при постоянной скорости подачи проволоки, поскольку использование флюса обеспечивает повышенную плотность тепловой мощности в зоне горения дуги.

wikimetall.ru

Сварочный флюс – как защитить соединение грамотно?

Черные и цветные металлы, в целом, являются одним из важнейших видов конструкционных материалов, играют важную роль практически во всех видах деятельности человека. Часто возникает необходимость надежного соединения металлических элементов конструкций.

Из многочисленных способов его выполнения сварка металлов дает высокопрочное и надежное соединение. Видов и технологий разработано множество. Сварка электрической дугой и газовая сварка среди них очень распространены, активно и широко применяются при строительных работах, промышленном производстве, работах в сфере энергетики и т.п.

Среди требований к шву важным является защита зоны сварки. Образующиеся при сварке окислы имеют температуру плавления выше, нежели у металла, это значительно ухудшает соединение. В задачу флюсов входит защита от окислов, ухудшающих свойства шовного соединения, и образование легко удаляемых шлаков. Достигается это за счет включения в составы химических веществ.

Поэтому, будучи достаточно сложным композитным материалом, флюс для сварки защищает металлический расплав и зону воздействия (дуга или горелка) от кислорода и азота, делая горение более стабильным и мощным. Способствует восстановлению окислов, разжижает и понижает температуры шлаков и их соединений, тем самым создавая условия их всплывания на поверхность расплава для последующего удаления.

Современные флюсы могут изготавливаться в виде отдельного материала или в виде цельной конструкции. Так, наружный слой покрытия на материале сварочного стержня образует цельную конструкцию сварочного электрода, ставшую стандартом и получившую широкое распространение.

Подобно электроду, сварочная проволока с флюсом широко применяется в механизированных сварочных работах с защитными газами и без них. Проволока намотана в бобины, и флюс в ней располагается в виде сердечника. Он также выполняет задачи защиты сварочной ванны.

Еще одним из видов бобинных материалов для автоматических и полуавтоматических сварочных аппаратов является сварочная проволока порошковая. Конструктивно она состоит из трубки-электрода со смесью порошкового металла и флюса внутри. Это также флюсовая сварочная проволока.

Флюс и тут снижает выделения вредной пыли и газов, увеличивает глубину и мощность расплава, тем самым обеспечивая большую однородность и качество шва. Кроме того, во флюсах присутствуют специальные добавки для получения заранее заданной химической чистоты, увеличения прочностных характеристик швов, их легирования.

В зависимости от вида металлов, от типа сварки применяются разные флюсы. Так, первая группа флюсов применяется для сварки углеродистой и легированной стали. Для сталей высоколегированных используются флюсы второй группы. Соответственно, для цветных металлов и сплавов сварку проводят с применением третьей, большой группы флюсов.

Например, специализированный флюс для сварки алюминия в своем составе может содержать соли натрия, калия, лития, бария. Кроме того, в этом флюсе есть плавиковый шпат. В составе проволок для сварки алюминия применяются также кремний, марганец, магний, цинк и железо.

Разумеется, в зависимости от типов флюсов, электродов и проволок, меняется состав и соотношение компонентов. Но надо отметить и наличие универсальных флюсов, некоторые из них могут использоваться для работ с металлами других групп.

Как уже говорилось, многочисленные задачи выполнения сварочных работ решаются также с применением газовой сварки. Фактором ее использования является плавность и постепенность нагрева соединяемых металлических деталей. Особенно целесообразно применение газосварки в работах, требующих такой постепенности.

Например, при работах с чугунами и специальными и инструментальными сталями. Как и в случае применения дуговой сварки, флюсы для газовой сварки защищают расплав от образования тугоплавких окислов, способствуют образованию шлаков с низкими температурами плавления. Такие шлаки образуют тонкую защитную поверхностную пленку на шовном соединении.

И поэтому в случае газосварки к флюсам предъявляются требования: низкая плотность (должен плавать на поверхности расплава), легкоплавкость (менее температур плавки металла), адгезия и текучесть в расплаве, легкость вступления в реакцию с оксидными пленками и оксидами металлов (для образования низкотемпературных шлаков) и безопасность для людей и материалов.

Поскольку металлов, как и сплавов, множество, флюсовых материалов только для сварки газом известно больше ста наименований. Тут применяется, например, кремниевая и борная кислоты, бура, их многокомпонентные сочетания.

ogodom.ru

www.samsvar.ru

Флюсы сварочные

Рекомендуем приобрести:

Установки для автоматической сварки продольных швов обечаек - в наличии на складе! Высокая производительность, удобство, простота в управлении и надежность в эксплуатации.

Сварочные экраны и защитные шторки - в наличии на складе! Защита от излучения при сварке и резке. Большой выбор. Доставка по всей России!

Флюс — это неметаллический материал, вводимый в зону сварки, наплавки, пайки для создания защиты ванны, восстановления окислов, разжижения и понижения температуры шлаков, а также для выполнения металлургических функций по получению шва нужного химического состава.

Для дуговой сварки и наплавки флюс обычно зернистый, порошкообразный. Такой же флюс и для электрошлаковой сварки, но с дополнительными спецсвойствами по электропроводности и т. д.

Для газовой сварки и пайки в качестве флюсов применяют пасты, порошки и газ.

Помимо основных функций, флюс при сварке обычно способствует стабилизации горения дуги и улучшению формирования шва, при пайке может уменьшать поверхностное натяжение, улучшать растекаемость припоя.

Флюс получают сплавлением составляющих его компонентов и последующим дроблением (плавленые флюсы) или механическим связыванием (склеиванием) порошкообразных компонентов с последующим измельчением (неплавленые флюсы).

По назначению флюсы разделяют на три группы: для сварки углеродистых и легированных сталей; для сварки высоколегированных сталей; для сварки цветных металлов и их сплавов. Некоторые марки флюсов, предназначенные для сварки металлов одной из этих групп, можно применять для сварки металлов и другой группы.

В зависимости от их химического состава различают флюсы высококремнистые (более 35% кремнезема), низкокремнистые (до 35% кремнезема), безмарганцевые (менее 1% марганца), марганцевые (более 1% марганца). Изготовляют также легированные флюсы, содержащие чистые легирующие металлы или ферросплавы. Флюсы для автоматической сварки выпускаются по ГОСТ 9087-81. Флюс с размером зерен от 0,25 до 1,6 мм предназначен для сварки проволокой диаметром до 3,0 мм: с размерами зерен от 0,35 до 3 мм — для сварки проволокой диаметром более 3,0 мм.

Плавленые флюсы изготовляются двух видов: стекловидные (зерна прозрачные, от светло-желтого до бурого и коричневого цвета) и пемзовидные (пористые зерна светлой окраски). Объемная масса стекловидных флюсов, от 1,3 до 1,8 кг/дм3, пемзовидных — не более 1 кг/дм3. Наиболее распространены стекловидные флюсы.

К неплавленым флюсам относятся керамические, которые используются главным образом как легирующие: они малочувствительны к ржавчине, окалине и влаге на кромках свариваемых швов; добавление керамических флюсов к стекловидным позволяет получать швы высокого качества даже при плохой очистке кромок. Назначение флюса:

  • зашита расплавленного металла и зоны дуги от действия кислорода и азота воздуха;
  • стабилизация горения сварочной дуги;
  • легирование металла шва;
  • раскисление расплавленного металла;
  • формирование шва;
  • уменьшение потерь тепла;
  • уменьшение потерь электродного металла на угар и разбрызгивание.

Флюсы должны обеспечивать легкую отделяемость шлака и минимальное количество вредных газов и пыли, выделяющихся при сварке.

По сложившейся традиции, марки флюсов обычно указывают наименование разработчика и порядковый номер флюса. Так, флюсы, разработанные ИЭС им. Е. О. Патона, имеют сериал, обозначенный буквенными индексами «АН» (АН-348-А; АН-20; АН-22 и т. д.), что обозначает — «Академия наук» (в составе которой находится ИЭС им. Патона). Флюсы, предложенные НПО ЦНИИТМАШ. имеют сериал «ФЦ» — флюсы ЦНИИТМАШ, и т. д. Были попытки ввести индексы, в какой-то степени характеризующие состав флюсов, например, ОФ6 и ОФ10 (основной флюс), КФ16 (кислый флюс), НФ17 (нейтральный флюс). Однако эта практика до сих пор не получила широкого распространения среди разработчиков флюсов.

Плавленые флюсы получают плавлением исходных материалов (кварцевого песка, марганцевой руды, плавикового шпата каустического магнезита и др.) в электрических или пламенных печах при 1400...1500 °С. Расплавленная масса выливается тонкой струей в воду и гранулируется, приобретая вид крупки размером 0,25...3 мм. Гигроскопичные флюсы, содержащие большое количество фтористых и хлористых солей, подвергают сухой грануляции. Расплавленный флюс выливают в металлическую форму, а после остывания дробят в валках до размера 0,1...3 мм.

Для изготовления неплавленых флюсов исходные компоненты измельчают, замешивают на жидком стекле и с целью дополнительного измельчения и получения однородной массы пропускают через экструдер. После сушки и просеивания флюс готов к употреблению.

Наибольшее применение в сварочном производстве получили плавленые флюсы, к преимуществам которых относятся высокие технологические свойства (защита, формирование шва, отделимость шлаковой корки и др.) и малая стоимость.

Для электрошлаковой сварки выбирают флюсы общего назначения (АН-348А, АН-22, 48-ОФ-6, АНФ-5) и предназначенные именно для данного процесса (АН-8 и АН-25). Содержание в этих флюсах оксидов титана обеспечивает их высокую электропроводность в твердом состоянии.

Для сварки меди и ее сплавов можно использовать флюсы ОСЦ-45, АН-348А, АН-20, АН-26.

Преимущество плавленых флюсов перед керамическими — это более высокие технологически свойства (защита, формирование, отделяемость шлаковой корки и др.) и меньшая стоимость. Преимуществом керамических флюсов является возможность в более широких пределах легировать металл шва через флюс. В настоящее время промышленность применяет преимущественно плавленые флюсы.

Высококремнистыми и марганцовистыми флюсами являются флюсы ОСЦ-45 и АН-348А, шихта которых состоит из марганцевой руды (МnО), кварцевого песка (Si02) и плавикового шпата (фтористого кальция CaF2). Буква А в конце марки флюса обозначает, что грануляция крупная (для автоматической сварки), а буква Ш — мелкая грануляция, т. е. для использования при полуавтоматической сварке шланговыми полуавтоматами (они применялись на заводах до 70-х годов).

Для автоматической наплавки под флюсом служат те же флюсы, что и для сварки. Наиболее распространены плавленые флюсы АН-348А; ОСЦ-45; АН-20; АН-60; 48-ОФ-6; АН-26; AH-I5M; АН-8; АН-25; АН-22; АНФ-6 в сочетании с легированными проволоками.

Источник: Колганов Л.А. "Сварочное производство". Ростов-на-дону, 2002. -512с.Э.С. Каракозов, Р.И. Мустафаев "Справочник молодого электросварщика". -М. 1992

www.autowelding.ru