Методы отделения серебра от меди в домашних условиях. Как получить медь


Металл получение (справка в интернете) медь Способы получения меди

Для получения меди применяют пиро-, гидро- и электрометаллургические процессы.

Пирометаллургический процессполучения меди из сульфидных руд типа CuFeS2выражается суммарным уравнением:

2CuFeS2 + 5O2 + 2SiO2 = 2Cu + 2FeSiO3 + 4SO2.

Гидрометаллургические методыполучения меди основаны на селективном растворении медных минералов в разбавленных растворах серной кислоты или аммиака, из полученных растворов медь вытесняют металлическим железом:

CuSO4+ Fe = Cu + FeSO4.

Электролизом получают чистую медь:

2CuSO4 + 2h3O 2Cu + O2 + 2h3SO4;

на катоде выделяется медь, на аноде – кислород.

Физические и химические свойства: кристаллическая решетка металлической меди кубическая гранецентрированная, параметр решетки а = 0,36150 нм. Плотность 8,92 г/см3, температура плавления 1083,4°C, температура кипения 2567°C. Медь среди всех других металлов обладает одной из самых высоких теплопроводностей и одним из самых низких электрических сопротивлений (при 20°C удельное сопротивление 1,68·10–3 Ом·м).

Нахождение в природе: в земной коре содержание меди составляет около 5·10–3% по массе. Очень редко медь встречается в самородном виде (самый крупный самородок в 420 тонн найден в Северной Америке). Из руд наиболее широко распространены сульфидные руды: халькопирит, или медный колчедан, CuFeS2 (30% меди), ковеллин CuS (64,4% меди), халькозин, или медный блеск, Cu2S (79,8% меди), борнит Cu5FeS4 (52-65% меди). Существует также много и оксидных руд меди, например: куприт Cu2O, (81,8% меди), малахит CuCO3·Cu(OH)2 (57,4% меди) и другие. Известно 170 медьсодержащих минералов, из которых 17 используются в промышленных масштабах.

Различных руд меди много, а вот богатых месторождений на земном шаре мало, к тому же медные руды добывают уже многие сотни лет, так что некоторые месторождения полностью исчерпаны. Часто источником меди служат полиметаллические руды, в которых, кроме меди, присутствуют железо (Fe), цинк (Zn), свинец (Pb), и другие металлы. Как примеси медные руды обычно содержат рассеянные элементы (кадмий, селен, теллур, галий, германий и другие), а также серебро, а иногда и золото. Для промышленных разработок используют руды, в которых содержание меди составляет немногим более 1 % по массе, а то и менее. В морской воде содержится примерно 1·10–8 % меди.

Получение: промышленное получение меди — сложный многоступенчатый процесс. Добытую руду дробят, а для отделения пустой породы используют, как правило, флотационный метод обогащения. Полученный концентрат (содержит 18-45% меди по массе) подвергают обжигу в печи с воздушным дутьем. В результате обжига образуется огарок - твердое вещество, содержащее, кроме меди, также и примеси других металлов. Огарок плавят в отражательных печах или электропечах. После этой плавки, кроме шлака, образуется так называемый штейн, в котором содержание меди составляет до 40-50%. Далее штейн подвергают конвертированию — через расплавленный штейн продувают сжатый воздух, обогащенный кислородом. В штейн добавляют кварцевый флюс (песок SiO2). В процессе конвертирования содержащийся в штейне как нежелательная примесь сульфид железа FeS переходит в шлак и выделяется в виде сернистого газа SO2:

2FeS + 3O2 + 2SiO2 = 2FeSiO3 + 2SO2

Одновременно сульфид меди (I) Cu2S окисляется:

2Cu2S + 3О2 = 2Cu2О + 2SO2

Образовавшийся на этой стадии Cu2О далее реагирует с Cu2S:

2Cu2О + Cu2S = 6Cu + SО2

В результате возникает так называемая черновая медь, в которой содержание самой меди составляет уже 98,5-99,3% по массе. Далее черновую медь подвергают рафинированию. Рафинирование на первой стадии — огневое, оно заключается в том, что черновую медь расплавляют и через расплав пропускают кислород. Примеси более активных металлов, содержащихся в черновой меди, активно реагируют с кислородом и переходят в оксидные шлаки. На заключительной стадии медь подвергают электрохимическому рафинированию в сернокислом растворе, при этом черновая медь служит анодом, а очищенная медь выделяется на катоде. При такой очистке примеси менее активных металлов, присутствовавшие в черновой меди, выпадают в осадок в виде шлама, а примеси более активных металлов остаются в электролите. Чистота рафинированной (катодной) меди достигает 99,9% и более.

studfiles.net

Как получить медь

Медь (Cuprum) является химическим элементом I-ой группы периодической системы Менделеева, имеющим атомный номер 29 и атомную массу 63,546. Чаще всего медь имеет валентность II и I, реже – III и IV. В системе Менделеева медь располагается в четвертом периоде, а также входит в группу IB. Сюда входят такие металлы благородного происхождения, как золото (Au) и серебро (Ag). А теперь мы распишем способы получения меди.

Инструкция

  • Промышленное получения меди – это процесс сложный и многоступенчатый. Добытый металл дробится, а затем очищается от пустой породы посредством использования флотационного метода обогащения. Далее полученный концентрат (20-45% меди) подвергается обжигу в печке с воздушным дутьем. После обжига должен образоваться огарок. Это такое твердое вещество, которое содержится в примеси многих металлов. Расплавьте огарок в отражательной либо электрической печи. После такой плавки помимо шлака образуется штейн, содержащий в себе 40-50% меди.
  • Штейн далее подвергается конвертированию. Это значит, что нагретый штейн продувается сжатым и обогащенным кислородом воздухом. Добавьте кварцевого флюса (песка SiO2). При конвертировании нежелательный сульфид железа FeS перейдет в шлак и выделится в форме сернистого газа SO2. Одновременно будет окисляться сульфид одновалентной меди Cu2S. На следующей ступени будет образовываться оксид Cu2O, который вступит в реакцию с сульфидом меди.
  • В результате всех описанных операций получится черновая медь. Содержание самой меди в ней составляет около 98,5-99,3% по массе. Черновая медь подвергается рафинированию. Этот процесс на первой стадии заключается в оплавлении меди и пропускании через полученный расплав кислорода. Содержащиеся в меди примеси более активных металлов незамедлительно вступают в реакцию с кислородом, переходя тут же в оксидные шлаки.
  • В заключительной части процесса получения меди она подвергается электрохимическому рафинированию в растворе оксида серы. Черновая медь при этом является анодом, а очищенная – катодом. Благодаря такой очистке выпадают в осадок примеси менее активных металлов, которые присутствовали в черновой меди. Примеси более активных металлов вынуждены оставаться в электролите. Стоит отметить, что чистота катодной меди, прошедшей все стадии очистки, достигает 99,9% и даже более.

completerepair.ru

Как получить хлорид меди

Хлорид меди – химическое соединение, которое относится к группе солей. Это растворимое вещество, которое в зависимости от концентрации имеет разный оттенок – от насыщенного зеленого до сине-голубого. В лаборатории во время проведения практической работы хлорид меди (II) можно получить, используя различные методы.

Вам понадобится

  • Реактивы, штатив с пробирками

Инструкция

  • Кто-то может посчитать, что самым простым способом получения хлорида меди (II) является взаимодействие металла с соляной кислотой. Однако на практике это не так, потому что существует правило, согласно которому с разбавленными кислотами реагируют только металлы, стоящие в электрохимическом ряду напряжений металлов до водорода. Медь в данном случае стоит после водорода, а потому реакция не идет.
  • Медь + хлор = хлорид меди (II). При взаимодействии металлической меди с хлором образуется только одно вещество – хлорид меди (II), следовательно, это реакция соединения. Для опыта раскалите медную проволочку на пламени горелки и внесите в сосуд с хлором, имеющем на дне небольшое количество воды. Происходит бурная реакция образования соли, которая растворяется в воде.
  • Медь + растворимая соль = другой металл + другая соль. Эта реакция идет далеко не с каждой растворимой солью. Обязательно нужно ориентироваться на электрохимический ряд напряжений металлов. Только с теми солями пойдет реакция, в состав которых входит металл, стоящий в ряду после меди. К таким металлам можно отнести ртуть, серебро и другие. То есть в данном случае соблюдается правило – в электрохимическом ряду каждый предыдущий металл вытесняет из соли последующий.
  • Оксид меди + соляная кислота = хлорид меди (II)+ вода. Для получения соли возьмите пробирку, налейте в нее на одну треть соляной кислоты, поместите оксид меди (II) (порошок черного цвета) и нагрейте на пламени спиртовки. В результате реакции образуется раствор зеленого цвета (в случае концентрированной соли) или сине-голубой.
  • Гидроксид меди (II) + соляная кислота = хлорид меди (II) + вода. Иначе такое химическое взаимодействие называется реакцией нейтрализации. Гидроксид меди (II) представляет собой осадок голубого цвета. К свежеприготовленному веществу (гидроксиду меди (II)) прилейте немного соляной кислоты, и осадок растворится, образуя раствор хлорида меди (II) сине-голубого цвета.
  • Карбонат меди (II) + соляная кислота = хлорид меди (II) + углекислый газ + вода. Возьмите карбонат меди, который представляет собой белое кристаллическое вещество с зеленоватым оттенком, и внесите небольшое его количество в пробирку с соляной кислотой. Будет наблюдаться вскипание за счет выделения углекислого газа, а раствор приобретет сине-голубую окраску за счет образования хлорида меди (II).

completerepair.ru

Медь — Мегаэнциклопедия Кирилла и Мефодия — статья

Природная медь состоит из двух стабильных нуклидов63Cu (69, 09% по массе) и 65Cu (30, 91%). Конфигурация двух внешних электронных слоев нейтрального атома меди 3s2p6d104s1. Образует соединения в степенях окисления +2 (валентность II) и +1 (валентность I), очень редко проявляет степени окисления +3 и +4.В периодической системе Менделеева медь расположена в четвертом периоде и входит в группу IВ, к которой относятся такие благородные металлы, как серебро и золото.

Радиус нейтрального атома меди 0, 128 нм, радиус иона Cu+ от 0, 060 нм (координационное число 2) до 0, 091 нм (координационное число 6), иона Cu2+ — от 0, 071 нм (координационное число 2) до 0, 087 нм (координационное число 6). Энергии последовательной ионизации атома меди 7, 726, 20, 291, 36, 8, 58, 9 и 82, 7 эВ. Сродство к электрону 1, 8 эВ. Работа выхода электрона 4, 36 эВ. По шкале Полинга электроотрицательность меди 1, 9; медь принадлежит к числу переходных металлов. Стандартный электродный потенциал Cu/Cu2+ 0, 339 В. В ряду стандартных потенциалов медь расположена правее водорода и ни из воды, ни из кислот водорода не вытесняет.

Простое вещество медь — красивый розовато-красный пластичный металл.

В земной коре содержание меди составляет около 5·10-3 % по массе. Очень редко медь встречается в самородном виде (самый крупный самородок в 420 тонн найден в Северной Америке). Из руд наиболее широко распространены сульфидные руды: халькопирит, или медный колчедан, CuFeS2 (30% меди), ковеллин CuS (64, 4% меди), халькозин, или медный блеск, Cu2S (79, 8% меди), борнит Cu5FeS4.(52-65% меди). Существует также много и оксидных руд меди, например: куприт Cu2O, (81, 8% меди), малахит CuCO3·Cu(OH)2 (57, 4% меди) и другие. Известно 170 медьсодержащих минералов, из которых 17 используются в промышленных масштабах.Различных руд меди много, а вот богатых месторождений на земном шаре мало, к тому же медные руды добывают уже многие сотни лет, так что некоторые месторождения полностью исчерпаны. Часто источником меди служат полиметаллические руды, в которых, кроме меди, присутствуют железо, цинк, свинец, и другие металлы. Как примеси медные руды обычно содержат рассеянные элементы (кадмий, селен, теллур, галий, германий и другие), а также серебро, а иногда и золото. Для промышленных разработок используют руды, в которых содержание меди составляет немногим более 1% по массе, а то и менее.

В морской воде содержится примерно 1·10-8 % меди.

Промышленное получение меди — сложный многоступенчатый процесс. Добытую руду дробят, а для отделения пустой породы используют, как правило, флотационный метод обогащения. Полученный концентрат (содержит 18-45% меди по массе) подвергают обжигу в печи с воздушным дутьем. В результате обжига образуется огарок — твердое вещество, содержащее, кроме меди, также и примеси других металлов. Огарок плавят в отражательных печах или электропечах. После этой плавки, кроме шлака, образуется так называемый штейн, в котором содержание меди составляет до 40-50%.

Далее штейн подвергают конвертированию — через расплавленный штейн продувают сжатый воздух, обогащенный кислородом. В штейн добавляют кварцевый флюс (песок SiO2). В процессе конвертирования содержащийся в штейне как нежелательная примесь сульфид железа FeS переходит в шлак и выделяется в виде сернистого газа SO2:

2FeS + 3O2 + 2SiO2 = 2FeSiO3 + 2SO2

Одновременно сульфид меди(I) Cu2S окисляется:

2Cu2S + 3О2 = 2Cu2О + 2SO2

Образовавшийся на этой стадии Cu2О далее реагирует с Cu2S:

2Cu2О + Cu2S = 6Cu + SО2

В результате возникает так называемая черновая медь, в которой содержание самой меди составляет уже 98, 5-99, 3% по массе. Далее черновую медь подвергают рафинированию. Рафинирование на первой стадии — огневое, оно заключается в том, что черновую медь расплавляют и через расплав пропускают кислород. Примеси более активных металлов, содержащихся в черновой меди, активно реагируют с кислородом и переходят в оксидные шлаки.

На заключительной стадии медь подвергают электрохимическому рафинированию в сернокислом растворе, при этом черновая медь служит анодом, а очищенная медь выделяется на катоде. При такой очистке примеси менее активных металлов, присутствовавшие в черновой меди, выпадают в осадок в виде шлама, а примеси более активных металлов остаются в электролите. Чистота рафинированной (катодной) меди достигает 99, 9% и более.

Кристаллическая решетка металлической меди кубическая гранецентрированная, параметр решетки а = 0, 36150 нм. Плотность 8, 92 г/см3, температура плавления 1083, 4 °C, температура кипения 2567 °C. Медь среди всех других металлов обладает одной из самых высоких теплопроводностей и одним из самых низких электрических сопротивлений (при 20 °C удельное сопротивление 1, 68·10-3 Ом·м).

В сухой атмосфере медь практически не изменяется. Во влажном воздухе на поверхности меди в присутствии углекислого газа образуется зеленоватая пленка состава Cu(OH)2·CuCO3. Так как в воздухе всегда имеются следы сернистого газа и сероводорода, то в составе поверхностной пленки на металлической меди обычно имеются и сернистые соединения меди. Такая пленка, возникающая с течением времени на изделиях из меди и ее сплавов, называется патиной. Патина предохраняет металл от дальнейшего разрушения. Для создания на художественных предметах «налета старины» на них наносят слой меди, который затем специально патинируется.

При нагревании на воздухе медь тускнеет и в конце концов чернеет из-за образования на поверхности оксидного слоя. Сначала образуется оксид Cu2O, затем — оксид CuO.

Красновато-коричневый оксид меди(I) Cu2O при растворении в бромо- и иодоводородной кислотах образует, соответственно, бромид меди(I) CuBr и иодид меди(I) CuI. При взаимодействии Cu2O с разбавленной серной кислотой возникают медь и сульфат меди:

Cu2O + h3SO4 = Cu + CuSO4 + h3O.

При нагревании на воздухе или в кислороде Cu2O окисляется до CuO, при нагревании в токе водорода — восстанавливается до свободного металла.

Черный оксид меди (II) CuO, как и Cu2O, c водой не реагирует. При взаимодействии CuO с кислотами образуются соли меди (II):

CuO + h3SO4 = CuSO4 + h3O

При сплавлении со щелочами CuO образуются купраты, например:

CuO + 2NaOH = Na2CuO2 + h3O

Нагревание Cu2O в инертной атмосфере приводит к реакции диспропорционирования:

Cu2O = CuO + Cu.

Такие восстановители, как водород, метан, аммиак, оксид углерода (II) и другие восстанавливают CuO до свободной меди, например:

CuO +СО = Cu + СО2.

Кроме оксидов меди Cu2O и CuO, получен также темно-красный оксид меди (III) Cu2O3, обладающий сильными окислительными свойствами.

Медь реагирует с галогенами, например, при нагревании хлор реагирует с медью с образованием темно-коричневого дихлорида CuCl2. Существуют также дифторид меди CuF2 и дибромид меди CuBr2, но дииодида меди нет. И CuCl2, и CuBr2 хорошо растворимы в воде, при этом ионы меди гидратируются и образуют голубые растворы.

При реакции CuCl2 с порошком металлической меди образуется бесцветный нерастворимый в воде хлорид меди (I) CuCl. Эта соль легко растворяется в концентрированной соляной кислоте, причем образуются комплексные анионы [CuCl2]-, [CuCl3]2- и [СuCl4]3-, например за счет процесса:

CuCl + НCl = H[CuCl2]

При сплавлении меди с серой образуетcя нерастворимый в воде сульфид Cu2S. Сульфид меди (II) CuS выпадает в осадок, например, при пропускании сероводорода через раствор соли меди (II):

h3S + CuSO4 = CuS + h3SO4

C водородом, азотом, графитом, кремнием медь не реагирует. При контакте с водородом медь становится хрупкой (так называемая «водородная болезнь» меди) из-за растворения водорода в этом металле.

В присутствии окислителей, прежде всего кислорода, медь может реагировать с соляной кислотой и разбавленной серной кислотой, но водород при этом не выделяется:

2Cu + 4HCl + O2 = 2CuCl2 + 2h3O.

С азотной кислотой различных концентраций медь реагирует довольно активно, при этом образуется нитрат меди (II) и выделяются различные оксиды азота. Например, с 30%-й азотной кислотой реакция меди протекает так:

3Cu + 8HNO3 = 3Cu(NO3)2 + 2NO + 4h3O.

С концентрированной серной кислотой медь реагирует при сильном нагревании:

Cu + 2h3SO4 = CuSO4 + SO2+ 2h3O.

Практическое значение имеет способность меди реагировать с растворами солей железа (III), причем медь переходит в раствор, а железо (III) восстанавливается до железа (II):

2FeCl3 + Cu = CuCl2 + 2FeCl2

Этот процесс травления меди хлоридом железа (III) используют, в частности, при необходимости удалить в определенных местах слой напыленной на пластмассу меди.

Ионы меди Cu2+ легко образуют комплексы с аммиаком, например, состава [Cu(Nh4)]2+ . При пропускании через аммиачные растворы солей меди ацетилена С2Н2 в осадок выпадает карбид (точнее, ацетиленид) меди CuC2.

Гидроксид меди Cu(OH)2 характеризуется преобладанием основных свойств. Он реагирует с кислотами с образованием соли и воды, например:

Сu(OH)2 + 2HNO3 = Cu(NO3)2 + 2h3O.

Но Сu(OH)2 реагирует и с концентрированными растворами щелочей, при этом образуются соответствующие купраты, например:

Сu(OH)2 + 2NaOH = Na2[Cu(OH)4]

Если в медноаммиачный раствор, полученный растворением Сu(OH)2 или основного сульфата меди в аммиаке, поместить целлюлозу, то наблюдается растворение целлюлозы и образуется раствор медноаммиачного комплекса целлюлозы. Из этого раствора можно изготовить медноаммиачные волокна, которые находят применение при производстве бельевого трикотажа и различных тканей.

Медь, как полагают, — первый металл, который человек научился обрабатывать и использовать для своих нужд. Найденные в верховьях реки Тигр изделия из меди датируются десятым тысячелетием до нашей эры. Позднее широкое применение сплавов меди определило материальную культуру бронзового века (конец 4 — начало 1 тысячелетия до нашей эры) и в дальнейшем сопровождало развитие цивилизации на всех этапах. Медь и ее использовались для изготовления посуды, утвари, украшений, различных художественных изделий. Особенно велика была роль бронзы .

С 20 века главное применение меди обусловлено ее высокой электропроводимостью. Более половины добываемой меди используется в электротехнике для изготовления различных проводов, кабелей, токопроводящих частей электротехнической аппаратуры. Из-за высокой теплопроводности медь — незаменимый материал различных теплообменников и холодильной аппаратуры. Широко применяется медь в гальванотехнике — для нанесения медных покрытий, для получения тонкостенных изделий сложной формы, для изготовления клише в полиграфии и др.

Большое значение имеют медные сплавы — латуни (основная добавка цинк, Zn), бронзы (сплавы с разными элементами, главным образом металлами — оловом, алюминием, берилием, свинцом, кадмием и другими, кроме цинка и никеля) и медно-никелевые сплавы, в том числе мельхиор и нейзильбер . В зависимости от марки (состава) сплавы используются в самых различных областях техники как конструкционные, антидикционные, стойкие к коррозии материалы, а также как материалы с заданной электро- и теплопроводностью Так называемые монетные сплавы (медь с алюминием и медь с никелем) применяют для чеканки монет — «меди» и «серебра»; но медь входит в состав и настоящих монетного серебра и монетного золота.Медь присутствует во всех организмах и принадлежит к числу микроэлементов, необходимых для их нормального развития (см. Биогенные элементы). В растениях и животных содержание меди варьируется от 10-15 до 10-3 %. Мышечная ткань человека содержит 1·10-3 % меди, костная ткань — (1-26) ·10-4%, в крови присутствует 1, 01 мг/л меди. Всего в организме среднего человека (масса тела 70 кг) содержится 72 мг меди. Основная роль меди в тканях растений и животных — участие в ферментативном катализе. Медь служит активатором ряда реакций и входит в состав медьсодержащих ферментов, прежде всего оксидаз, катализирующих реакции биологического окисления. Медьсодержащий белок пластоцианин участвует в процессе фотосинтеза. Другой медьсодержащий белок, гемоцианин, выполняет роль гемоглобина у некоторых беспозвоночных. Так как медь токсична, в животном организме она находится в связанном состоянии. Значительная ее часть входит в состав образующегося в печени белка церулоплазмина, циркулирующего с током крови и деставляющего медь к местам синтеза других медьсодержащих белков. Церулоплазмин обладает также каталитической активностью и участвует в реакциях окисления. Медь необходима для осуществления различных функций организма — дыхания, кроветворения (стимулирует усвоение железа и синтез гемоглобина), обмена углеводов и минеральных веществ. Недостаток меди вызывает болезни как растений, так и животных и человека. С пищей человек ежедневно получает 0, 5-6 мг меди.

Сульфат меди и другие соединения меди используют в сельском хозяйстве в качестве микроудобрений и для борьбы с различными вредителями растений. Однако при использовании соединений меди, при работах с ними нужно учитывать, что они ядовиты. Попадание солей меди в организм приводит к различным заболеваниям человека. ПДК для аэрозолей меди составляет 1 мг/м3, для питьевой воды содержание меди должно быть не выше 1, 0 мг/л.

  • Биологическая роль меди. М., 1970.
  • Смирнягин А. П. и др. Промышленные цветные металлы и сплавы. М., 1974.
  • Набойченко С. С., Смирнов В. И. Гидрометаллургия меди. М., 1974.
  • Подчайнова В. Н., Симонова Л. Н. Медь. М., 1990.
  • Онаев И. А., Жакибаев Б. К. Медь в истории цивилизации. Алма-Ата, 1983.
  • Подчайнова В. Н., Симонова Л. Н. Медь. М., 1990.

megabook.ru

Как отделить серебро от меди: видео

Эксперты утверждают, что в наше время все большей популярностью пользуются изделия из серебра (Ag). Причин тому много — это и цена, которая на порядок ниже, чем у золота, практичность, и, конечно же, красота.

Большая редкость — чистое серебро без примесей

Процедура отделения его от меди становится все популярнее, ведь достаточно редко можно встретить изделия, изготовленные из чистого серебра без примесей. Процесс отделения называется аффинаж, его можно произвести даже в домашних условиях.

Что такое процедура аффинажа?

Давно стало популярным извлекать чистое серебро из сплавов, из которых изготовлены разные детали и контакты. Для того чтоб на выходе получить настоящий чистый драгоценный метал, нужно использовать специальную технику сепарирования, которая называется аффинаж. Именно благодаря ей вы сможете отделить серебряные частицы от других металлов, в том числе и меди.

Маленькие слитки серебра для аффинажа

Для извлечения чистого серебра отлично подходят:

  • Лом старых серебряных украшений;
  • Отходы электротехнической очистки серебра;
  • Технологический лом, в составе которого есть серебро;
  • Отходы свинцового производства, которые в народе называют «серебряная пена».

Есть несколько способов, которые помогут отделить Ag от других металлов. Основные — это:

  • купелирование;
  • электролитический способ;
  • химический способ.

Выбор способа, который будет использоваться, зависит от объема материала, его состава и состояния.

Купелирование

Если содержание серебра в сплавах невелико, аффинирование проводят с помощью купелирования

Этот способ чаще всего используют, если для чистки взяты низкопробные сплавы.

Основывается метод на уникальных свойствах свинца, переплавленного с серебром, окисляться и самостоятельно отделяться от серебра, забирая вместе с собой все примеси. Но это не касается золота и платины, которые все же остаются в сплаве с серебром.

Для купелирования используются специальные печи с тиглями и покрытыми специальным видом пористой глины, которая отлично впитывает окись металла.

Последовательность процесса купелирования Ag:

  • Перед процедурой нужно разогреть печь, обеспечив температуру 850-900°С;

    Поверхность сплава приобретает радужный окрас,также наблюдается блеск серебра

  • В нее помещается тигель с Ag и медью;
  • После того тигель разогрелся и содержимое расплавилось, в печь пускают воздух;
  • После этого тигель аккуратно достают и разливают в формы.

После полного остывания сплава он приобретет особенный радужный цвет.  Это означает, что сплав состоит исключительно из серебра и других драгоценных металлов.

Электролитический способ

Еще один способ, который поможет отделить Ag от меди – электролитический. Для его осуществления вам понадобятся ячейки, изготовленные из пластика или песчаника, содержащие в составе раствор нитрита серебра.

Катодом служат полоски нержавеющей стали, на которых собирается серебро

Количество драгоценного металла в растворе должно быть не менее 50 грамм на 1 литр жидкости. В качестве анода такой реакции выступает само загрязненное серебро, а в качества катода – тонкие нержавеющие полоски.

Аноды, то есть загрязненной серебро, следует поместить в небольшие мешочки. Именно в них и останутся грязные металлы, которые не растворятся во время очистки. На катодах же появятся небольшие кристаллики чистого серебра. Они растут в противоположную сторону до короткого замыкания и очень легко ломаются во избежание его же.

Такие небольшие кристаллики постепенно отламываются и собираются на дне в специальной корзине, из которой их периодически нужно удалять. Из полученных кристаллов и выплавляют слитки чистого серебра.

Очистка серебра от примесей

 Химический способ

Необходимые материалы: азотная кислота 68.8%, деионизированная вода, весы, стеклянная ёмкость и кварцевая палочка

Для самой сепарации вам понадобится соляная и азотная кислота. Перед началом внимательно осмотрите изделие из меди и серебра. Это может быть как монета или провод, так и лом ювелирных изделий. Определите, действительно ли в составе есть медь. Сделать это достаточно просто, ведь всем давно известно, что медь не притягивается обычным магнитом, но отлично проводит электричество, поэтому сделать это очень легко в домашних условиях с помощью обычного магнита.

  • Итак, возьмите изделие, изготовленное из меди и серебра. Осторожно отмойте его от окислов с помощью теплого щелочного раствора. После этого ополосните изделие простой водой.
  • Определите наличие серебра. В этом вам поможет специальный реактив для серебра под названием «хромпик» (дихромат калия). Приобрести его можно в специализированных ювелирных магазинах. Если в изделии есть определенный процент серебра, то реактив отреагирует оранжевым цветом.
  • Есть еще один способ, который поможет определить серебро. Для этого понадобится специальная смесь: смешайте 1 часть азотной кислоты и 1 часть дихромата калия. Обмокните небольшой участок изделия в полученную жидкость, и если содержание серебра не менее 0.3, то участок окрасится в ярко-красный цвет.

    Растворение серебра в кислоте

  • Приступаем непосредственно к отделению в домашних условиях. Для этого просто залейте изделие 10% азотной кислотой. В итоге сплав растворится, и вы получите раствор: медь и соли серебра.
  • Для дальнейшей работы нужно выпарить жидкость и прокалить полученный порошок. Делать это целесообразно в фарфоровой посуде.
  • Остудите полученный порошок и растворите в 2 частях обычной очищенной воды. В итоге получится раствор, содержащий нитрит серебра, который просто необходимо снять с осадка.
  • Из полученных солей восстановите серебро.

Есть еще один способ отделения серебра от меди. Для этого поместите изделие из меди и серебра в азотную кислоту и растворите ее там. После этого добавьте соляную кислоту.

Раствор нитрата серебра

Во время отделения серебра от меди не забывайте про меры предосторожности. Независимо от выбранного метода вы используете достаточно высокие температуры и вредные химические вещества.

  • Работайте исключительно в отдельном помещении, которое хорошо проветривается. Помните, во время процедуры выпаривания активно выделяются едкие пары, которые весьма опасны для человека.
  • Работайте в респираторе и перчатках. Нужно полностью исключить возможность попадания веществ на кожу.
  • Выполняйте все процедуры строго в соответствии с инструкцией.
  • Будьте предельно осторожны и внимательны.

Ка становится понятно из статьи, отделить серебро от меди реально даже в обычных домашних условиях. Процедура это достаточно сложная, но весьма увлекательная. Она принесет вам отличные результаты.  Каждый из описанных способов весьма эффективен и работает в разных отдельных ситуациях, а эффективность напрямую зависит от качества материалов и приложенных усилий.

Видео: Очистка серебра от примесей

ecology-of.ru

Где можно найти медь для сдачи в металлолом?

Многие встречали объявления «Куплю лом меди» или «Принимаем медь дорого» на досках объявлений, в сети Интернет или слышали от знакомых. Компания «РуссЛом» принимает цветной лом от физических лиц, которые хотят заработать на сдаче лома, металлических отходов или продаже медных изделий, а также производственных и торговых предприятий. У многих возникает вопрос, где взять отходы цветмета, чтобы получить неплохую прибыль?

Существует множество вариантов, как и где можно собрать металлолом и привезти его в пункт, где осуществляется прием лома меди:

  • Если у вас сохранилась старая бытовая техника. Только в одном старом телевизоре можно собрать в отдельных деталях до 1,5 кг меди! Также цветмет присутствует в стиральных машинах, радиоприемниках, электроплитах, холодильниках. Последняя бытовая техника особенно интересна старыми образцами. В двигателе вес меди может достигать 3-х кг. Где искать? Разберите место соединения провода, дроссель, трансформатор. Помимо металлолома такая продукция содержит ценные для ремонтных мастерских составляющие, например, конденсаторы, резисторы и др.
  • Если в гараже, сарае или на закрытом производственном участке есть старая техника. Списанные агрегаты, установки, станки, оборудование состоят из трансформаторов, которые выполнены с медной обмоткой. Помимо этой детали в устройствах также найдутся реле, стартеры — так в незначительном количестве можно увеличить общий вес лома, готового к сдаче. В медном кабеле основу также составляет медный проводник.
  • Если вы купили старый дом или дачный участок. Старая арматура, включая сантехническую, в прошлом веке изготавливалась из меди, поэтому при реконструкции и сносе старых сооружений велика вероятность обогатиться за счет сдачи металла.
  • Если ваши предки хранили в качестве домашних предметов обихода различные вещи. К ним относятся статуэтки, старые монеты, украшения, а также утварь.

Если вы хотите всерьез заняться заработком, сдавая лом, нужно научиться правильно организовывать «бизнес». Для этого потребуется:

  1. Научиться собирать лом – организовать поиск или открыть пункт по приему старой техники.
  2. Привлечь транспорт для перевоза изделий к месту разборки.
  3. Найти место для хранения и разборки аппаратуры, приборов и других медесодержащих источников – например, это может быть гараж.
  4. Транспортировка медного лома в приемный пункт, где за него дадут максимальную цену – эту обязанность может взять на себя компания «РуссЛом». Мы приедем по указанному адресу и сделаем очень выгодное предложение.

Как получить лучшую цену на медный лом?

Найденный лом меди можно сдать в пунктах приема «РуссЛом» в Москве. Мы предлагаем самые высокие тарифы на лом, поэтому если ваша цель – максимальная прибыль от продажи, то осуществлять ее нужно именно у нас.

Цены на медный лом могут отличаться, на что влияет не только курс на цветмет, но и качественный состав сдаваемой продукции. Качество зависит от процентного содержания в сплаве Cu. Самую высокую стоимость имеет чистая медь (марка М00к, М00б).

А что если лом цветного металла окажется не медью?

Медь имеет схожие по цвету черты с бронзой и латунью, поэтому часто клиенты «РуссЛом» путают металл и ожидают от его сдачи большего дохода. Если вы хотите сдать лом меди, вы можете запросить на любом ближайшем к вам пункте приема экспертизу, чтобы заранее знать, на какую сумму прибыли рассчитывать. Даже если медь окажется не чистым сплавом Cu, вы можете осуществить сдачу цветлома. У нас самые выгодные цены на бронзовые и латунные сплавы, поэтому вы в любом случае окажетесь в выигрыше.

xn--b1agaydcn2ac8a.xn--p1ai

Медь. Как получить медь в домашних условиях и в приличном кол-ве?

Дмитрий, Вы забыли уточнить - из чего Вы собираетесь получать медь? Есть в нашем мире непреодолимые законы упрощённо один из них звучит так: "Из ничего нельзя получить что-то".

хочешь покорить мир переплавляя гигатонны меди?)

Берешь медные провода, снимаешь изоляцию и все! скок найдешь проводов и снимишь изоляцию сток и будет меди! ВСЕ ПРОСТО!

Купить медных вещей на барахолке или в пункте приема вторсырья. Или полезть с кусачками на мдную лэп (хотя основная масса алюминий или сталь) и стать героем. В руде той меди пару процентов.

Берёшь в хозмаге медный купорос, растворяешь в воде и в раствор опускаешь железные вещи с таким расчетом, чтобы осевшую медь удобно было бы удалять (железные пластины, кругляк) . Выход: не более 240 г меди с кг медного купороса. Но если руки тем концом пришиты.

где можно купить сульфат цинка

touch.otvet.mail.ru