Коррозия металлов, виды коррозии. Коррозия металлов способы защиты металлов от коррозии


Коррозия металлов, виды коррозии.

Коррозией металла называется его разрушение, вызванное электрохимическим воздействием внешней среды на его поверхность.

Разрушение металла труб почвенной коррозией происходит под действием малых электрических токов, возникающих на поверхности металла в результате взаимодействия с ним почвенного электролита. Поверхность металла и электролит образуют гальваническую пару. Та часть поверхности металла, из которой ток переходит в электролит, называется анодом, а та часть, где ток выходит из электролита, - катодом. В анодных зонах металл подвергается разрушению, а в катодных зонах происходит накопление продуктов коррозии без разрушения металла.

Подземная электрохимическая коррозия металла, в почвах и грунтах характерна для трубопроводов уложенных в землю, где грунтовые воды являются электролитами.

Коррозия блуждающими токами – электрохимическая коррозия металла под воздействием блуждающего тока, подвергаются трубы, уложенные в землю вблизи электрических кабелей и рельсов.

В зависимости от типа разрушений коррозии разделяются на сплошную, местную и структурную.

Сплошная коррозия охватывает всю поверхность металла.

Местная охватывающая отдельные участки с нарушением гладкой поверхности в виде царапин и др. она подразделяется на точечную и сквозную (кровли зданий).

Структурная – связанная со структурной неоднородностью металла, подразделяется на межкристаллитную, которая распространяется по границам зерен металла, и избирательную разрушающие структурные составляющие сплава. Так в серых чугунах разрушается металлическая основа, остается лишь скелет из включений графита.

Способы защиты металлических изделий от коррозии.

Процесс разрушения труб под действием окружающей среды называется коррозией.

По характеру взаимодействия металла труб, различают два типа коррозии: химическую и электрохимическую.

Химической коррозией называется процесс разрушения всей поверхности металла при его контакте с агрессивным химическим веществом.

Электрохимической коррозией называется процесс разрушения металла сопровождающийся образованием и прохождением эл.тока при этом на поверхности металла образуется не сплошное, а местное повреждение металла в виде пятен и раковин.

Биокоррозия трубопроводов вызывается жизнедеятельностью микроорганизмов

Существует два способа защиты от коррозии: пассивный и активный.

Пассивный – изоляционные покрытия различными материалами ( битумно-резиновые и полимерные). Требования к покрытию:

  1. водонепроницаемость;

  2. прочность сцепления с металлом;

  3. хорошая изоляция от эл.тока;

  4. достаточная прочность и способность сопротивляться механическим воздействиям при засыпке траншеи.

К числу активным способам защиты относится катодная и протекторная защиты.

Сущность катодной защиты сводится к созданию отрицательного потеннцала на поверхности трубы. Благодаря чему предотвращается утечка электронов с поверхности трубы, сопровождающаяся ее коррозионным разъеданием.

Протекторная защита отличается тем, что необходимый для защиты ток, создается не станцией, а протекторами имеющие более отрицательный потенциал, чем защищаемый объект.

Основной металл защищается покрытием лакокрасочным, неметаллическим и металлическим, легированием электрохимическую (пластина цинка, магнитные протекторы. Основан на создании гальванических пар).

ЭЛЕКТРИЧЕСКИЕ МЕТОДЫ защиты – катодная, протекторная и дренажная.

При катодной – коррозия анодных участков трубы ликвидируется наложением на неё отрицательного потенциала, получаемого от внешнего источника постоянного тока, положительный потенциал которого соединяется с заземленным анодом. При такой схеме происходит разрушение заземленного анода (куска металла) и предотвращается разрушение трубы (катода).

При протекторной защите защитный ток возникает в результате работы гальванической пары протектор – труба, причем потенциал протектора должен быть ниже потенциала стали. Здесь не требуется источника электроэнергии, но расходуется значительное количество цветных металлов, поскольку протектор (анод) изготавливают из специальных сплавов – цинка, магния и алюминия.

Для повышения эффективности работы протектора его обычно обмазывают смесью глины с гибсовым порошком, что понижает сопротивление анодного заземлителя.

Дренажная защита предназначена для отвода блуждающих токов, в зоне прохождения поездов и трамваев, проходящих с газопровода обратно в рельсовую сеть.

studfiles.net

Коррозия металлов и способы защиты от коррозии | Учеба-Легко.РФ

При обычных условиях металлы могут вступать в химические реакции с веществами, содержащимися в окружающей среде, - кислородом и водой. На поверхности металлов появляются пятна, металл становится хрупким и не выдерживает нагрузок. Это приводит к разрушению металлических изделий, на изготовление которых было затрачено большое количество сырья, энергию и количество человеческих усилий.

Коррозией называют самопроизвольное разрушение металлов и сплавов под воздействием окружающей среды.

Яркий пример коррозии - ржавчина на поверхности стальных и чугунных изделий. Ежегодно из-за коррозии теряют около четверти всего производимого в мире железа. Затраты на ремонт или замену судов, автомобилей, приборов и коммуникаций, водопроводных труб во много раз превышают стоимость металла, из которого они изготовлены. Продукты коррозии загрязняют окружающую среду и негативно влияют на жизнь и здоровье людей.

Химическая коррозия происходит в различных химических производствах. В атмосфере активных газов (водорода, сероводорода, хлора), в среде кислот, щелочей, солей, а также в расплавах солей и других веществ происходят специфические реакции с привлечением металлических материалов, из которых сделаны аппараты, в которых осуществляется химический процесс. Газовая коррозия происходит при повышенных температурах. Под ее влияние попадают арматура печей, детали двигателей внутреннего сгорания. Электрохимическая коррозия происходит, если металл содержится в любом водном растворе.

Наиболее активными компонентами окружающей среды, которые действуют на металлы, является кислород О2, водяной пар Н2О, карбон (IV) оксид СО2, серы (IV) оксид SО2, азота (IV) оксид NО2. Очень сильно ускоряется процесс коррозии при контакте металлов с соленой водой. По этой причине корабли ржавеют в морской воде быстрее, чем в пресной.

Суть коррозии заключается в окислении металлов. Продуктами коррозии могут быть оксиды, гидроксиды, соли и т.д.. Например, коррозии железа можно схематично описать следующим уравнением:

4Fe + 6h3O + 3O2 → 4Fe (OH) 3.

Остановить коррозию невозможно, но ее можно замедлить. Существует много способов защиты металлов от коррозии, но основным приемом является предотвращение контакта железа с воздухом. Для этого металлические изделия красят, покрывают лаком или покрывают слоем смазки. В большинстве случаев этого достаточно, чтобы металл не разрушался в течение нескольких десятков или даже сотен лет. Другой способ защиты металлов от коррозии электрохимическое покрытие поверхности металла или сплава другими металлами, устойчивых к коррозии (никелирование, хромирование, оцинковка, серебрение и золочение). В технике очень часто используют специальные коррозионностойкие сплавы. Для замедления коррозии металлических изделий в кислой среде также используют специальные вещества - ингибиторы.

uclg.ru

Коррозия металлов и способы защиты от нее

Поиск Лекций

 

  Коррозия — процесс химического или электрохимического разрушения металлов под действием окружающей среды. Установлено, что от коррозии ежегодно теряется безвозвратно около 10 % производимых металлов, т. е. годовая продукция крупного металлургического завода. В процессе химического разрушения на поверхности металла образуется пленка из продуктов коррозии, обычно оксидов. В некоторых случаях эта пленка может защищать лежащий под ней металл от дальнейшей коррозии. Сравнительно плотные оксиды пленки образуются на поверхности алюминия, свинца, олова, никеля, хрома. При окислении железа в сухом воздухе или в атмосфере сухого кислорода образуется также достаточно плотная пленка, но она по мере роста растрескивается и отслаивается от металла. Чаще всего химическая коррозия происходит в среде сухих газов при высокой температуре (металлическая арматура печей, клапаны двигателей, лопатки газовых турбин и т.п.) или в жидкостях неэлектролитов (окисление металла в спирте, бензине, нефти, мазуте и т. п.). При электрохимической коррозии металл разрушается вследствие его растворения в жидкой среде, являющейся электролитом. Сущность процесса электрохимической коррозии заключается в том, что атомы, находящиеся в узлах кристаллической решетки металла, при контакте с раствором электролита переходят в раствор в форме ионов, оставляя эквивалентное количество электронов в металле. Переход атомов металла в ионы и растворение их в жидком электролите определяется величиной нормального электродного потенциала. Он характеризует то напряжение электрического тока, которое надо приложить к границе раздела твердого металла с жидким электролитом, чтобы воспрепятствовать переходу иона металла в раствор. Чем отрицательнее нормальный электродный потенциал, тем более резко выражено стремление металла к растворению в электролитах (например, свинец растворяется значительно медленнее, чем железо). Данный вид коррозии может также возникнуть при контакте двух разнородных металлов в присутствии электролита, когда между этими металлами возникает гальванический ток. В гальванической паре любых двух металлов будет растворяться тот металл, который обладает более отрицательным электродным потенциалом. Например, железо имеет более низкий отрицательный электродный потенциал, чем цинк, и более высокий, чем медь. Следовательно, при контакте железа с цинком будет разрушаться цинк, а при контакте железа с медью — железо. Гальванические пары при коррозии образуются не только между отдельными участками контактирующих металлов, но также и между микроскопически малыми кристалликами одного и того же сплава, если они различаются по химическому составу и физическим свойствам. В результате возникает коррозионное разрушение, которое может проникнуть очень глубоко и идти по границам раздела зерен (межкристаллическая коррозия). Например, в перлите феррит более электроотрицателен, чем цементит, он и будет разрушаться в соответствующих условиях.     Таким образом, электрохимическая коррозия — это разрушение сплава, сопровождающееся появлением электрического тока в результате работы множества микрогальванических элементов на корродирующей поверхности металла. На скорость растворения металла в электролите влияют примеси, способы обработки металла, концентрация электролитов. Металл, находящийся под нагрузкой, корродирует значительно быстрее ненагруженного, так как нарушается целостность защитной пленки и образуются микротрещины (коррозионное растрескивание). Разрушение металла одновременным воздействием знакопеременных нагрузок и коррозионной среды называют коррозионной усталостью. В зависимости от характера окружающей среды электрохимическая коррозия может быть подводной, атмосферной, почвенной, вызванной блуждающими токами. Электрохимическая коррозия металлов в воде обусловливается присутствием в ней растворенного кислорода. При атмосферной коррозии электролитом служит тонкая пленка влаги, сам же процесс коррозии ничем не отличается от коррозии в воде. В результате коррозии стали на ее поверхности появляется смесь различных гидратированных оксидов железа, имеющих состав «FeO-ph3O+mFe2O3-<?h3O (ржавчина). Активному протеканию процесса коррозии способствует углекислый и в особенности сернистый газы, хлористый водород, различные соли. Защиту от коррозии следует начинать с правильного подбора химического состава и структуры металла. При конструировании необходимо избегать форм, способствующих задержке влаги. Для защиты металла от коррозии применяют различные способы. Легирование стали повышает ее антикоррозионные свойства. Например, совершенную стойкость к атмосферной коррозии показывают нержавеющие легированные стали, содержащие в большом количестве хром, который, образуя на поверхности оксидные пленки, приводит сталь в пассивное состояние. Существенно повышается (в 1,5...3 раза) коррозионная стойкость строительных сталей при введении в их состав меди (0,2...0,5 %). Повышенной стойкости нержавеющих сталей против коррозии способствуют также их однородность и небольшое содержание вредных примесей. Защитные покрытия представляют собой пленки (металлические, оксидные, лакокрасочные и т.п.). Металлические покрытия бывают двух типов — анодные и катодные. Для анодного покрытия используют металлы, обладающие более отрицательным электродным потенциалом, чем основной металл (например, цинк, хром). Для катодного покрытия выбирают металлы, имеющие меньшее отрицательное значение электродного потенциала, чем основной металл (медь, олово, свинец, никель и др.). Металлические покрытия наносят горячим методом, гальваническим и металлизацией. При горячем методе покрытия изделия погружают в ванну с расплавленным защитным металлом, температура которого ниже, чем температура плавления изделия (цинк, олово, свинец). Гальванический метод защиты состоит в том, что на поверхности изделия путем электролитического осаждения из растворов солей создается тонкий слой защищаемого металла. Покрываемое изделие при этом служит катодом, а осаждаемый металл — анодом. Металлизация — покрытие поверхности детали расплавленным металлом, распыленным сжатым воздухом. Преимуществом этого метода защиты металла является то, что покрывать расплавом можно уже собранные конструкции. Недостаток заключается в том, что получается шероховатая поверхность. Металлические покрытия можно наносить также посредством диффузии металла покрытия в основной металл— алитирование, силицирование, хромирование (см. с. 316), а также способом плакирования, т.е. наложения на основной металл тонкого слоя защитного металла (биметалл) и зарепления его путем горячей прокатки (например, железо — медный сплав, дюралюминий — чистый алюминий). Оксидирование — защита оксидными пленками. Для этого естественную оксидную пленку, всегда имеющуюся на металле, делают более прочной путем обработки сильным окислителем, например концентрированной азотной кислотой, растворами марганцевой или хромовой кислот и их солей. Частным случаем оксидирования является воронение стали. В этом случае на поверхности также создается оксидная пленка, но более сложными приемами, связанными с многократной термической обработкой при температуре ЗО0...40О°С в присутствии древесного угля. Фосфатирование состоит в получении на изделии поверхностной пленки из нерастворимых солей железа или марганца в результате погружения металла в горячие растворы кислых фосфатов железа или марганца. Лакокрасочные покрытия основаны на механической защите металла пленкой из различных красок и лаков. Ванны, раковины, декоративные изделия для защиты от коррозии покрывают эмалью, т. е. наплавляют на металл при температуре 750...800°С различные комбинации силикатов. При временной защите металлических изделий от коррозии (транспортировании, складировании) используют для покрытия металла невысыхающие масла (технический вазелин, лак этиноль), а также ингибиторы, т. е. вещества, замедляющие протекание реакции (нитрит натрия с углекислым аммонием, с уротропином, ингибитор ную бумагу

 

Химическая коррозия металлов — это результат протекания таких химических реакций, в которых после разрушения металлической связи, атомы металла и атомы, входящие в состав окислителей, образуют химическую связь. Электрический ток между отдельными участками поверхности металла в этом случае не возникает. Такой тип коррозии присущ средам, которые не способны проводить электрический ток – это газы, жидкие неэлектролиты.

Химическая коррозия металлов бывает газовой и жидкостной.

 

Газовая коррозия металлов – это результат действия агрессивных газовых или паровых сред на металл при высоких температурах, при отсутствии конденсации влаги на поверхности металла. Это, например, кислород, диоксид серы, сероводород, пары воды, галогены. Такая коррозия в одних случаях может привести к полному разрушению металла (если металл активный), а в других случаях на его поверхности может образоваться защитная пленка (например, алюминий, хром, цирконий).

 

Жидкостная коррозия металлов– может протекать в таких неэлектролитах, как нефть, смазочные масла, керосин и др. Этот тип коррозии при наличии даже небольшого количества влаги, может легко приобрести электрохимический характер.

 

Виды коррозии металлов

Наиболее часто встречаются следующие виды коррозии металлов:

1. Равномерная – охватывает всю поверхность равномерно

2. Неравномерная

3. Избирательная

4. Местная пятнами – корродируют отдельные участки поверхности

5. Язвенная (или питтинг)

6. Точечная

7. Межкристаллитная – распространяется вдоль границ кристалла металла

8. Растрескивающая

9. Подповерхностная

 

Основные виды коррозии



poisk-ru.ru