Неисправности и их устранение в работе компрессора. Лепестковые клапана для компрессора


Замена пластинчатых клапанов поршневого компрессора AirCast СБ4/С-100LB30A своими руками

Замена пластинчатых клапанов поршневого компрессора AirCast СБ4/С-100LB30A своими руками

В компрессоре данной модели используются пластинчатые клапана, которые в процессе работы изнашиваются и требуют замены. Конструктивно, клапана в компрессоре находятся между головкой и цилиндром. Износ является результатом переменных нагрузок, которые возникают в процессе тактов пуск и выпуск.

При пуске, воздух, попадая через воздушный фильтр в подголовочное пространство, прижимает впускной пластинчатый клапан к цилиндру, открывая тем самым два вытянутых отверстия в головке, при этом на другой половине цилиндра также прижат выпускной клапан, предотвращающий выход воздуха из воздухопровода. В процессе такта выпуск, клапана прижимаются к головке цилиндра, предотвращая выход воздуха наружу и обеспечивая нагнетание его из цилиндра в ресивер через выпускные отверстия в головке. В процессе перекладки от цилиндра к головке и наоборот, происходит изнашивание передних и задних кромок клапана, что в последствии приводит к утечке воздуха. Причем нагрузка на выпускной клапан значительно выше, поскольку его перекладка от головки к цилиндру происходит в условиях повышенного давления со стороны воздухопровода. В связи с этим, именно выпускной клапан изнашивается в первую очередь, и часто только этот клапан нуждается в замене.

Для замены пластинчатых клапанов необходимо:

  1. Дать компрессору поработать около трех минут для прогрева (необходимо для облегчения ослабления винтов)
  2. Обесточить компрессор
  3. Последовательно выкрутить четыре винта, крепящих головку к цилиндру
  4. Запомнить положение металлической прокладки и вытащить ее вместе с клапанами
  5. Мягкой ветошью, смоченной в керосине протереть сопрягаемые поверхности головки и цилиндра, а так же металлическую прокладку
  6. Уложить впускной клапан в выемку на цилиндре
  7. Смазать тонким слоем консистентной смазки нижнюю поверхность прокладки и установить ее на прежнее место, по периметру прижать прокладку к цилиндру
  8. Смазать кончики нового клапана и установить его в выемку на головке. Смазка необходима лишь для того, чтобы временно «приклеить» клапан к выемке, иначе он будет выпадать в процессе установки
  9. Прижать головку к цилиндру и вкрутить винты, последовательно протянув их крест на крест

В условиях шиномонтажной мастерской, при интенсивной работе, ревизию клапанов компрессора следует производить как минимум раз в два года или при возникновении перебоев в работе агрегата, характеризующихся появлением посторонних шумов похожих на резкие хлопки в процессе нагнетания воздуха в ресивер.

shmontazh.ru

Ремонт компрессора своими руками

Основным назначением воздушного компрессора является сжатие газа и непрерывная подача струи воздуха под давлением к пневмооборудованию и пневмоинструменту. Такой воздух представляет собой энергоноситель и обеспечивает работу краскопультов, аэрографов, гайковертов, пистолета для подкачки шин. воздушный компрессор

Перечисленный пневмоинструмент безопаснее в работе, чем электроинструмент, например. У пневмооборудования не может возникнуть замыкания, способного привести к поражению электротоком и пожару. Именно поэтому такой инструмент находит широкое применение в автомастерских или при ремонте автомобиля своими руками.

Воздушный компрессор применим в домашнем хозяйстве, и когда он перестает работать, возникает необходимость в ремонте. Однако, ремонт компрессоров не отличается особой сложностью, его вполне можно выполнить самостоятельно.

Устройство воздушного компрессора

Чтобы разобраться в неполадках компрессора, нужно четко представлять, из каких элементов он состоит и для чего они предназначены. Компрессор, в минимальной комплектации, состоит из нагнетателя (двигатель, создающий поток воздуха) и ресивера – емкости, в которой содержится сжатый воздух. Чаще всего используют поршневые компрессоры.

Одним из главных требований, предъявляемых к компрессору, считается его безопасность. Если давление в ресивере не контролировать, то компрессор сгорит. Велика вероятность того, что баллон ресивера может взорваться. Чтобы предотвратить это, ресивер снабжается электронным реле, которое автоматически отключает компрессор при достижении давления воздуха определенной величины.

устройство компрессора

Воздушный компрессор снабжен манометром, который показывает величину давления воздуха в баллоне. Для предохранения компрессора от негативного влияния используют обратный клапан. Основной его функцией является предотвращение возврата воздуха обратно в компрессор при выключении или другом вмешательстве в работу агрегата.

Для более сложных конструкций компрессоров характерно наличие дополнительного оборудования, такого как автоматика для компрессора. Обычно в небольших компрессорах, блок автоматики поддерживает давление до восьми атмосфер при помощи реле давления, включая или отключая питание электродвигателя при достижении минимального или максимального давления в ресивере.

При этом имеется два манометра: большой показывает давление в баллоне ресивера, маленький – на выходе. Реле давления может комплектоваться разгрузочным клапаном. При остановке агрегата он будет открыт, что облегчает последующий запуск двигателя.

В некоторых моделях предусмотрен радиатор охлаждения на трубках подачи воздуха из компрессора в ресивер.

Охлаждение воздуха способствует меньшему образованию конденсата в ресивере. Такая мелочь в конструкции продлевает срок службы автоматики.

Наличие сливного клапана позволяет быстро сливать конденсат из ресивера, ведь этой операцией желательно заканчивать каждый сеанс работы агрегата.

Предохранительный клапан производит стравливание повышенного давления в ресивере, если по каким-либо причинам не срабатывает автоматика, что предохраняет двигатель компрессора от перегрузок.

Воздушный фильтр защищает поршневую систему от песка, грязи, паров краски.

Различают следующие виды компрессоров:

  1. Объемного действия – удерживают газ или воздух в замкнутом пространстве, повышают давление. Среди них выделяют:
  • ротационные, принцип действия – всасывание и сжатие газа при вращении пластин; рабочий объем уменьшается, это приводит к повышению давления.
  • поршневые – давление создается движением поршней и клапанов; надежны в эксплуатации, но более шумные, чем ротационные.
  1. Динамические – обеспечивают сжатие за счет увеличения скорости движения газа, увеличивая его кинетическую энергию, которая преобразуется в энергию сжатия. Различают:
  • центробежные – используют для воздухообмена в шахтах;
  • аксиальные или осевые.

Рассмотрим, как работает компрессор поршневого типа, воздух или газ в нем сжимается поршнем, который перемещается по цилиндру:

  • Когда поршень (3) двигается вверх по цилиндру компрессора (4), рабочий газ сжимается. Электродвигатель перемещает поршень через коленчатый вал (6) и шатун (5).
  • Всасывающий и выпускной клапаны открываются и закрываются по действием давления газа.
  • На левой схеме представлена фаза всасывания газа в компрессор. При движении поршня вниз, в компрессоре создается разрежение и открывается впускной клапан (12). Таким образом, газ попадает в пространство компрессора.
  • На правой схеме показана фаза сжатия газа. Поршень поднимается вверх, при этом открывается выпускной клапан (1). Газ выходит из компрессора под высоким давлением.
схема работы

Сам по себе нагнетатель выдает неравномерную струю воздуха, что нельзя применять, например, для использования краскопульта. Ресивер спасает положение, сглаживая пульсации давления.

Пополнив запас сведений о компрессорной установке, можно самостоятельно произвести ремонт компрессора. Различают следующие неисправности компрессорной установки:

  1. Не запускается нагнетатель компрессорной установки.
  2. Время от времени срабатывает автомат термозащиты.
  3. При запуске компрессора, срабатывает автомат термозащиты и выбивает предохранитель.
  4. Двигатель агрегата работает, но не производит накачку воздуха в ресивер или делает это медленно.
  5. При отключении нагнетателя, в ресивере падает давление.
  6. Большое содержание влаги в выходном потоке воздуха.
  7. Сильная вибрация двигателя.
  8. Компрессорная установка работает с перебоями.
  9. Поток воздуха расходуется ниже нормы.

Двигатель компрессора не запускается

Существует несколько вероятных причин, почему не запускается компрессор.

Если агрегат не запускается и не гудит, нужно проверить питающее напряжение с помощью индикаторной отвертки. Если фаза есть, соединения вилки с розеткой нормальные, стоит проверить предохранители, подверженные плавке.

Дефектные предохранители заменяют другими, но того же номинала. Нельзя устанавливать новые предохранители, рассчитанные на больший электрический ток. Если предохранители перегорают повторно, возможно есть короткое замыкание на входе в схему.

Компрессор может не запускаться из-за некорректности работы реле контроля давления или сбоя настроек уровня. Чтобы проверить так ли это, выпускают газ из баллона и запускают нагнетатель. Если двигатель работает, перенастраивают реле. Не работает – меняют необходимую деталь.

Двигатель не будет работать, при срабатывании автомата термозащиты, выключающий питание из-за перегрузки поршневой системы. В этом случае ремонт компрессора своими руками заключается в том, чтобы дать мотору остыть 20 минут, после чего работа агрегата придет в норму.

Периодическое срабатывание автомата термозащиты

Бывает, что термозащита срабатывает регулярно. Такое случается из-за низкого напряжения в сети или повышенной температуры воздуха в комнате. Напряжение в сети должно быть не меньше нижней границы диапазона, которую рекомендует производитель, достаточно измерить эту величину мультиметром.

Находясь в плохо проветриваемом помещении, поршневой двигатель, который имеет воздушное охлаждение, зачастую перегревается. Выходом будет перемещение компрессора в другое помещение, хорошо вентилируемое.

Входной фильтр нагнетателя может засориться из-за плохого притока воздуха, в таком случае его следует промыть или заменить.

Автомат термозащиты выбивает предохранитель

Проблема серьезнее, если термозащита срабатывает при запуске компрессора и сгорает предохранитель. Возможно, он не рассчитан на мощность агрегата, тогда его заменяют на соответствующий.

Предохранитель может перегорать из-за перегрузки сети. Стоит проверить и отключить часть потребителей, нагружающих сеть. Ремонт воздушных компрессоров затрудняется, если некорректно работает реле напряжения или произошла поломка перепускного клапана. В таком случае лучше всего обратиться за помощью в мастерскую или сервис.

Двигатель гудит, но не работает или выдает малые обороты

Если напряжение в сети занижено, электрический мотор компрессора не справится с прокруткой оси и будет гудеть. Стоит проверить напряжение в сети мультиметром (должно быть не меньше 220В).

целый компрессор

Если вольтаж в норме, возможно в ресивере слишком большое давление и поршень не может протолкнуть воздух. Для устранения этой неисправности производители настоятельно рекомендуют установить переключатель в положение «OFF» на 15 секунд, после чего перевести его в позицию «AUTO».

Если такие действия не приведут к положительному результату, вероятна неисправность реле контроля давления ресивера или засорение контрольного клапана.

Неисправное реле следует отдать в ремонт или заменить. Починить контрольный клапан можно попытаться, сняв головку цилиндра и прочистив каналы.

В ресивере падает давление воздуха при отключении напряжения

Падение давления указывает на утечку воздуха из системы. Это происходит:

  • в воздуходувном пути;
  • в выпускном кране ресивера;
  • в контрольном клапане головки поршня;

Нужно внимательно проверить весь трубопровод с помощью мыльного раствора, покрывая всю магистраль. Обнаружив утечку, ее следует герметизировать.

Выпускной кран может пропускать воздух, если был неплотно закрыт или вследствие неисправности. Если кран закрыт, а мыльный раствор пузырится, деталь подлежит замене.

Проблема может заключаться в клапане поршневой головки. Для того чтобы осуществить дальнейший ремонт компрессора воздушного, необходимо разобрать головку цилиндра и удалить грязь, которая возможно собралась в клапане. Перед началом работ нужно обязательно стравить весь сжатый воздух из ресивера. Если давление снова будет падать, то клапан нужно поменять.

Выходная струя воздуха содержит большое количество влаги

Воздух, подаваемый из компрессора, может быть очень влажным в следующих случаях:

  • в ресивере скопилось влага;
  • воздухозаборный фильтр сильно загрязнился;
  • компрессор находится в помещении с повышенной влажностью.

Для борьбы с влажностью применимы такие методы:

  • следует регулярно сливать избыточную жидкость из баллона ресивера;
  • фильтрующий элемент промывают или заменяют;
  • агрегат переносят в другое помещение, где воздух суше или устанавливают специальные фильтры.

Сильная вибрация двигателя

Поршневым двигателям свойственна сильная вибрация. Не стоит проявлять беспокойство до тех пор, пока вибрация не станет слишком заметной. Можно предположить, что причина – в износе виброподушек, которые легко заменяются.

компрессор

Причина вибрации может заключаться в ослаблении крепления болтов. В таком случае ремонт воздушного компрессора заключается в простом затягивании болтов.

Компрессор работает с перебоями

Перебои в работе компрессорной установки вызываются:

  1. Неисправность реле контроля давления. Реле давления воздуха для компрессора используют для автоматической защиты агрегата в случаях:
  • давление всасывания становится меньше расчетного;
  • давление нагнетания превышает допустимый предел.

Различают реле низкого давления, прямое срабатывание которого (размыкание контакта) происходит при понижении давления до контролируемой величины. При повышении давления на величину настройки происходит обратное срабатывание (замыкание контакта).

У реле высокого давления прямое срабатывание (размыкание контакта) происходит при увеличении давления до заданной величины. Обратное же срабатывание (замыкание контакта) бывает при понижении давления.

Реле давления ремонтируется или меняется на новое.

  1. Интенсивный отбор сжатого воздуха – происходит из-за несоответствия производительности компрессорной установки

с потребляемой мощностью. Эти неисправности компрессора можно исключить, если при покупке пневмоинструмента, досконально изучить его характеристики и выяснить, сколько воздуха расходуется за единицу времени.

Расход воздушного потока компрессора не соответствует нормам

Такая неисправность встречается из-за утечки газа в системе высокого давления, а также, если забит воздухозаборный фильтр. Исключить просачивание воздуха можно, протянув все стыковые соединения и обмотав их герметизирующей лентой.

Порой, сливая конденсат из ресивера, не полностью закрывают выпускной кран, что приводит к утечке газа. Такая проблема решается просто – нужно плотно закрутить вентиль.

Если забился противопылевой фильтр, его необходимо очистить или заменить на новый.

Замена пластинчатых клапанов поршневого компрессора

В поршневых компрессорах используются пластинчатые клапаны, находящиеся между головкой и цилиндром. В процессе работы изнашиваются передние и задние кромки клапана, в дальнейшем это приводит к утечке воздуха. Для замены клапанов нужно:

  1. Прогреть компрессор несколько минут для того, чтобы облегчить ослабление винтов, затем обесточить его.
  2. Выкрутить четыре винта, которые крепят головку к цилиндру.
  3. Достать металлическую прокладку вместе с клапанами.
  4. Губкой, смоченной в керосине, протереть головку, цилиндр и металлическую прокладку.
  5. Впускной клапан укладывают в выемку на цилиндре.
  6. Смазать прокладку и установить, прижав по периметру к цилиндру.
  7. Смазать новый клапан и установить его в выемку на головке.
  8. Прижать головку к цилиндру, вкрутить винты.

Ревизию клапанов компрессора стоит проводить хотя бы раз в год, ремонт поршневого компрессора своими руками – при возникновении посторонних шумов при нагнетании воздуха в ресивер.

Многих неисправностей можно избежать, если внимательно относиться к агрегату. Для этого следует выполнять несложные требования:

  • При покупке проверить наличие паспорта и инструкции на устройство, а также других документов.
  • Перед первым пуском проверить уровень масла и долить его, если необходимо. Использовать нужно только то масло, которое рекомендовано производителем в технической документации. В первый раз компрессор следует прогнать минут 20 вхолостую.
  • Если все в порядке, можно присоединять пневмоинструмент к агрегату и начинать работу.
  • Обязательно стоит фиксировать количество проработанных компрессором часов, ведь масло в моторе необходимо менять каждые 500 часов. В процессе замены оставшееся старое масло сливают, фильтры меняют, если нужно.
  • Каждую неделю следует промывать входной воздушный фильтр.
  • Каждые 16 часов эксплуатации производить слив влаги из ресивера через выпускной клапан. Производители обычно рекомендуют чистить внутреннюю поверхность баллона специальными средствами, раз в полгода.
  • Закончив работу, компрессор отключается от сети, кроме того нужно стравить воздух из системы высокого давления.
  • Если нагнетатель долго не эксплуатировали, перед пуском компрессора нужно очистить воздушный клапан.
  • Нетоковедущие металлические детали обязательно нужно заземлить. Обычно производители выводят заземляющий проводник в штепсельную вилку. Нужно лишь заземлить контакт в розетке, в которую подключается компрессор.

Проще сразу после покупки начинать обслуживать компрессор, ремонт агрегата при несоблюдении рекомендаций производителя обойдется очень дорого.

Компрессор – сложный аппарат, его ремонт достаточно трудоемкая процедура, необходимо владеть большим объемом информации и разбираться в многочисленных технических тонкостях. Однако, следуя определенным правилам эксплуатации, можно ликвидировать неисправности, возникающие в процессе работы.

Следующая статья: Какой антикор лучше выбрать для авто.Предыдущая статья: Сколько нужно краски для покраски авто.

Хочешь знать о покраске автомобиля все? Читай еще полезные статьи:

topreit.ru

Клапаны для поршневых воздушных компрессоров, имеющие наилучшee соотношение цены и качества

Автор: К. Ляйтнер (HOERBIGER VentilwerkeGmbH&Co KG).

Опубликовано в журнале Химическая техника №9/2014

Сжатый воздух играет существенную роль в самых различных технологических процессах. В повседневной жизни мы почти ежедневно сталкиваемся с изделиями, которые без него были бы немыслимы. Яркий пример — ПЭТ-тара, всем известные пластиковые бутылки из полиэтилентерефталата. Благодаря удобной форме и небольшой массе такие бутылки стали самой распространенной тарой для напитков. Это было бы невозможно без технологий, позволяющих производить сжатый воздух и работать с ним.

Сжатый воздух широко используется в тормозных системах автобусного и железнодорожного транспорта — он позволяет надежно и безопасно останавливать тяжелые машины и составы. А может быть, вы отправляетесь в круиз или отдыхаете на море? Именно сжатый воздух помогает запускать мощные дизельные двигатели круизных лайнеров и заправлять баллоны для дайвинга (баллоны для дайвинга инструктор наполняет как раз сжатым воздухом). Эти примеры (всего лишь несколько из практически бесконечного списка) красноречиво свидетельствуют, какое значение сжатый воздух имеет в современном мире. Но у всех подобных применений есть нечто общее: для них нужны надежные, безопасные и экологичные компрессоры и их компоненты.

Производство ПЭТ-тары

Для выдувания бутылок из так называемых преформ (заготовки из полиэтилентерефталата) используют трехи четырехступенчатые компрессоры с давлением нагнетания 3,5…4,6 МПа. Для массового производства ПЭТ-тары компрессор должен иметь достаточно большую производительность – до 6 000 м3/ч. В зависимости от условий эксплуатации в качестве первой ступени могут применяться и компрессоры объемного действия, например винтовые. На ступенях с более высоким давлением используют поршневые компрессоры.

Последняя ступень является особенно критичной для клапана с точки зрения срока его службы, так как именно здесь и давление, и температура наиболее высоки.

Компрессоры часто работают при неполной нагрузке, разогреваясь до температуры свыше 200°С. Поэтому большинство поршневых машин, применяемых для выдувания ПЭТ-тары, комплектуют клапанами со стальной пластиной. Клапаны с полимерными пластинами применяют редко и только в хорошо сбалансированных компрессорах при небольших (до 180°C) рабочих температурах.

Из-за строгих требований к чистоте воздуха цилиндры компрессоров должны работать без смазки.

Несомненно, для данного процесса необходимы прочные и эффективные клапаны, срок службы и эффективность которых самым непосредственным образом влияют на максимально достижимую производительность компрессора, а значит, и на объем производства ПЭТ-тары.

Пусковой воздух для судовых дизельных двигателей

Для пуска судовых дизельных двигателей большой мощности применяется сжатый воздух, подаваемый в цилиндры двигателя. Поршни под давлением 3 МПа начинают двигаться, разгоняя двигатель до рабочих оборотов. Пусковые компрессоры должны соответствовать крайне строгим требованиям надежности, так как отказ в открытом море может привести к катастрофе. Компактные двухили трехступенчатые поршневые компрессоры сжимают воздух, работая с частотой вращения до 1 800 об/мин. Конструкция цилиндров компрессора предусматривает работу со смазкой. Компоненты клапанов изготавливают из коррозионно-стойких материалов вследствие возможного контакта с морской водой.

Промышленный воздух

Промышленный воздух имеет широчайший диапазон применений — от транспортировки насыпных грузов (пневматическая подача цемента, гипса, песка и др.) до использования на предприятиях обрабатывающей промышленности. Здесь малые и средние компрессоры сжимают воздух до давления в 1 МПа. Число ступеней – одна, редко две. Достаточно часто встречается высокая частота вращения – до 1 800 об/мин. В зависимости от назначения компрессора цилиндры могут быть как со смазкой, так и без нее («сухими»). Клапаны компрессоров должны функционировать надежно, несмотря на большую частоту вращения, высокую температуру и возможное загрязнение воздуха инородными частицами.

Воздушные тормозные системы

Тормозные системы – еще одно, наряду с изготовлением ПЭТ-тары, применение сжатого воздуха, без которого повседневную жизнь было бы трудно представить.

Сжатый воздух обеспечивает, в частности, надежную остановку поездов и грузовых автомобилей. Выходного давления в 1 МПа достаточно для безотказного срабатывания тормоза. Сжатый воздух в подобных тормозных системах нагнетается в резервуар, после чего подается в пневматические контуры отдельных тормозов.

Необходимое давление в 1 МПа обеспечивается одноили двухступенчатыми компрессорами. Частота вращения – от средней до высокой (до 1 500 об/мин).

Цилиндры могут быть со смазкой или без нее («сухими»). Подобное применение предъявляет максимальные требования к надежности компрессора. При отказе компрессора во время движения необходима немедленная остановка поезда или грузовика по соображениям безопасности. Опыт показывает, что из компонентов компрессора наиболее высока вероятность отказа у клапана. Поэтому клапан должен иметь чрезвычайно прочную и надежную конструкцию.

Высокое давление

Все описанные выше применения компрессоров относятся к диапазону относительно низких давлений. Однако в некоторых случаях компрессоры должны нагнетать воздух до давления более 40 МПа. На рис. 1 приведены основные области применения воздушных компрессоров и соответствующие им диапазоны давления.

Рис. 1. Диапазон применения клапана RN в зависимости от давления

Широко известный пример компрессоров высокого давления – компрессоры для заполнения баллонов с дыхательной смесью для дайверов или пожарных. Для достижения требуемого давления (до 41,4 МПа) здесь необходимо целых 5 ступеней. Кроме высокого давления, особую сложность представляет необходимость применения цилиндров без смазки, поскольку это единственный способ гарантировать чистоту смеси и ее пригодность для дыхания. Поэтому и здесь нужны клапаны, обладающие высокой прочностью и исключительной устойчивостью против износа. Частота вращения компактных компрессоров, используемых для закачивания воздуха в баллоны, достигает 1 500 об/мин.

Высокого давления требуют и многие другие области применения компрессоров – от сейсмического анализа и разведки полезных ископаемых до заполнения баллонов оружия для пейнтбола.

Единая конструкция клапана для всех перечисленных и перспективных областей применений воздушных компрессоров

Кроме уже перечисленных технических трудностей, которые необходимо преодолеть конструкторам современных клапанов воздушных компрессоров, не стоит забывать об экономической стороне вопроса. Конкурентная обстановка на рынке промышленных воздушных компрессоров весьма динамична, поэтому важным фактором является стоимость компонентов, подлежащих замене по окончании их срока службы.

Рис. 2. Клапан RN для воздушных компрессоров

В начале 2013 г. компанией HOERBIGER на рынок был выведен клапан R N (рис. 2), который позволил совместить, казалось бы, несовместимое – соответствие всем техническим требованиям при наилучшем соотношении цены и производительности. Клапан R N пригоден для применения во всех перечисленных выше процессах – при малых и высоких давлениях, при низких и высоких расходах. Благодаря модульной конструкции это устройство с высокой степенью стандартизации без труда адаптируется к любым условиям работы компрессора. Как следствие, для клапанов данной серии не требуется много различных деталей, что позволяет свести к минимуму срок изготовления и цену.

Концепция, проверенная временем

Клапан RN основан на проверенной временем, доработанной и усовершенствованной технологии. Конструкция клапанов RN в зависимости от размера оптимизирована для различных конкретных областей применения. Для высоких давлений используется компактная конструкция, устойчивая к большим перепадам давления, действующим на седло клапана (см. рис. 1). Более крупные клапаны рассчитаны на низкое давление и максимальный расход. Для этих клапанов используется особая конструкция с демпферными пластинами и цилиндрическими пружинами, позволяющая продлить срок службы.

Рис. 3. Компоненты клапана RN,в том числе демпферные пластины и плоские пружины

Среди важнейших особенностей клапанов RN – малая высота подъема благодаря использованию демпферов из закаленной стали для клапанов малых и средних размеров (рис. 3), что позволяет сделать конструкцию максимально компактной. Поэтому клапан особенно хорошо подходит для процессов, где требуются высокая эффективность и максимальная производительность.

Благодаря применению стальных запорных пластин с направляющим рычагом клапан RN может быть использован как в цилиндрах со смазкой, так и в цилиндрах без смазки. В этой конструкции запорная пластина фиксируется в центре, а подъем клапана достигается за счет прогиба направляющего рычага. Тенденция к большему распространению компрессоров с цилиндрами без смазки в настоящее время наблюдается не только в процессах со специальными требованиями к чистоте воздуха, но и в других областях. Клапан RN может широко применяться в этих процессах.

Как правило, в клапане RN используются плоские пружины, испытанные и зарекомендовавшие себя как исключительно прочные. Однако в клапанах больших диаметров с высоким значением расхода надежное открытие и закрытие обеспечивают спиральные пружины. Для стабилизации клапанной пластины и снижения ударных нагрузок дополнительно применяются демпферные пластины.

Простая и надежная конструкция клапана дает возможность продолжительной эксплуатации в неизменных рабочих условиях. После достижения максимально допустимого износа клапаны подлежат замене новыми.

В то же время для клапанов больших размеров экономически целесообразно проводить вместо замены ремонт. Благодаря продуманной и удобной в обслуживании конструкции клапан быстро демонтируется и после восстановления возвращается на место.

Применений много – решение одно

Рынок промышленного воздуха и многочисленные применения воздушных компрессоров служат постоянными источниками новых вызовов для компрессорной отрасли. Европейский рынок в целом насыщен, поэтому поставщикам таких компонентов, как клапаны, от которых серьезно зависит производительность оборудования, приходится думать, как обеспечить высокое качество по привлекательной цене. Выполнить это условие позволяет высокий уровень стандартизации компрессоров и отдельных компонентов. Вместо бесчисленных дорогостоящих специальных вариантов, создаваемых индивидуально, остается одно интегрированное решение. Инновационные разработки, направленные на повышение эффективности и надежности, а также унификация, самым действенным образом способствуют успешному будущему поршневых компрессоров в секторе промышленного воздуха.

chemtech.ru

Тема: Клапаны поршневых компрессоров.

Лабораторная работа № 4

Тема: Клапаны поршневых компрессоров.

Цельработы: изучить типы клапанов, их принцип действия.

 

Клапаны.

Одним из основных рабочих органов компрессоров являются клапаны, которые выполняют функции устройства, распределяющего поток холодильного агента по цилиндрам и обеспечивающего разграничение рабочих полостей компрессора: полостей всасывания и нагнетания от рабочей полости компрессора.

Рис. 24. Схема работы клапана:

По функциональному назначению клапаны делят на: всасывающие и нагнетательные;

а по принципу действия — на принудительного действия и самодействующие.

В поршневых компрессорах используют только самодействующие клапаны. Клапаны открываются под действием сил, обусловленных разностью давлений действующих на клапанную пластину (рисунок 1).

 
 
Поддержание клапана в открытом положении в процессах всасывания и нагнетания обеспе­чивается вследствие динамического напора, создаваемого потоком пара холодильного агента, проходящего через клапан.

Величина роткр зависит от упругости клапанной пружины или клапанной пластины, сил инерции покоя клапанной пластины и сил сцепления масляной пленки, покрывающей седло клапана и пластину.

Закрывание клапана и предварительное прижатие клапанной пластины к седлу происходит под действием сил, обусловленных упругостью клапанной пружины или клапанной пластины.

От работы клапанов в значительной мере зависят показатели, характеризующие работу компрессора. На работу клапанов влияют величина роткр , высота подъема клапанной пластины, проходные сечения каналов и скорости потока в них.

Во всех конструкциях клапанов роль запорного элемента выполняет клапанная пластина. В зависимости от формы клапанной пластины различают клапаны кольцевые (рис. 2), полосовые, дисковые, пятачковые лепестковые. В клапанах с кольцевыми и пятачковыми пластинами закрытие клапанов осуществляется клапанными пружинами, а в клапанах с дисковыми, полосовыми и лепестковыми пластинами — под действием упругости самих клапанных пластин.

На рис. 3 показана конструкция кольцевого и полосового клапанов.

а — полосовой клапан:1 —седло клапана;2 — болт;3 — контровочная шайба;4 — проставочная пластина;5 — центровочный штифт;6 — каналы для прохода пара холодильного агента;7 — ограничитель подъема клапанной пластины;8 — клапанная пластина;9 — каналы для прохода паров холодильного агента;

б — кольцевой клапан:1 — головка проходного поршня;2 — болт крепления клапана в головке поршня;3 — седло всасывающего клапана:4 и8 клапанные пластины;5 — ограничитель подъема клапанной пластины всасывающего клапана;б — корпус цилиндра;7 — седло нагнетательного клапана;9 — клапанная пружина;10 — ограничитель подъема клапанной пластины нагнетательного клапана; // — болт;12 — корончатая гайка;13 — буферная пружина;14 и15 — каналы для прохода пара холодильного агента;16 — гайка;17 — контровочный болт.

Для увеличения проходных сечений каналы клапанов изготовляют комбинированными (рис.4), объединив всасывающий и нагнетательный клапаны в один узел.

\

 
 

К клапанам предъявляют следующие требования:

· максимально возможная площадь проходного сечения каналов клапана для уменьшения скорости течения пара холодильного агента и гидравлического сопротивления;

· минимальный перепад давлений, необходимый для открытия клапана, для уменьшения энергетических затрат;

· своевременное закрывание клапана в конце процессов всасывания и нагнетания для предотвращения перетечек пара холодильного агента;

· динамическая и статическая герметичность клапана;

· минимальный мертвый объем;

· высокая прочность и износостойкость.

Среднее значение скорости пара холодильного агента в минимальном проходном сечении клапана не должна превышать 35 м/с. Средняя скорость пара vcp холодильного агента в любом сечении клапана может быть подсчитана из условия неразрывности струи при движении поршня

где Fn — площадь поршня, м2;

ст— средняя скорость поршня, м/с;

fкл- площадь проходного сечения клапана, м2.

Гидравлическое сопротивление клапана пропорционально квадрату средней скорости пара холодильного агента.

Кольцевые клапанные пластины изготавливают из легированных хромистых сталей. Полосовые, дисковые и лепестковые пластины штампуют из листовой стали марок У10А или 70С2ХА.

Седла и ограничители подъема клапанной пластины делают из стали марок Ст. 40 или Ст. 45 или чугуна марок СЧ-21-40 или СЧ-24-44.

 

Дата добавления: 2015-08-28; просмотров: 489 | Нарушение авторских прав

mybiblioteka.su - 2015-2018 год. (0.01 сек.)

mybiblioteka.su

Самодействующий лепестковый прямоточный клапан

 

Самодействующий лепестковый прямоточный клапан предназначен для машин объемного действия. Самодействующий лепестковый прямоточный клапан содержит прижатые друг к другу седла прямоугольного сечения с каналами и окнами для прохода газа, ограничители подъема и фиксаторы, установленные между смежными седлами разделительные пластины, которые имеют вырезы, разделенные продольными перемычками. Продольные перемычки образуют ниши для размещения съемных рабочих пластин переменной жесткости, каждая из которых взаимодействует с фиксаторами и выполнена в виде запорного элемента. Запорные элементы соединены с консольными пружинами, которые снабжены поперечными хвостовиками. Продольные перемычки разделительных пластин в нижней части снабжены поперечными полками, которые выполняют функцию фиксаторов и образуют с внутренней стороны выступы для взаимодействия с наружными кромками консольных пружин и поперечных хвостовиков, которые размещены за нижней кромкой запорных элементов. Изобретение позволяет упростить конструкцию клапана, повысить его надежность и безопасность. 7 ил.

Изобретение относится к области машиностроения и касается усовершенствования самодействующих прямоточных клапанов распределительных или обратных для машин объемного действия, таких как поршневые компрессоры, двигатели внутреннего сгорания, насосы, объектные моторы и других.

В настоящее время известны различные конструкции самодействующих клапанов - кольцевые, полосовые, тарельчатые, дисковые, швеллерные, лепестковые, прямоточные и ниппельные (1), которые могут быть приняты в качестве аналогов для предлагаемой конструкции клапана. Наиболее перспективными из перечисленных конструкций по надежности и экономичности можно считать прямоточные клапаны, у которых масса рабочих пластин намного меньше, чем аналогичная масса рабочих пластин у других конструкций клапанов. При этом у них газ направляется на рабочую пластину не перпендикулярно, а по касательной. В результате уменьшается сопротивление клапана и динамическая нагрузка на рабочие пластины и седла клапанов, т.к. уменьшается средняя скорость движения рабочих пластин. В качестве ближайшего прототипа для предложенной конструкции клапана может быть принят самодействующий лепестковый прямоточный клапан по патенту Российской Федерации (2). Указанный клапан содержит прижатые друг к другу седла прямоугольного сечения с каналами и окнами для прохода газа, ограничители подъема и фиксаторы, а также установленные между смежными седлами разделительные пластины, имеющие вырезы, разделенные продольными перемычками, которые образуют ниши для размещения съемных рабочих пластин переменной жесткости, каждая из которых взаимодействует с фиксаторами и выполнена в виде запорного элемента, соединенного с консольными пружинами, снабженными поперечными хвостовиками. Недостатком конструкции прототипа (2) является то, что в качестве фиксаторов использована дополнительная пластина, установленная между разделительной пластиной и седлом. Целью изобретения является упрощение конструкции клапана, для чего необходимо уменьшить количество деталей клапана и упростить форму ограничителя подъема. Это достигается тем, что продольные перемычки разделительных пластин в нижней части снабжены поперечными полками, выполняющими функцию фиксаторов и образующими с внутренней стороны выступы для взаимодействия с наружными кромками консольных пружин и поперечных хвостовиков, которые размещены за нижней кромкой запорных элементов. На фиг. 1 изображен самодействующий лепестковый прямоточный клапан, вид со стороны входа газа; на фиг. 2 - разрез А-А на фиг. 1; на фиг. 3 - разрез Б-Б на фиг. 2; на фиг. 4 - разрез В-В на фиг. 2; на фиг. 5 - вид по стрелке Д на фиг. 4; на фиг. 6 - вид по стрелке Г на фиг. 2; на фиг. 7 - вид по стрелке Г на фиг. 2, показывающий возможный вариант фиксации рабочих пластин. Клапан содержит прижатые друг к другу седла 1 прямоугольного сечения с каналами 2 и окнами 3 для прохода газа, ограничители подъема 4 съемных рабочих пластин 5, а также установленные между смежными седлами 1 разделительные пластины 6, имеющие вырезы 7, разделенные продольными перемычками 8, которые образуют боковые кромки 9 ниш для размещения съемных рабочих пластин 5 переменной жесткости, каждая из которых выполнена в виде запорного элемента 10 (лепестка), соединенного с консольными пружинами 11, снабженными поперечными хвостовиками 12. При этом продольные перемычки 8 разделительных пластин 6 в нижней части снабжены поперечными полками 13, образующими с внутренней стороны вырезов 7 выступы 14 для взаимодействия с наружными кромками 15 консольных пружин 11 и поперечных хвостовиков 12, которые размещены за нижней кромкой 16 запорных элементов 10. Такое выполнение позволяет использовать выступы 14 поперечных полок 13 в качестве фиксаторов рабочих пластин 5. Как вариант в предложенной конструкции клапана для образования окон 3 для выхода газа использована промежуточная пластина 17 с окнами, которая установлена на ребрах жесткости 18 газовых каналов 2. На фиг. 2 показан сложный разрез А-А клапана, где в левой стороне разреза в нише находится рабочая пластина 5, а в правой стороне пустая ниша без рабочей пластины. На фиг. 3 показан разрез Б-Б седла клапана, показывающий наличие в пакете седел промежуточной пластины 17 с окнами 3, разделительной пластины 6 и седла 1. На фиг. 4 показан разрез В-В только седла 1 без разделительной пластины 6 и промежуточной пластины 17. На фиг. 5 показан вид по стрелке Д, характеризующий простоту конструкции седла 1 со стороны ограничителя подъема 4. Такая форма седла как со стороны ограничителя, так и со стороны газовых каналов 2 позволяет использовать при механической обработке седла простой метод фрезерования без использования станков с ЧПУ (числовое программное управление), которое раньше использовалось для формирования ниши рабочих пластин и фиксаторов из-за их сложной формы. Кроме того, по сравнению с прототипом (2) из конструкции исключена дополнительная пластина, которая использовалась для формирования фиксаторов. На фиг. 6 показан вид по стрелке Г, поясняющий вариант фиксации рабочей пластины на поперечной полке 13. В этом варианте поперечные хвостовики 12 консольных пружин 11 отогнуты в сторону ограничителя подъема 4, а фиксация (упор) рабочей пластины обеспечивается кромкой 15 консольных пружин. На фиг. 7 показан вид по стрелке Г, поясняющий другой вариант фиксации рабочей пластины на поперечной полке 13, когда поперечные хвостовики 12 отогнуты в сторону седла и заходят за поперечную полку 13. Открытие и закрытие окон 3 запорным элементом 10 рабочей пластины 5 происходит при возникновении разности давлений до и после клапана, что обеспечивает его самодействие. Согласно изобретению обеспечивается точная и надежная фиксация рабочих пластин 5 в нише клапана, которая может быть образована в разделительной пластине 6 методом штамповки, а также простое извлечение рабочей пластины из клапана в случае необходимости ее замены. Т. к. роль седла и ниш для рабочих пластин выполняют стальные пластины, седла защищены и не изнашиваются, а поэтому могут быть изготовлены из более мягких материалов, например из пластмассы. При установке рабочей пластины 5 в нишу ее заводят так, чтобы поперечные хвостовики шли сзади запорного элемента. При заводке рабочей пластины в нишу до упора поперечные хвостовики 12 защелкивают рабочую пластину после прохождения поперечных полок 13 на выступах 14. Съемка рабочих пластин осуществляется с помощью пластины съемника, которая снимает поперечные хвостовики 12 или консольные пружины 11 в зависимости от варианта фиксации с выступов 14. Источники информации, принятые во внимание: 1. Обзорная информация. Самодействующие прямоточные клапаны воздушных и газовых поршневых компрессоров. ЦИНТИХИМнефтемаш. Серия ХМ-5 М., 1977. 2. Патент РФ на "Самодействующий прямоточный клапан" N 2041412 F 16 K 15/16, F 04 B 39/10, Бюлл. N 22, 1995.

Формула изобретения

Самодействующий лепестковый прямоточный клапан распределительный или обратный для машин объемного действия, содержащий прижатые друг к другу седла прямоугольного сечения с каналами и окнами для прохода газа, ограничители подъема и фиксаторы, а также установленные между смежными седлами разделительные пластины, имеющие вырезы, разделенные продольными перемычками, которые образуют ниши для размещения съемных рабочих пластин переменной жесткости, каждая из которых взаимодействует с фиксаторами и выполнена в виде запорного элемента, соединенного с консольными пружинами, снабженными поперечными хвостовиками, отличающийся тем, что продольные перемычки разделительных пластин в нижней части снабжены поперечными полками, выполняющими функцию фиксаторов и образующими с внутренней стороны выступы для взаимодействия с наружными кромками консольных пружин и поперечных хвостовиков, которые размещены за нижней кромкой запорных элементов.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7

Похожие патенты:

Изобретение относится к области машиностроения и касается усовершенствования прямоточных самодействующих лепестковых распределительных или обратных клапанов для машин объемного действия, таких как компрессоры, двигатели внутреннего сгорания, насосы, объемные моторы, трансмиссия и др

Изобретение относится к области машиностроения и касается усовершенствования прямоточных самодействующих распределительных или обратных клапанов для машин объемного действия

Изобретение относится к прямоточным клапанам для машин объемного действия

Изобретение относится к машиностроению и может быть использовано в машинах объемного вытеснения, а именно в поршневых и роторно-поршневых компрессорах в качестве всасывающих, нагнетательных, обратных и т

Изобретение относится к армэтуроароению и может быть использовано в поршневых компрессорах Цель изобретения - повышение пропускной способности клапана за счет управления пинией прогиба запорной пластины

Изобретение относится к области машиностроения, в частности к компрессорному машиностроению, и предназначено для использования в качестве самодействующих газораспределительных устройств

Изобретение относится к области машиностроения, в частности к компрессоростроению, и предназначено для использования в качестве газорасределительного клапана, например, в поршневых компрессорах

Изобретение относится к области машиностроения, в частности к компрессорному машиностроению, и предназначено для использования в качестве самодействующих газораспределительных устройств

Изобретение относится к области энегомашиностроения и предназначено для организации потоков рабочего газа в проточной части объемного действия, преимущественно компрессоров

Изобретение относится к области самодействующих клапанов

Изобретение относится к поршневым компрессорным машинам как общего, так и специального назначения

Изобретение относится к области запорной арматуры и предназначено для перекрытия проходного сечения трубопровода для транспортировки текучей среды

Изобретение относится к области машиностроения, в частности к компрессорному машиностроению, и предназначено для использования в качестве газораспределительных органов - клапанов в поршневых компрессорах, как общего, так и специального назначения. Прямоточный клапан поршневого компрессора содержит клапанную плиту в виде диска, в котором в перпендикулярной плоскости выполнены входные и выходные каналы и запорные элементы между ними. В диске выполнен кольцевой периферийный бурт для его крепления в крышке компрессора. Диск выполнен из эластичного термостойкого материала. Входные и выходные каналы выполнены в виде соосных цилиндрических отверстий. Каждый запорный элемент выполнен в виде двух диаметрально сомкнутых в закрытом положении губок, находящихся в выходном канале и отлитых заодно с телом диска в своем основании. Оси каналов равномерно размещены на концентрических окружностях по всей площади диска. В теле диска расположена выходящая в кольцевой бурт армирующая металлическая пластина с отверстиями, окружающими входные каналы. Изобретение направлено на снижение гидравлического сопротивления клапана при проходе газа, т.к. поток газа не меняет своего направления, что приводит к уменьшению расхода электроэнергии, потребляемой электродвигателем поршневого компрессора. 2 ил.

Группа изобретений относится к клапанным узлам. Описаны пластинчатые клапанные модули и соответствующие пластинчатые клапанные узлы. В одном варианте осуществления, пластинчатый клапанный модуль включает корпус, содержащий одну или более поверхностей уплотнения, седло и проточные каналы от седла к поверхности уплотнения. Пластинчатый клапанный модуль также включает одну или более створок. В некоторых вариантах осуществления модуль дополнительно включает ограничитель для створок. Описаны новые пластинчатые клапанные узлы, включающие пластинчатые клапанные модули. Один вариант осуществления пластинчатого клапанного узла включает седло с множеством проточных каналов, пластину упора с множеством проточных каналов и средство для принимающих выемок между пластиной седла и пластиной упора. Описаны также другие устройства, системы и способы, связанные с пластинчатыми клапанными модулями и клапанными узлами. Группа изобретений направлена на повышение надежности и экономичности клапанов. 6 н. и 27 з.п. ф-лы, 15 ил.

Самодействующий лепестковый прямоточный клапан

www.findpatent.ru

Прямоточный клапан поршневого компрессора

Изобретение относится к области машиностроения, в частности к компрессорному машиностроению, и предназначено для использования в качестве газораспределительных органов - клапанов в поршневых компрессорах, как общего, так и специального назначения. Прямоточный клапан поршневого компрессора содержит клапанную плиту в виде диска, в котором в перпендикулярной плоскости выполнены входные и выходные каналы и запорные элементы между ними. В диске выполнен кольцевой периферийный бурт для его крепления в крышке компрессора. Диск выполнен из эластичного термостойкого материала. Входные и выходные каналы выполнены в виде соосных цилиндрических отверстий. Каждый запорный элемент выполнен в виде двух диаметрально сомкнутых в закрытом положении губок, находящихся в выходном канале и отлитых заодно с телом диска в своем основании. Оси каналов равномерно размещены на концентрических окружностях по всей площади диска. В теле диска расположена выходящая в кольцевой бурт армирующая металлическая пластина с отверстиями, окружающими входные каналы. Изобретение направлено на снижение гидравлического сопротивления клапана при проходе газа, т.к. поток газа не меняет своего направления, что приводит к уменьшению расхода электроэнергии, потребляемой электродвигателем поршневого компрессора. 2 ил.

 

Изобретение относится к поршневым компрессорам как общего, так и специального назначения, в частности к газораспределительным органам - клапанам поршневых компрессоров.

Известен прямоточный клапан для поршневых компрессоров (SU 954691 А1, кл. F16К 15/16, 29.01.1982), содержащий седла с расположенными поочередно уплотнительными и ограничительными поверхностями, рабочие пластины с зубцами, находящиеся между седлами, и стяжные кольца.

Известен также прямоточный клапан для поршневых машин (SU 463829 А1, кл. F16K 15/14, 15.03.1975), содержащий седла с профилем переменной кривизны, изогнутые пластины и стяжные кольца.

Недостатком этих конструкций клапанов является высокое гидравлическое сопротивление при проходе газа.

Наиболее близкой по технической сущности является конструкция прямоточного клапана (RU 2264576 С2, кл. F16К 15/16, 20.11.2005), содержащая плоские седла и прилегающие к ним упругие пластины. Клапан работает следующим образом. При давлении газа со стороны газовых каналов большем, чем давление газа с противоположной стороны клапана, пластина под действием газа отгибается и открывает щель, через которую проходит газ. Когда разность давлений на клапан становится равной нулю или меняет знак, пластина садится на седло, щель закрывается, поток газа прекращается.

Недостатками этой конструкции клапана являются также высокое гидравлическое сопротивление при проходе газа, меняющего свое направление, выраженное в наличии в конструкции щели конструктивных сужений и препятствий в виде задней стенки седла, малое пропускное сечение и сложность в изготовлении.

Задачей изобретения является устранение указанных недостатков. Технический результат изобретения заключается в снижении гидравлического сопротивления при проходе газа, т.к. поток газа не меняет своего направления, что приводит к уменьшению расхода электроэнергии, потребляемой электродвигателем поршневого компрессора.

Задача решается, а технический результат достигается тем, что в прямоточном клапане поршневого компрессора, содержащим клапанную плиту в виде диска, в котором в перпендикулярной плоскости выполнены входные и выходные каналы и запорные элементы между ними, причем в диске выполнен кольцевой периферийный бурт для его крепления в крышке компрессора, согласно изобретению, диск выполнен из эластичного термостойкого материала, входные и выходные каналы выполнены в виде соосных цилиндрических отверстий, а каждый запорный элемент - в виде двух диаметрально сомкнутых в закрытом положении губок, находящихся в выходном канале и отлитых заодно с телом диска в своем основании, при этом оси каналов равномерно размещены на концентрических окружностях по всей площади диска, причем в теле диска расположена выходящая в кольцевой бурт армирующая металлическая пластина с отверстиями, окружающими входные каналы.

Изобретение поясняется чертежом, где на фиг.1 изображен клапан в сборе в разрезе; на фиг.2 - вид сверху на фиг.1.

Прямоточный клапан поршневого компрессора содержит клапанную плиту в виде диска 1. В диске 1 в перпендикулярной плоскости выполнены входные 2 и выходные 3 каналы для прохода сжимаемого газа через эластичные запорные элементы 4, расположенные между ними. Диск 1 выполнен с кольцевым периферийным буртом 5 для его крепления в крышке компрессора (не изображено). Диск 1 выполнен из эластичного термостойкого материала. Входные 2 и выходные 3 каналы выполнены в виде соосных цилиндрических отверстий. Каждый запорный элемент 4 выполнен в виде двух диаметрально сомкнутых в закрытом положении губок 6, находящихся в выходном канале 3 и отлитых заодно с телом диска 1 в своем основании. Оси каналов 2, 3 равномерно размещены на концентрических окружностях по всей площади диска 1. Чтобы диск 1 надежно был закреплен в крышке компрессора и имел требуемую жесткость, в теле диска 1 расположена выходящая в кольцевой бурт 5 армирующая металлическая пластина 7 с отверстиями, окружающими входные 2 каналы.

Клапан работает следующим образом.

Под напором поршня (не показан) сжимаемый газ поступает в каждый входной канал 2 и под действием давления, превышающего упругость эластичного запорного элемента 4, раздвигает губки 6 эластичного запорного элемента 4 и далее проходит через образовавшееся отверстие в выходной 3 канал на выход. После того как поршень достигнет верхней мертвой точки и начнет двигаться к нижней мертвой точке, клапан приходит в закрытое состояние.

Предлагаемое техническое решение дает возможность:

- снизить удельный расход электроэнергии, потребляемой электродвигателем поршневого компрессора;

- увеличить пропускную способность прямоточного клапана;

- значительно упростить изготовление прямоточного клапана. Заявленный клапан может быть изготовлен на стандартном оборудовании с использованием известных технологических процессов.

Прямоточный клапан поршневого компрессора, содержащий клапанную плиту в виде диска, в котором в перпендикулярной плоскости выполнены входные и выходные каналы и запорные элементы между ними, причем в диске выполнен кольцевой периферийный бурт для его крепления в крышке компрессора, отличающийся тем, что диск выполнен из эластичного термостойкого материала, входные и выходные каналы выполнены в виде соосных цилиндрических отверстий, а каждый запорный элемент - в виде двух диаметрально сомкнутых в закрытом положении губок, находящихся в выходном канале и отлитых заодно с телом диска в своем основании, оси каналов равномерно размещены на концентрических окружностях по всей площади диска, причем в теле диска расположена выходящая в кольцевой бурт армирующая металлическая пластина с отверстиями, окружающими входные каналы.

www.findpatent.ru

Конструкция всасывающего клапана | НПП Ковинт

В данной статье расскажем о типичной конструкции всасывающего клапана (регулятора всасывания) винтового компрессора.

Отметим, что в основном во всех винтовых компрессорах используются клапаны (регуляторы всасывания) производства компании VMC (Италия).

Всасывающие клапаны (регуляторы всасывания) других производителей могут иметь небольшие отличия, но структура и назначение остаются одинаковыми.

Итак…

Винтовой компрессор может работать в двух режимах – нагрузки и холостого хода. Для переключения между этими режимами служит всасывающий клапан, который устанавливается на линии всасывания винтового блока.

Конструкция всасывающего клапана может отличаться в зависимости от мощности компрессора. Мы рассмотрим наиболее типичные варианты. Следует отметить, что все всасывающие клапаны имеют пневматическое управление, т.е. состояние клапана (открыт/закрыт) определяется наличием/отсутствием давления на его управляющем входе.

Дисковый клапан

Дисковый клапан

  1. Входной фильтр.
  2. Диск клапана.
  3. Регулируемый дроссель.
  4. Обратный клапан.
  5. Обводная линия.
  6. Вентиляционная линя камеры холостого хода.
  7. Поршень.
  8. Пружина.
  9. Линия управления камеры хо­лостого хода.
  10. Разгрузочный электромагнит­ный клапан.
  11. Вход управления из масляного резервуара.
  12. Редуктор (3 бара).
  13. Управляющий электромагнит­ный клапан.
  14. Линия управления камерой нагрузки.
  15. Камера холостого хода.
  16. Камера нагрузки.
  17. Вентиляционная линия камеры нагрузки.
  18. Винтовой блок.
  19. Шток клапана

Управление работой всасывающего клапана осуществляется при помощи двух электромагнитных клапанов (10 и 13).

При открытии нормально открытого (без подачи управляющего напряжения) клапана 10 происходит перемещение диска 2 всасывающего клапана влево (по рисунку) и закрытие всасывающей горловины винтового блока 18.

При этом некоторое количество воздуха попадает в винтовой блок через обводную линию 5 с обратным клапаном 4 и редуктором 3 и сжимается для поддержания в масляном резервуаре давления, необходимого для нормальной циркуляции масла в контуре компрессора (как правило, порядка 1,5 бар). Компрессор работает в режиме холостого хода, не производя сжатый воздух).

При закрытии электромагнитного клапана 10 и переключении электромагнитного клапана 13 давление из масляного резервуара подается в камеру нагрузки 16 привода всасывающего клапана. Диск клапана перемещается вправо (по рисунку) и открывает всасывающую горловину винтового блока 18. Компрессор начинает производить сжатый воздух, т.е. работать в режиме нагрузки.

Более подробно конструкция дискового всасывающего клапана показана на рисунке ниже.

Конструкция дискового всасывающего клапана

  1. Трубка.
  2. Дроссель.
  3. Обратный клапан.
  4. Коннектор.
  5. Коннектор.
  6. Коннектор.
  7. Коннектор.
  8. Коннектор.
  9. Корпус клапана.
  10. Уплотняющее кольцо*.
  11. Уплотняющее кольцо*.
  12. Шток клапана.
  13. Поршень*.
  14. Уплотняющее кольцо*.
  15. Болт.
  16. Коннектор.
  17. Коннектор.
  18. Крышка клапана.
  19. Уплотняющее кольцо*.
  20. Пружина*.
  21. Гайка.
  22. Прокладка.
  23. Уплотняющее кольцо*.
  24. Диск клапана.
  25. Уплотняющее кольцо.
  26. Втулка*.
  27. Коннектор.
  28. Коннектор.
  29. Гайка.
  30. Коннектор.
  31. Индикатор ваку­ума (засоренности входного фильтра).

Поворотный клапан (заслонка)

Поворотный клапан (заслонка)

  1. Регулируемый дроссель.
  2. Корпус клапана.
  3. Входной фильтр.
  4. Заслонка.
  5. Регулируемый дроссель разгрузки.
  6. Электромагнитный клапан разгрузки.
  7. Вход управления из масляного резервуара.
  8. Управляющий электромагнитный клапан.
  9. Пневмоцилиндр.
  10. Поршень.
  11. Пружина.
  12. Винтовой блок.
  13. Пружина.
  14. Обратный клапан.

Работа клапана такой конструкции сходна с дисковым всасывающим клапаном. Управление состоянием клапана также осуществляется при помощи двух электромагнитных клапанов 6 и 8.

Через клапан 8 сжатый воздух из масляного резервуара воздействует на поршень пневмоцилиндра 10, управляя положением заслонки 4, открывающей/закрывающей горловину винтового блока 12.

Через клапан 6 происходит разгрузка компрессора (сброс излишнего давления из масляного резервуара) в режиме холостого хода и после остановки компрессора.

Обводная линия (для поддержания давления в масляном резервуаре в режиме холостого хода на уровне 1,5 бар) представляет из себя регулируемый дроссель 1.

Обратный клапан 14 с пружиной 13 служит для предотвращения выброса масла из винтового блока 12 во входной фильтр 3 при аварийной остановке компрессора, т.к. заслонка 4 при этом не может закрыться мгновенно.

Дисковый клапан имеет показанную ниже конструкцию:

Дисковый клапан

  1. Болт.
  2. Крышка клапана.
  3. Гайка.
  4. Крышка пневмоцилиндра.
  5. Пружина*.
  6. Поршень.
  7. Уплотняющее кольцо*.
  8. Седло пружины*.
  9. Корпус пневмоцилиндра.
  10. Резьбовой штифт.
  11. Регулируемый дроссель*.
  12. Уплотняющее кольцо.
  13. Корпус клапана.
  14. Стопор пружины*.
  15. Пружина.
  16. Обратный клапан*.
  17. Уплотняющее кольцо*.
  18. Прокладка*.
  19. Стопорное кольцо.
  20. Уплотняющее кольцо*.
  21. Стопор пружины*.
  22. Пружина*.
  23. Клапан разгрузки*.

Следует отметить, что позиции на рисунках, обозначенные «звездочкой» (*), должны входить в комплект поставки сервисных наборов для обслуживания всасывающих клапанов. Это гарантирует их длительную безотказную работу.

На этом все.

Все возникшие вопросы вы можете задать в форме ниже. Мы ответим в течение 1-2 рабочих дней.

С уважением,

Константин Широких & Сергей Борисюк

Вернуться в раздел Полезная информация

Еще по теме:

Винтовые компрессоры. Общая информация

Принцип работы винтового компрессора

Конструкция/устройство винтового компрессора

Конструкция винтового газового компрессора. Видео

Конструкция винтового блока компрессора

Конструкция всасывающего клапана (регулятора всасывания) винтового компрессора

Конструкция термостата. Назначение термостата в винтовом компрессоре

Конструкция клапана минимального давления (КМД). Назначение КМД в винтовом компрессоре

Конструкция масляного резервуара. Назначение и принцип действия

Конструкция сепаратора тонкой очистки. Назначение и функции в винтовом компрессоре

Схема управления работой винтового компрессора. Общая информация

Силовая часть схемы управления винтового компрессора

covint.ru